脉冲波形的产生与变换

脉冲波形的产生与变换
脉冲波形的产生与变换

脉冲波形的产生与变换

脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。

9.1 多谐振荡器

自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。

9.1.1门电路组成的多谐振荡器

多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。

(1)由TTL门电路组成的多谐振荡器

由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。

①简单环形多谐振荡器

(a) (b)

图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。

简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。

② RC环形多谐振荡器

如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。

图9-2 RC环形多谐振荡器

a.工作原理

设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

位逐渐升高。当u4超过G3的输入阀值电平UTH 时,G3翻转,u0=u1变为低电平,使G1也翻转,u2变为高电平,由于电容电压不能突变,u4也有一个正突跳,保持G3输出为低电平,此时电路进入第2暂稳态。随着u2高电平对电容C 并经电阻R 的反向充电,u4电位逐渐下降,当u4低于UTH 时,G3再次翻转,电路又回到第1暂稳态。如此循环,形成连续振荡。电路各点的工作波形如图9-3所示。

图9-3 RC 环形多振荡器工作波形

b.脉冲宽度tW 及周期T 的估算

脉冲宽度分为充电时间(tW1)和放电时间(tW2)两部分,根据RC 电路的基本工作原理,利用三要素法,可以得到充电时间tW1:

tW1=τln

)

()()

0()(14444t u u u u -∞+-∞=RCln TH

OH TH OH U U U U -+

同理,求得放电时间tW2:

tW2=τln

)

()()0()(24444t u u u u -∞+-∞=RCln

TH

OL TH OH OL U U U U U -+-)(

其中: τ=RC,UOH 和UOL 分别为非门输出的高电平电压和低电平电压。设UOH =3V 、UOL

U

=0.3V、UTH=1.4V,故脉冲周期T

T=tW1+tW2≈0.6RC+1.3RC≈1.9RC

从以上分析看出,要改变脉宽和周期,可以通过改变定时元件R和C来实现。

c.改进形式

由于电阻R不能取得过大(700Ω以下),这就限制了频率的调节围。如果在环形振荡器中增加一级射级跟随器,可使R的可调围增大,在图9-4所示电路中,R的取值可以达到10KΩ,若将晶体三极管改为均效应管,R的取值可以达到20MΩ,这样,振荡频率的调节围就很宽。

图9-4 改进的RC环形多谐振荡器

(2) CMOS门电路构成的多谐振荡器

由于CMOS门电路的输入阻抗高(>108Ω),对电阻R的选择基本上没有限制,不需要大容量电容就能获得较大的时间常数,而且CMOS门电路的阀值电压UTH比较稳定,因此常用来构成振荡电路,尤其适用于频率稳定度和准确度要求不太严格的低频时钟振荡电路。

①电路组成及工作原理

图9-5所示为一个由CMOS反相器与R、C元件构成的多谐振荡器。接通电源VDD后,电路中将产生自激振荡,因RC串联电路中电容C上的电压随电容充放电过程不断变化,从而使两个反相器的状态不断发生翻转。

图9-5 CMOS 多谐振荡器

接通电源后,假设电路初始状态ui1=0,门G1截止,u01=1,门G2导通,u02=0,这一状态称为第1暂稳态。此时,电阻R 两端的电位不相等,于是电源经门G1、电阻R 和门G2对电容C 充电,使得ui1的电位按指数规律上升,当ui1达到门G1的阀值电压UTH 时,门G1由截止变为导通,电路发生如下正反馈过程:

即门G1导通,门G2截止,u01=0,u02=1,这称为电路的第2暂稳态。

这个暂稳态也不能稳定保持下去。电路进入该状态的瞬间,门G 2的输出电位u 02由0上跳

至1,幅度约为VDD 。由于电容两极极间电位不能突变,使得ui1的电压值也上跳VDD 。由于CMOS 门电路的输入电路中二极管的钳位作用,使ui1略高于VDD 。此时电阻两端电位不等,电容通过电阻R 、门G1及门G2放电,使得ui1电位不断下降,当ui1下降到UTH 时,电路发生如下正反馈过程:使得门G1截止,门G2导通,即u01=1,u02=0,电路发生翻转,又回到第1

暂稳态。此后,电容C 重复充电、放电,在输出

端即获得矩形波输出。工作波形见图9-6。

uo2

uo2

t

t

图9-6 CMOS 多谐振荡器工作波形

考虑到CMOS 门电路输入端钳位二极管的限幅作用,门G1的ui1的值在发生正跳变时峰值不可能超过 VDD +VF (其中VF 为钳位二极管的导通压降),发生负跳变时峰值不可能超过-VF 。

②振荡周期T 和振荡频率f 的计算

在CMOS 电路中,若VF ≈0V,且UTH =21

VDD,则第1暂稳态时间和第2暂稳态时间相等为

t,门G2的输出u02为方波。

振荡周期:

T =2t =2RCln

)

