农业部测土配方施肥技术规范

农业部测土配方施肥技术规范
农业部测土配方施肥技术规范

测土配方施肥技术规范(试行)

(修订稿)

二○○六年四月

1 范围

本规范规定了全国测土配方施肥工作中肥料效应田间试验、样品采集与制备、田间基本情况调查、土壤与植株测试、肥料配方设计、配方肥料合理使用、效果反馈与评价、数据汇总、报告撰写等内容、方法与操作规程和耕地地力评价方法。

本规范适用于全国不同区域、不同土壤和不同作物的测土配方施肥工作。

2 引用标准

本规范引用下列国家或行业标准:

GB/T 6274 肥料和土壤调理剂术语

NY/T 496 肥料合理使用准则通则

NY/T 497 肥料效应鉴定田间试验技术规程

NY/T 309-1996 全国耕地类型区、耕地地力等级划分

NY/T 310-1996 全国中低产田类型划分与改良技术规范

3 术语和定义

下列术语和定义适用于本规范:

3.1 测土配方施肥 soil testing and formulated fertilization

测土配方施肥是以肥料田间试验和土壤测试为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用品种、数量、施肥时期和施用方法。

3.2 肥料 fertilizer

以提供植物养分为其主要功效的物料(GB/T 6274-1997中2.1.2)。

3.3 有机肥料 organic fertilizer

主要来源于植物和(或)动物,施于土壤以提供植物营养为其主要功效的含碳物料(GB/T 6274-1997中2.1.4)。

3.4 无机[矿质]肥料 inorganic[mineral] fertilizer

标明养分呈无机盐形式的肥料,由提取、物理和(或)化学工业方法制成(GB/T 6274-1997中2.1.3)。

注:硫磺、氰氨化钙、尿素及其缩缔合产品,骨粉过磷酸钙,习惯上归作无机肥料。

3.5 单一肥料 straight fertilizer

氮、磷、钾三种养分中,仅具有一种养分标明量的氮肥、磷肥和钾肥的通称(GB/T

6274-1997中2.1.16)。

3.6主要养分 macro-nutrient; primary nutrient

在某些国家对元素氮、磷、钾的通称(GB/T 6274-1997中2.1.25.1)。

3.7次要养分 secondary nutrient [element]