()()

0()(11111t u u u u i i i i -∞+-∞=2RCln

DD

DD DD V V V 210

--=2RCln2≈1.4RC

振荡频率f =T 1=RC 4.11

【例9-1 】 在图9-5的CMOS 多谐振荡器中,已知VDD =10V,UTH =5V,VF =1V,R =100K Ω,C =0.001μf, 试计算电路的振荡频率。

解: T =tW1+tW2=RCln TH

F

DD U V V ++RCln

TH

DD FF DD U V V V -+

=100×103×0.001×10-6

×ln 5

110++100×103

×0.001×10-6

×ln 5101

10-+

=1.577×10-4

(S)

振荡频率f =T 1

=6.3(KHz)

9.1.2 石英晶体多谐振荡器

在多谐振荡器中,输出信号振荡频率的稳定性主要由电路达到转换电平的时间来决定。由于转换电平受温度变化有一些影响,受外界干扰后,电路转换时间发生变化的影响及电容充放电速度变缓后,转换电平微小变化对振荡周期的影响等原因,使电路振荡频率稳定性较差,因此,在对频率稳定性要求较高的数字设备系统中,需要稳频措施。其常用方法是在多谐振荡器的反馈回路中串进石英晶体,构成石英晶体振荡器,如图9-7所示。图中,R1.、R2保证G1.、G2正常工作,电容器C1、C2起到频率微调及耦合的作用。

图9-7 石英晶体多谐振荡器石英晶体具有很好的选频特性如图9—8所示。把石英晶体对称接入反馈回路后,只有当信号频率为晶体固有的谐振频率f0时,晶体的等效阻抗最小,信号最容易通过,而其他频率的信号均被晶体严重衰减。因此,电路的振荡频率只取决于与晶体结构有关的谐振频率f0,与R和C的大小无关,所以,它的输出信号频率稳定度很高。

在调试使用中,若因故停振,可以适当调节R1、R2。

图9-8 石英晶体阻抗频率特性

9.2 单稳态触发器

单稳态触发器就是只有一个稳态和一个暂稳态的触发器。所谓稳态是在无外加信号的情况下,电路能长久保持的状态,稳态时,电路中电流和电压是不变的。暂稳态是一个不能长久保持的状态,暂稳态期间,电路中一些电压和电流会随着电容器的充电和放电发生变化。

单稳态的触发器的特点是:没有外加触发信号的作用,电路始终处于稳态;在外加触发器信号的作用下,电路能从稳态翻转到暂稳态,经过一段时间后,又能自动返回原来所处的稳态。电路处于暂稳态的时间通常取决于RC电路的充、放电的时间,这个时间等于单稳态触发器输出脉冲的宽度tW,与触发信号无关。所以,单稳态触发器在外加触发脉冲信号的作用下,能够产生具有一定宽度和一定幅度的矩形脉冲信号。单稳态触发器属于脉冲整形电路,常用于脉冲波形的整形,定时和延时。

单稳态触发器可以由TTL或CMOS门电路与外接RC电路组成,也可以通过单片集成单稳态电路外接RC电路来实现。其中RC电路称为定时电路。根据RC电路的不同接法,可以将单稳态触发器分为微分型和积分型两种。

9.2.1CMOS门电路构成的微分型单稳态触发器

(1) 电路的组成

图9-9所示为CMOS或非门组成的单稳态触发器电路,由两个或非门和RC电路连接而成。门G1的一个输入端作为整个电路的信号输入ui1,门G2的输出端作为整个电路的信号输出u02,RC环节构成微分电路,故称为微分型单稳态触发器。

图9-9 CMOS 或非门

微分型单稳态触发器

(2)工作原理

假定CMOS 或非门的电压传输特性曲线为理想化折线,即开门电平VON 和关门电平VOFF

相等,这个理想化的开门电平或关门电平称为阀值电压UTH (一般UTH =21

VDD ),当输入ui

≥UTH 时,输出uo =0;当ui <UTH 时, uo =VDD =1。

① 稳态

接通电源,无触发信号(ui1=0),电路处于稳态,电源VDD 通过电阻R 对C 充电达到稳态值, 故ui2=VDD =1,门G 2导通,输出uo2=0,门G1截止,输出uo1=VDD =1,电容C 上的电压为0。

② 外加触发信号到来,电路由稳态翻转到暂稳态

当外加触发信号ui1正跳变,使uo1由1跳到0时,由于RC 电路中电容C 上电压不能突变,因此,ui2也由 1跳变到0,使门G2输出由0变1,并返送到门G1的输入。这时输入信号ui1高电平撤消后,uo1仍维持为低电平,这一过程可描述为:

然而,这种状态是不能长久保持的,故称为暂稳态。

③ 由暂稳态自动返回稳态

在暂稳态期间,电源VDD 通过电阻R 和门G1的导通工作管对电容C 充电。随着充电的进行,ui2逐渐上升,当ui2=UTH 时,电路发生下述正反馈(设此时触发脉冲已消失):

ui1

uo2

这一正反馈过程使电路迅速返回到门G1截止、门G2导通的稳定状态。最后u01=VDD,u02=0,电路退出暂稳态,回到稳态。值得注意的是,u01由0跳变到VDD ,由于电容电压不能突变,按理ui2也应由UTH 上跳到UTH +VDD,但CMOS 门电路的部输入端有二极管限幅保护电路,因此ui2只能跃升到VDD +0.6V 。

暂稳态结束后,电容C 通过电阻R 经门G1的输出端和门G2的输入端保护二极管放电,使ui2 恢复到稳态时的初始值VDD 。

根据以上分析,画出电路各点的工作波形如图9-10所示。

图9-10 CMOS 微分型单稳态电路工作波形

(3)主要参数计算 ① 输出脉冲宽度tW

从电路的工作过程可知,输出脉宽tW 是电容器C 的充电时间。设电容C 充电起点(即

uo1 C 充电

t1时刻)为0时刻,则有

ui2(0+)=0,ui2(∞)=VDD,τ=RC, ui2(tW)=UTH=2

1

VDD 根据RC电路暂态过程全响应公式

ui2(tW)=ui2(∞)+[ui2(0+)-ui2(∞)]e-τ

t

可得 tW=τln

)

(

)(

)

0(

)(

2

2

2

2

W

i

i

i

i

t

u

u

u

u

-

+

-

=RCln DD

DD

DD

V

V

V

2

1

-

-

≈0.7RC

②恢复时间tre,从暂态结束到电路恢复到稳态初始值所需时间,即电容C放电时间

tre≈3τd 式中: τd为电容C放电过程的时间常数。

③最高工作频率fmax,为保证单稳态电路能正常工作,在第一个触发脉冲作用后,必须

等待电路恢复到稳态初始值才能输入第二个触发脉冲。因此,触发脉冲工作最小周期Tmin>tW+tre,则电路的最高工作频率为

fmax=min

1

T<re

w

t

t+

1

【例9-2】在图9-9所示电路中,已知:R=20kΩ,C=0.01μF。试求输出脉冲宽度tW。

解:根据式(6.36)

tW=0.7RC=0.7×20×103×0.01×10-6=140(μS)

9.2.2CMOS门电路构成的积分型单稳态触发器

(1) 电路组成

积分型单稳态触发器如图9-11所示,是由两个CMOS或非门组成。门G1和门G2采用RC积分电路耦合, ui1加至门G1和门G2输入端。

图9-11 CMOS 或非门积分型单稳态触发器

(2) 工作原理 ① 稳态

当电路的输入ui1为高电平时,电路处于稳态,门G1、G2均导通,uo1、ui2、uO2均为低电平。

② 暂稳态

当输入信号ui1下跳为低电平时,门G1截止,uO1则跳变为高电平,但由于电容C 上电压不能突变,ui2仍为低电平,故门G2亦截止,u02正跳变到高电平,电路进入暂稳态。

③ 暂稳态自动恢复到稳态

在门G1、门G2截止时,由于电阻R 两端电位不等,电容C 通过R0(门G1的输出电阻)和R 放电,ui2逐渐上升,当升高到该门的阀值电压UTH 时(假定ui1仍为电平),门G2导通,u02变为低电平。

当ui1回到高电平后,门G1导通,uO1为低电平,此时电容充电,电路恢复到原来的稳定状态。

电路各点的工作波形如图9-12所示 (3) 参数计算 ① 脉冲宽度tW

tW 的估算公式和微分型电路相同

tW =RCln TH

DD DD

U V V ≈0.7RC

这种电路要求输入信号ui1的脉冲宽度(低电平时间)应大于输出脉宽tW 。 ② 恢复时间tre

tre ≈3RC

微分型单稳态触发器要求窄脉冲触发,具有展宽脉冲宽度的作用,而积分型单稳态触发器则相反, 需要宽脉冲触发,输出窄脉冲,故有压缩脉冲宽度的作用。

在积分型单稳态触发电路中,由于电容C 对高频干扰信号有旁路滤波作用,故与微分型电路相比, 抗干扰能力较强。

由于单稳态触发器在数字系统中的应用日益广泛,所以有集成单稳态触发器产品,同上面介绍的CMOS 单稳态电路一样,其正常工作时,需外接阻容元件。在此不再详细介绍。

图9-12 CMOS 积分型单稳态电路工作波形

9.2.3 单稳态触发器的应用

单稳态触发器可用于脉冲信号的:定时(即产生一定宽度的矩形脉冲波)、整形(即把不规则的波形转换成宽度、幅度都相等的脉冲)、延时(即将输入信号延迟一定的时间之后输出)。