在某些国家对元素钙、镁、硫的通称(GB/T 6274-1997中2.1.25.2)。

3.8微量养分,微量元素 micro-nutriment;trace element

植物生长所必需的、但相对来说是少量的元素,例如硼、锰、铁、锌、铜、钼或钴等(GB/T 6274-1997中2.1.25.3)。

3.9 氮肥 nitrogenous fertilizer/ nitrogen fertilizer

具有氮(N)标明量,以提供植物氮养分为其主要功效的单一肥料(NY/T496-2002中3.7)。

3.10 磷肥 phosphate fertilizer/ phosphatic fertilizer

具有磷(P

2O

5

)标明量,以提供植物磷养分为其主要功效的单一肥料(NY/T496-2002中

3.8)。

3.11 钾肥 potash fertilizer

具有钾(K

2

O)标明量,以提供植物钾养分为其主要功效的单一肥料(NY/T496-2002中3.9)。

3.12 复混肥料 compound fertilizer

氮、磷、钾三种养分中,至少有两种养分标明量的由化学方法和(或)掺混方法制成的肥料(GB/T 6274-1997中2.1.17)。

3.13 复合肥料 complex fertilizer

氮、磷、钾三种养分中,至少有两种养分标明量的仅由化学方法制成的肥料(GB/T 6274-1997中2.1.18)。

3.14 掺合肥料 blended fertilizer

氮、磷、钾三种养分中,至少有两种养分标明量的由干混方法制成的肥料(GB/T 6274-1997中2.1.19)。

3.15 植物养分 plant nutrient

植物生长所必需的化学元素(GB/T 6274-1997中2.1.24)。

3.16 肥料养分 fertilizer nutrient

施肥中提供的植物养分(GB/T 6274-1997中2.1.25)。

3.17 肥料效应 fertilizer response

肥料效应是肥料对作物产量的效果,通常以肥料单位养分的施用量所能获得的作物增产量和效益表示(NY/T 496-2002中3.23)。

3.18 施肥量 dose rate; dose

施于单位面积耕地或单位质量生长介质中的肥料或土壤调理剂或养分的质量或体积(GB/T 6274-1997中2.1.23)。

3.19 常规施肥 regular fertilizing

亦称习惯施肥,指当地前三年平均施肥量(主要指氮、磷、钾肥)、施肥品种和施肥方法(NY/T 497-2002中3.5)。

3.20 空白对照 control

无肥处理,用于确定肥料效应的绝对值,评价土壤自然生产力和计算肥料利用率等(NY/T 497-2002中3.6) 。

3.21 配方肥料 formula fertilizer

以土壤测试和肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,用各种单质肥料和(或)复混肥料为原料,配制成的适合于特定区域、特定作物的肥料。3.22 地力soil fertility

是指在当前管理水平下,由土壤本身特性、自然背景条件和基础设施水平等要素综合构成的耕地生产能力。

3.23 耕地地力评价 soil productivity assessment

耕地地力评价是指根据耕地所在地的气候、地形地貌、成土母质、土壤理化性状、农田基础设施等要素相互作用表现出来的综合特征,评价耕地潜在生物生产力高低的过程。

4 肥料效应田间试验

4.1试验目的

肥料效应田间试验是获得各种作物最佳施肥数量、施肥品种、施肥比例、施肥时期、施肥方法的根本途径,也是筛选、验证土壤养分测试方法、建立施肥指标体系的基本环节。通过田间试验,掌握各个施肥单元不同作物优化施肥数量,基、追肥分配比例,施肥时期和施肥方法;摸清土壤养分校正系数、土壤供肥能力、不同作物养分吸收量和肥料利用率等基本参数;构建作物施肥模型,为施肥分区和肥料配方设计提供依据。

4.2 试验设计

肥料效应田间试验设计,取决于研究目的。本规范推荐采用“3414”方案设计,在具体

实施过程中可根据研究目的采用“3414”完全实施方案和部分实施方案。

4.2.1 “3414”完全实施方案

“3414”方案设计吸收了回归最优设计处理少、效率高的优点,是目前应用较为广泛的肥料效应田间试验方案。“3414”是指氮、磷、钾3个因素、4个水平、14个处理。4个水平的含义:0水平指不施肥,2水平指当地推荐施肥量,1水平=2水平×0.5,3水平=2水平×1.5(该水平为过量施肥水平)。为便于汇总,同一作物、同一区域内施肥量要保持一致。如果需要研究有机肥料和中、微量元素肥料效应,可在此基础上增加处理。

表4-1 “3414”试验方案处理(推荐方案)

该方案除可应用14个处理进行氮、磷、钾三元二次效应方程的拟合以外,还可分别进行氮、磷、钾中任意二元或一元效应方程的拟合。

例如:进行氮、磷二元效应方程拟合时,可选用处理2~7、11、12,求得在以K

2

水平

为基础的氮、磷二元二次效应方程;选用处理2、3、6、11可求得在P

2K

2

水平为基础的氮肥

效应方程;选用处理4、5、6、7可求得在N

2K

2

水平为基础的磷肥效应方程;选用处理6、8、

9、10可求得在N

2P

2

水平为基础的钾肥效应方程。此外,通过处理1,可以获得基础地力产

量,即空白区产量。

其具体操作参照有关试验设计与统计技术资料。

4.2.2 “3414”部分实施方案

试验氮、磷、钾某一个或两个养分的效应,或因其它原因无法实施“3414”完全实施方案,可在“3414”方案中选择相关处理,即“3414”的部分实施方案。这样既保持了测土配方施肥田间试验总体设计的完整性,又考虑到不同区域土壤养分特点和不同试验目的要求,

满足不同层次的需要。如有些区域重点要试验氮、磷效果,可在K

2

做肥底的基础上进行氮、磷二元肥料效应试验,但应设置3次重复。具体处理及其与“3414”方案处理编号对应列于下表。

表4-2 氮、磷二元二次肥料试验设计与“3414”方案处理编号对应表

上述方案也可分别建立氮、磷一元效应方程。

在肥料试验中,为了取得土壤养分供应量、作物吸收养分量、土壤养分丰缺指标等参数,一般把试验设计为5个处理:空白对照(CK)、无氮区(PK)、无磷区(NK)、无钾区(NP)和氮、磷、钾区(NPK)。这5个处理分别是“3414”完全实施方案中的处理1、2、4、8和6。如要获得有机肥料的效应,可增加有机肥处理区(米);试验某种中(微)量元素的效应,在NPK基础上,进行加与不加该中(微)量元素处理的比较。试验要求测试土壤养分和植株

养分含量,进行考种和计产。试验设计中,氮、磷、钾、有机肥等用量应接近效应肥料函数计算的最高产量施肥量或用其他方法推荐的合理用量。

表4-3 常规5处理试验设计与“3414”方案处理编号对应表

4.3 试验实施

4.3.1 试验地选择

试验地应选择平坦、整齐、肥力均匀,具有代表性的不同肥力水平的地块;坡地应选择坡度平缓、肥力差异较小的田块;试验地应避开靠近道路、堆肥场所等特殊地块。

4.3.2 试验作物品种选择

田间试验应选择当地主栽作物品种或拟推广品种。

4.3.3试验准备

整地、设置保护行、试验地区划;小区应单灌单排,避免串灌串排;试验前多点采集土壤混合样品;依测试项目不同,分别制备新鲜或风干土样。

4.3.4试验重复与小区排列

为保证试验精度,减少人为因素、土壤肥力和气候因素的影响,田间试验一般设3~4个重复(或区组)。采用随机区组排列,区组内土壤、地形等条件应相对一致,区组间允许有差异。同一生长季、同一作物、同类试验在10个以上时可采用多点无重复设计。

小区面积:大田作物和露地蔬菜作物小区面积一般为20~50米2,密植作物可小些,中耕作物可大些;设施蔬菜作物一般为20~30米2,至少5行以上。小区宽度:密植作物不小于3米,中耕作物不小于4米。多年生果树类选择土壤肥力差异小的地块和树龄相同、株形和产量相对一致的成年果树进行试验,每个处理不少于4株。

4.3.5试验记载与测试

参照肥料效应鉴定田间试验技术规程(NY/T 497—2002)执行,收获期采集植株样品、进行考种和经济产量测试。必要时进行植株分析。每个县每种作物应按高、中、低肥力分别各取不少于1组3414试验所有处理的样品用于分析化验。

测土配方施肥田间试验结果汇总表见附件1。

4.4 试验统计分析

常规试验和回归试验的统计分析方法参见肥料效应鉴定田间试验技术规程(NY/T 497—2002)或其他专业书籍,相关统计程序可在中国肥料信息网(https://www.360docs.net/doc/1a1557100.html,/sfb /TfgjHgfx.htm)下载或应用。

5样品采集与制备

采样人员要具有一定采样经验,熟悉采样方法和要求,了解采样区域农业生产情况。采样前,要收集采样区域土壤图、土地利用现状图、行政区划图等资料,绘制样点分布图,制订采样工作计划。准备GPS、采样工具、采样袋(布袋、纸袋或塑料网袋)、采样标签等。