(1)定时

由于单稳态触发器能产生一定宽度tW 的矩形脉冲,利用它可定时开、闭门电路,也可定时控制某电路的动作。如图9-13所示,ui1只有在矩形波ui3存在的时间tW 才能通过。

u

u

U

图9-13 单稳态触发器的定时作用

(2)整形

假设有一列不规则的脉冲信号,将这一列信号直接加至单稳态触发器的触发输入端,在其输出端就 可以得到一组定宽、定幅较规则的矩形脉冲信号,如图9-14所示。

(3)延时:单稳态触发器在输入信号ui 触发下,输出u0产生一个比ui 延迟tW 的脉冲波,这个延时作用可被适当地应用于信号传输的时间配合上。

图9-14 单稳态触发器的整形作用

9.3 施密特触发器

u i2

u o

u i 1

&

单稳态电路

u i3

u

u

u

u

t

t

施密特触发器是一种双稳态触发电路,输出有两个稳定的状态,但与一般触发器不同的是:施密特触发器属于电平触发;对于正向增加和减小的输入信号,电路有不同的阀值电压UT +和UT -,也就是引起输出电平两次翻转(1→0和0→1)的输入电压不同,具有如图6-26(a )、(c)所示的滞后电压传输特性,此特性又称回差特性。所以,凡输出和输入信号电压具有滞后电压传输特性的电路均称为施密特触发器。施密特触发器有同相输出和反相输出两种类型。同相输出的施密特触发器是当输入信号正向增加到UT +时,输出由0态翻转到1态,而当输入信号正向减小到UT -时,输出由1态翻转到0态;反相输出只是输出状态转换时与上述相反。它们的回差特性和逻辑符号如图9-15所示。

(a )同相输出的回差特性 (b )同相输

出的逻辑符号

(c)反相输出的回差特性 (d )反相输出

的逻辑信号

图9-15 施密特触发器的回差特性和逻辑符

1

ui

uo

uo

1

ui

uo

uo

施密特触发器具有很强的抗干扰性,广泛用于波形的变换与整形。门电路、555定时器、运算放大器等均可构成施密特触发器,此外还有集成化的施密特触发器。下面介绍由门电路构成的同相输出的施密特触发器。

1. CMOS 门电路构成的施密特触发器

(1) 电路组成

如图9-16所示,由二个CMOS 反相器及两个电阻R1和R2构成一个施密特触发器。

图9-16 CMOS 门构成的施密特触发器

(2) 工作原理

设电路输入端

ui 输入一个三角波,其波形如图6-28所示。

当ui =0时,门G1截止,输出高电平,门G2导通,输出低电平,此低电平通过电阻R2反馈到输入端, 使门G1输入端ui1保持低电平,此时施密特触发器保持输出信号uo 为低电平的稳态,电路进入第Ⅰ稳态。Ui 逐渐上升, ui1也随着上升,但只要其小于CMOS 门电路的开启电压UT,电路就保持在第Ⅰ稳态。

当ui 上升到使ui1等于UT 时,在电路中引起如下正反馈连锁反应

在此连锁反应的作用下,门电路的状态发生翻转,使门G1导通,输出低电平,G2截止,输

ui

出高电平,电路进入第Ⅱ稳态。以后,即使ui 继续上升,只要满足ui1大于CMOS 门电路的开启电压UT,电路就保持在第Ⅱ稳态。

若ui 由VDD 下降,ui1也下降,当ui1降至UT 时,在电路中再次发生正反馈连锁反应

在此连锁反应的作用下,电路重新进入门G1截止、门G2导通的状态,电路输出为低电平,再次翻转到 第Ⅰ稳态。

若电路已处于第Ⅰ稳态,则ui 继续下降,施密特触发器仍维持第Ⅰ稳态不变。

在输入ui 三角波形的作用下,门G1输出波形uo1及门G2输出波形uo 如图9-17所示。

图9-17 施密特触发器工作波形

(3) 回差特性

通过以上的工作原理分析可以看到有一个重要的现象,即在输入电压上升过程中,电路由第Ⅰ稳态 翻转到第Ⅱ稳态所要求的输入电压UT +与输入电压下降过程中电路由第Ⅱ稳态回到第Ⅰ稳态所要求的输入电压UT -是不相同的,这种现象称回差(或滞后)现象,称UT +为正向阀值电压(或称接通电平),UT -为负向阀值电压(或称断开电平),它们之间的差值ΔU =UT +–UT -称作回差电压(或称滞后电压),简称回差。

ui

u U U V u

u

①UT +的计算

在ui 上升过程中,由下面的计算式可求得能使施密特触发器翻转的输入电压ui,也就可求得UT +:

ui1=2

1R R u u o i +-×R2+uo =

2

1R R u i +×R2=UT

∵CMOS 门输出低电平约为0V,∴uo =0V, UT +就是符合上式要求的ui 值:

UT +=ui =(1+2

1R R )UT

② UT -的计算

在ui 下降过程中,由下面的计算式可求得能使施密特触发器翻转的输入电压ui,也就可求得UT -:

ui1=

2

1R R u u o i +-×R2+uo =

2

1R R V u DD i +-×R2+VDD =

2

11

2R R R V R u DD i ++=UT

∵CMOS 门输出高电平约为VDD,∴uo =VDD, UT -就是符合上式要求的ui 值:

UT -=ui =(1+2

1R R )UT -2

1R R VDD

③ ΔU 的计算

ΔU =UT +-UT -=2

1R R VDD )

根据上面的分析,可以知道施密特触发器的回差ΔU,可以通过改变R1、R2阻值来调节。 2. 施密特触发器的应用

施密特触发器的应用十分广泛,不仅可以应用于波形的变换、整形、展宽,还可应用于鉴别脉冲幅度、构成多谐振荡器、单稳态触发器等。

(1)波形的变换

施密特触发器能够将变化平缓的信号波形变换为较理想的矩形脉冲信号波形,即可将正弦波或三角波变换成矩形波。图9-18所示为将输入的正弦波转换为矩形波,其输出脉宽tW

U

U 可由回差ΔU 调节。

图9-18 施密特触发器的波形变换作用

(2)波形的整形

在数字系统中,矩形脉冲信号经过传输之后往往会发生失真现象或带有干扰信号。利用施密特触发器可以有效的将波形整形和去除干扰信号(要求回差ΔU 大于干扰信号的幅度)。如图9-19所示.

图9-19 施密特触发器的波形整形作用

(3) 幅度鉴别

如果有一串幅度不相等的脉冲信号,我们要剔除其中幅度不够大的脉冲,可利用施密特触发器构成 脉冲幅度鉴别器,如图9-20所示,可以鉴别幅度大于UT +的脉冲信号。

u i U U u

图9-20 施密特触发器的鉴幅作用

(4) 构成多谐振荡器

施密特触发器的特点是电压传输具有滞后特性。如果能使它的输入电压在UT+与UT-之间不停地往复变化,在输出端即可得到矩形脉冲,因此,利用施密特触发器外接RC电路就可以构成多谐振荡器,电路如图9-21(a)所示。

(a) (b)

图6-21 反相输出的施密特触发器构成多谐振荡器及其工作波形

工作过程:接通电源后,电容C上的电压为0,输出u0为高电平,u0的高电平通过电阻R 对C充电,使uc上升,当uc到达UT+时,触发器翻转,输出u0由高电平变为低电平。然后C 经R到u0放电,使uc下降,当uc下降到UT-时,电路又发生翻转,输出u0变为高电平,u0再次通过R对C充电,如此反复,形成振荡。工作波形如9-21(b)所示。

uo

U T+

U T-

脉冲波形的产生和整形习题解答

自我检测题 1.集成单稳触发器,分为可重触发及不可重触发两类,其中可重触发指的是在 暂稳态期间,能够接收新的触发信号,重新开始暂稳态过程。 2.如图T6.2所示是用CMOS 或非门组成的单稳态触发器电路, v I 为输入触发脉冲。指出稳态时a 、b 、d 、 e 各点的电平高低;为加大输出脉冲宽度所采取的下列措施哪些是对的,哪些是错的。如果是对的,在( )内打√,如果是错的,在( )内打×。 (1)加大R d ( ); (2)减小R ( ); (3)加大C ( ); (4)提高V DD ( ); (5)增加输入触发脉冲的宽度( )。 v I v O V 图 P6.2 解:(1)×(2)×(3)√(4)×(5)× 3.四个电路输入v I 、输出v O 的波形如图T6.3所示,试写出分别实现下列功能的最简电路类型(不必画出电路)。 (a )二进制计数器;(b )施密特触发器; (c )单稳态触发器;(d )六进制计数器。 t t v I v t t (a ) v v (b ) t t v I v (c )v I v (d )

图 T6.3 4.单稳态触发器的主要用途是。 A .整形、延时、鉴幅 B .延时、定时、存储 C .延时、定时、整形 D .整形、鉴幅、定时 5.为了将正弦信号转换成与之频率相同的脉冲信号,可采用。 A .多谐振荡器 B .移位寄存器 C .单稳态触发器 D .施密特触发器 6.将三角波变换为矩形波,需选用。 A .单稳态触发器 B .施密特触发器 C .多谐振荡器 D .双稳态触发器 7.滞后性是的基本特性。 A .多谐振荡器 B .施密特触发器 C .T 触发器 D .单稳态触发器 8.自动产生矩形波脉冲信号为。 A .施密特触发器 B .单稳态触发器 C .T 触发器 D .多谐振荡器 9.由CMOS 门电路构成的单稳态电路的暂稳态时间t w 为 。 A . 0.7RC B . RC C . 1.1RC D . 2RC 10.已知某电路的输入输出波形如图T6.10所示,则该电路可能为。 A .多谐振荡器 B .双稳态触发器 C .单稳态触发器 D .施密特触发器 1 v I v o V DD R C G 1 G 2C d R d 图T6.10 11.由555定时器构成的单稳态触发器,其输出脉冲宽度取决于。 A .电源电压 B .触发信号幅度 C .触发信号宽度 D .外接R 、C 的数值 12.由555定时器构成的电路如图T6.12所示,该电路的名称是。 A .单稳态触发器 B .施密特触发器 C .多谐振荡器D .SR 触发器 R C v v O 图 T6.12 习题