5.1 土壤样品采集

土壤样品采集应具有代表性,并根据不同分析项目采用相应的采样和处理方法。

5.1.1 采样规划

采样点参考县级土壤图,做好采样规划设计,确定采样点位。实际采样时严禁随意变更采样点,若有变更须注明理由。

5.1.2 采样单元

根据土壤类型、土地利用等因素,将采样区域划分为若干个采样单元,每个采样单元的土壤性状要尽可能均匀一致。

平均每个采样单元为100亩~200亩(平原区、大田作物每100亩~500亩采一个混合样,丘陵区、大田园艺作物每30亩~80亩采一个混合样)。为便于田间示范追踪和施肥分区,采样集中在位于每个采样单元相对中心位置的典型地块,采样地块面积为1亩~10亩。采用GPS定位,记录经纬度,精确到0.1″。

5.1.3 采样时间

在作物收获后或播种施肥前采集,一般在秋后。设施蔬菜在晾棚期采集,果园在果品采摘后的第一次施肥前采集。进行氮肥追肥推荐时,应在追肥前或作物生长的关键时期采集。

5.1.4 采样周期

同一采样单元,无机氮及植株氮营养快速诊断每季或每年采集1次;土壤有效磷、速效

钾等一般2~3年采集1次;中、微量元素一般3~5年采集1次。

5.1.5 采样深度

采样深度0~20厘米。土壤无机氮含量测定,采样深度应根据不同作物、不同生育期的主要根系分布深度来确定。

5.1.6 采样点数量

要保证足够的采样点,使之能代表采样单元的土壤特性。每个样品采样点的多少,取决于采样单元的大小、土壤肥力的一致性等。采样必须多点混合,每个样品取15个~20个样点。

5.1.7 采样路线

采样时应沿着一定的线路,按照“随机”、“等量”和“多点混合”的原则进行采样。一般采用S形布点采样,能够较好地克服耕作、施肥等所造成的误差。在地形变化小、地力较均匀、采样单元面积较小的情况下,也可采用梅花形布点取样。要避开路边、田埂、沟边、肥堆等特殊部位。

5.1.8 采样方法

每个采样点的取土深度及采样量应均匀一致,土样上层与下层的比例要相同。取样器应垂直于地面入土,深度相同。用取土铲取样应先铲出一个耕层断面,再平行于断面取土。因需测定或抽样测定微量元素,所有样品都应用不锈钢取土器采样。

5.1.9 样品量

混和土样以取土1公斤左右为宜(用于推荐施肥的0.5公斤,用于试验的2公斤以上,长期保存备用),可用四分法将多余的土壤弃去。方法是将采集的土壤样品放在盘子里或塑料布上,弄碎、混匀,铺成正方形,划对角线将土样分成四份,把对角的两份分别合并成一份,保留一份,弃去一份。如果所得的样品依然很多,可再用四分法处理,直至所需数量为止。

5.1.10 样品标记

采集的样品放入统一的样品袋,用铅笔写好标签,内外各一张。采样标签样式见附件2。

5.2 土壤样品制备

5.2.1 新鲜样品

某些土壤成分如二价铁、硝态氮、铵态氮等在风干过程中会发生显著变化,必须用新鲜样品进行分析。为了能真实反映土壤在田间自然状态下的某些理化性状,新鲜样品要及时送回室内进行处理分析,用粗玻璃棒或塑料棒将样品混匀后迅速称样测定。

新鲜样品一般不宜贮存,如需要暂时贮存,可将新鲜样品装入塑料袋,扎紧袋口,放在冰箱冷藏室或进行速冻保存。

5.2.2 风干样品

从野外采回的土壤样品要及时放在样品盘上,摊成薄薄一层,置于干净整洁的室内通风处自然风干,严禁暴晒,并注意防止酸、碱等气体及灰尘的污染。风干过程中要经常翻动土样并将大土块捏碎以加速干燥,同时剔除侵入体。