脉冲波形的产生与变换

脉冲波形的产生与变换 脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。 9.1 多谐振荡器 自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。 9.1.1门电路组成的多谐振荡器 多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。 (1)由TTL门电路组成的多谐振荡器 由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。 ①简单环形多谐振荡器 uo

(a) (b) 图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。 简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。 ② RC环形多谐振荡器 如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无法正常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。 图9-2 RC环形多谐振荡器 a.工作原理 设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

第八章 脉冲波形的产生和变换试题及答案

第八章脉冲波形的产生和变换 一、填空题 1.(10-1中)矩形脉冲的获取方法通常有两种:一种是________________;另一种是________________________。 2.(10-1易)占空比是_________与_______的比值。 3.(10-4中)555定时器的最后数码为555的是(,)产品,为7555的是(,)产品。 4.(10-3中)施密特触发器具有现象;单稳触发器只有个稳定状态。 5.(易,中)常见的脉冲产生电路有,常见的脉冲整形电路有、。 6.(中)为了实现高的频率稳定度,常采用振荡器;单稳态触发器受到外触发时进入。 7.(10-3易)在数字系统中,单稳态触发器一般用于______、 ______、______等。 8.(10-3中)施密特触发器除了可作矩形脉冲整形电路外,还可以作为________、_________。 9.(10-2易)多谐振荡器在工作过程中不存在稳定状态,故又称为________。 10.(10-2中)由门电路组成的多谐振荡器有多种电路形式,但它们均具有如下共同特点: 首先,电路中含有________,如门电路、电压比较器、BJT 等。这些器件主要用来产生________;其次,具有________, 将输出电压器恰当的反馈给开关器件使之改变输出状态;另外,还有,利用RC电路的充、放电特性可实现_______,以获得所需要的振荡频率。在许多实用电路中,反馈网络兼有_____作用。 11.(10-3易)单稳态触发器的工作原理是:没有触发信号时,电路处于一种_______。外加触发信号,电路由_____翻转到_____。电容充电时,电路由______自动返回至______。 二、选择题 1.(10-2中)下面是脉冲整形电路的是()。 A.多谐振荡器触发器 C.施密特触发器触发器 2.(10-2中)多谐振荡器可产生()。

脉冲波形的产生和整形

脉冲波形的产生和整形 【本章主要内容】本章主要介绍矩形脉冲波形的产生和整形电路。在脉冲整形电路中,介绍两类最常用两类整形电路─施密特触发器和单稳态触发器;在脉冲振荡电路中,介绍多谐振荡电路。上述电路可以采用门电路构成,也可以采用555集成定时器构成。重点讨论555集成定时器的工作原理及其应用。 【本章学时分配】本章共分2讲,每讲2学时。 第二十八讲用门电路组成的脉冲波形产生与整形电路 一、主要内容 1、基础知识 脉冲在数字电路中应用极为普遍,它的获取和分析是数字电路的一个组成部分。 1)矩形脉冲的获取方法 a.利用各种形式的多谐振荡器电路直接产生所需要的矩形脉冲; b.通过各种整形电路把已有的周性变化波形变换为符合要求的矩形脉冲。 2)矩形脉冲的主要参数 为了定量描述矩形脉冲的特性,通常为了定量描述矩形脉冲的特性,通常给出P308图9.1中所标注的几个主要参数。这些参数是: 脉冲周期T—周期性重复的脉冲序列中,两个相邻脉冲之间的时间间隔。有时也使用频率f=1/T表示单位时间内脉冲重复的次数。 V m—脉冲电压的最大变化幅度。 脉冲幅度 V m起,到脉冲后沿到达0.5V m为止的一段时间。 脉冲宽度t w—从脉冲前沿到达0.5 t r——脉冲上升沿从0.1V m升到0.9V m所需要的时间。 上升时间 t f——脉冲下降沿从0.9V m下降到0.1V m所需要的时间。 下降时间 t w/T。 占空比q——脉冲宽度与脉冲周期的比值,亦即q= 2、用门电路组成的施密特触发器 1)施密特触发器的工作特点 a.输入信号从低电平上升的过程中,电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。电路有不同的阈值电压,即具有滞后的电压传输特性。 b.在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。 利用这两个特点不仅能将边沿变化缓慢的信号波形整形为边沿陡峭的矩形波,而且可以将叠加在矩形脉冲高、低电平上的噪声有效地清除。 2)滞后的电压传输特性 滞后的电压传输特性,即输入电压上升的过程中,电路状态转换时对应的输入电平,与输入电压的下降过程中对应的输入转换电平不同(阈值电平不同),这是施密特触发器固有的特性。 上升时的阈值电压V T+称为正向阈值电压,下降时的阈值电压V T—称为负向阈值电压,它 们之间的差值称为回差电压△V T。 3)用门电路组成的施密特触发器的工作原理 将两级反相器串接起来,同时通过分压电阻把输出端的电压反馈到输入端,就构成了P309图9.2(a)所示的施密特触发器电路。 a.分析v I从0逐渐升高并达到v’I=V T+引发的正反馈过程;

第10章 脉冲波形的产生与变换.

第10章脉冲波形的产生与变换 教学重点 1. 了解脉冲波形的主要参数及常见脉冲波形。 2. 了解非门组成的多谐振荡器的电路形式和工作原理。 3. 了解石英晶体多谐振荡器电路的构成。 4. 掌握单稳态触发器的工作特点。 5. 掌握施密特触发器的工作特点。 6. 会测试集成施密特触发器的主要参数。 7. 了解555时基电路的电路框图和引脚功能,掌握555时基电路的逻辑功能。 8. 掌握555时基电路构成的多谐振荡器、单稳态触发器和施密特触发器的电路构成,理解其工作原理。教学难点 1. 用集成门电路搭接多谐振荡器。 2. 集成单稳态触发器的功能及其应用。 3. 集成施密特触发器的功能及其应用。 4. 555时基电路的典型应用;学时分配 10.1 常见的脉冲产生电路 10.1.1 脉冲的基本概念 1.脉冲的概念

脉冲是指一种瞬间突变、持续时间极短的电压或电流信号。它可以是周期性变化的,也可以是非周期性的或单次变化的。常见的几种脉冲波形,如图所示。 2. 矩形脉冲波的参数(1)理想矩形波 脉冲幅值V m 、脉冲重复周期T 和脉冲宽度t w (2)实际的矩形波 脉冲幅值V m ;脉冲上升时间t r ; 脉冲下降时间t f ;脉冲宽度t w ;脉冲周期T ;其倒数为脉冲的频率f ,f =占空比D , D = t w T 1T 。 ,占空比为50%的矩形波即为方波。 10.1.2 多谐振荡器 不需要外加触发信号,便能产生一定频率和一定宽度的矩形波脉冲。

1.集成门电路组成的多谐振荡器 两个非门接成RC 耦合正反馈电路,使之产生振荡。R C 的另一个重要作用是组成定时电路,决定多谐振荡器的振荡频率和脉冲宽度。 振荡周期的估算:T ≈1.4RC 在实际应用中,常通过调换电容C 的容量来粗调振荡周期,通过改变电阻R 的值来细调振荡周期,使电路的振荡频率达到要求。

第7章 脉冲波形产生与变换-习题答案090515

第7章习题 7.4 门电路构成的施密特触发器如图7.4(a)所示,若V DD = 10 V,R1 = 3 k?,R2 = 6 k?,计算电路 的V T+、V T?和ΔV值。 解: 1 2105V 2 th DD V V ==×= 1 2 3 1157.5 V 6 T th R V V R + ???? =+=+×= ???? ?? ?? 1 2 3 115 2.5 V 6 T th R V V R ? ???? =?=?×= ???? ?? ?? 7.5 2.5 5 V T T V V V +? Δ=?=?= 7.7 用555定时器组成的单稳态触发器对输入信号V i的负脉冲宽度有何要求?为什么?若V i的负 脉冲宽度过大,应采取什么措施? 解:用555定时器组成的单稳态触发器要求输入信号V i的负脉冲宽度小于暂稳态时间T W,否则,暂稳态将不能正常的回到稳态.若V i的负脉冲宽度过大,应在V i和555的TR端之间加一级微分电路。 7.8 题图7.8是555定时器构成的单稳态触发器及输入V i的波形,已知:V cc = 10 V,R = 33 k?, C = 0.1 μF,求: (1)输出电压V o的脉冲宽度T w; (2)对应V i画出V c、V o的波形,并标明波形幅度。 题图7.8 解:(1) T W = 1.1RC =1.1×33×103×0.1×10-6 =3.63 ms (2) 波形如图

7.12 利用74121设计脉冲电路,要求输入、输出波形的对应关系如题图7.12所示,画出所设计的 电路,计算器件参数。设C1 = 5000 pF,C2 = 2000 pF。 题图7.12 解:画出Q1,Q2波形如解题图7.12(a)。 器件值计算如下: T W1 =50 μs =0.7R1C1, 取C1=5000 pF, 6 3 19 5010 14.2810 0.7500010 R ? ? × ==× ×× Ω T W2 =3 μs =0.7R2C2, 取C2 =2000 pF, 6 3 29 310 2.1410 0.7200010 R ? ? × ==× ×× Ω 所设计的电路图如解题图7.12(b)。 (a)(b) 解题图7.12 7.13 电路及输入波形V i如题图7.13所示,对应V i画出Q1、Q2波形,并计算T w。

数字电子技术 第10章 脉冲波形的产生电路

第10章 脉冲波形的产生与整形电路内容提要: 本章主要介绍多谐振荡器、单稳态触发器和施密特触发器的电路结构、工作原理及其应用。它们的电路结构形式主要有三种:门电路外接RC电路、集成电路外接RC电路和555定时器外接RC电路。 10.1概述 导读: 在这一节中,你将学习: ?多谐振荡器的概念 ?单稳态触发器的概念 ?施密特触发器的概念 在数字系统中,经常需要各种宽度和幅值的矩形脉冲。如时钟脉冲、各种时序逻辑电路的输入或控制信号等。有些脉冲信号在传送过程中会受到干扰而使波形变坏,因此还需要整形。 获得矩形脉冲的方法通常有两种:一种是用脉冲产生电路直接产生,产生脉冲信号的电路称为振荡器;另一种是对已有的信号进行整形,然后将它变换成所需要的脉冲信号。 典型的矩形脉冲产生电路有双稳态触发电路、单稳态触发电路和多谐振荡电路三种类型。 (1)双稳态触发电路又称为触发器,它具有两个稳定状态,两个稳定状态之间的转换都需要在外加触发脉冲的作用下才能完成。 (2)单稳态触发电路又称为单稳态触发器。它只有一个稳定状态,另一个是暂时稳定状态(简称“暂稳态”),在外加触发信号作用下,可从稳定状态转换到暂稳态,暂稳态维持一段时间后,电路自动返回到稳态,暂稳态的持续时间取决于电路的参数。 (3)多谐振荡器能够自激产生连续矩形脉冲,它没有稳定状态,只有两个暂稳态。其状态转换不需要外加触发信号触发,而完全由电路自身完成。若对该输出波形进行数学分析,可得到许多各种不同频率的谐波,故称“多谐”。 脉冲整形电路能够将其它形状的信号,如正弦波、三角波和一些不规则的波形变换成矩形脉冲。施密特触发器就是常用的整形电路,它利用其著名的回差电压特性来实现。 自测练习 1.获得矩形脉冲的方法通常有两种:一种是();另一种是()。 2.触发器有()个稳定状态,分别是()和()。 3.单稳态触发器有()个稳定状态。 4.多谐振荡器有()个稳定状态。

脉冲波形的变换与产生 数字电路知识点汇总

第八章 脉冲波形的变换与产生 555定时器及其应用 1.电路结构及工作原理 555定时器内部由分压器、 电压比较器、RS 锁存器(触发器)和 集电极开路的三极管T 等三部分组成, 其内部结构及示意图如图22a)、22b) 所示。 在图22b )中,555定时器是 8引脚芯卡,放电三极管为外接电 路提供放电通路,在使用定时 器时,该三极管集电极 (第7脚)一般要接上拉电阻, 1C 为反相比较器,2C 为同相 比较器,比较器的基准电压由 电源电压CC V 及内部电阻分压 比决定,在控制CO V (第5脚) 3 V cc 触发输入VI2 阀值输入VI1 控制电压VCO 12345 6 7 8 GND 触发 输出 复位 控制电压 阀值放电V cc 555 图22b) 引脚图

悬空时,CC R V V 321=、CC R V V 31 2=; 如果第5脚外接控制电压, 则=1R V CO V 、2 1 2= R V CO V ,d R 端(第4脚)是复位端,只要d R 端加上低电平,输出端(第3脚)立即被置成低电平,不受其它输入状态的影响,因此正常工作时必须使d R 端接高电平。 由图22a),1G 和2G 组成的RS 触发器具有复位控制功能,可控制三极管T 的导通和截止。 由图22a)可知, 当1i V >1R V (即1i V >CC V 32 )时,比较器1C 输出0=R V 当2i V >2R V (即>2i V CC V 31 )时,比较器2C 输出1=S V RS 触发器Q =0 3G 输出为高电平,三极管T 导通,输出为低电平(0=o V ) 当1i V <1R V (即1i V 1R V (即1i V >CC V 32 )时,比较器1C 输出0=R V 当2i V <2R V (即2i V CC V 3 1 <)时,比较器2C 输出0=S V ?1G 、2G 输出Q =1,1=Q 同进T 截止,4G 输出为高电平 这样,就得到了表2所示555功能表。 Rd V I1V I2V O T 的状态1 1110导通导通截止截止不变 不变 1100 2 3V cc 1 3V cc 2 3V cc 2 3V cc 2 3V cc 1 3V cc 1 3V cc 1 3V cc 表2 555定时器功能表

相关文档
最新文档