风干后的土样按照不同的分析要求研磨过筛,充分混匀后,装入样品瓶中备用。瓶内外各放标签一张,写明编号、采样地点、土壤名称、采样深度、样品粒径、采样日期、采样人及制样时间、制样人等项目。制备好的样品要妥为贮存,避免日晒、高温、潮湿和酸碱等气体的污染。全部分析工作结束,分析数据核实无误后,试样一般还要保存三个月至一年,以备查询。“3414”试验等有价值、需要长期保存的样品,须保存于广口瓶中,用蜡封好瓶口。

5.2.2.1 一般化学分析试样

将风干后的样品平铺在制样板上,用木棍或塑料棍碾压,并将植物残体、石块等侵入体和新生体剔除干净。细小已断的植物须根,可采用静电吸附的方法清除。压碎的土样用2毫米孔径筛过筛,未通过的土粒重新碾压,直至全部样品通过2毫米孔径筛为止。通过2毫米孔径筛的土样可供pH、盐分、交换性能及有效养分等项目的测定。

将通过2毫米孔径筛的土样用四分法取出一部分继续碾磨,使之全部通过0.25毫米孔径筛,供有机质、全氮、碳酸钙等项目的测定。

5.2.2.2 微量元素分析试样

用于微量元素分析的土样,其处理方法同一般化学分析样品,但在采样、风干、研磨、过筛、运输、贮存等诸环节都要特别注意,不要接触容易造成样品污染的铁、铜等金属器具。采样、制样推荐使用不锈钢、木、竹或塑料工具,过筛使用尼龙网筛等。通过2毫米孔径尼龙筛的样品可用于测定土壤有效态微量元素。

5.2.2.3 颗粒分析试样

将风干土样反复碾碎,用2毫米孔径筛过筛。留在筛上的碎石称量后保存,同时将过筛的土壤称重,计算石砾质量百分数。将通过2毫米孔径筛的土样混匀后盛于广口瓶内,用于颗粒分析及其他物理性质测定。

若风干土样中有铁锰结核、石灰结核、铁子或半风化体,不能用木棍碾碎,应首先将其细心拣出称量保存,然后再进行碾碎。

5.3 植物样品的采集与制备

5.3.1 采样要求

植物样品分析的可靠性受样品数量、采集方法及分析部位影响,因此,采样应具有:——代表性:采集样品能符合群体情况,采样量一般为1公斤。

——典型性:采样的部位能反映所要了解的情况。

——适时性:根据研究目的,在不同生长发育阶段,定期采样。

——粮食作物一般在成熟后收获前采集籽实部分及秸秆;发生偶然污染事故时,在田间完整地采集整株植株样品;水果及其它植株样品根据研究目的确定采样要求。

5.3.2 样品采集

5.3.2.1 粮食作物

由于粮食作物生长的不均一性,一般采用多点取样,避开田边2米,按梅花形(适用于采样单元面积小的情况)或“S”形采样法采样。在采样区内采取10个样点的样品组成一个混合样。采样量根据检测项目而定,籽实样品一般1公斤左右,装入纸袋或布袋。要采集完整植株样品可以稍多些,约2公斤左右,用塑料纸包扎好。

5.3.2.2 水果样品

平坦果园采样时,可采用对角线法布点采样,由采样区的一角向另一角引一对角线,在此线上等距离布设采样点,采样点多少根据采样区域面积、地形及检测目的确定。山地果园应按不同海拔高度均匀布点,采样点一般不应少于10个。对于树型较大的果树,采样时应在果树的上、中、下、内、外部及果实着生方位(东南西北)均匀采摘果实。将各点采摘的果品进行充分混合,按四分法缩分,根据检验项目要求,最后分取所需份数,每份1公斤左右,分别装入袋内,粘贴标签,扎紧袋口。水果样品采摘时要注意树龄、长势、载果数量等。

5.3.2.3 蔬菜样品

蔬菜品种繁多,可大致分成叶菜、根菜、瓜果三类,按需要确定采样对象。

菜地采样可按对角线或“S”形法布点,采样点不应少于10个,采样量根据样本个体大小确定,一般每个点的采样量不少于1公斤。从多个点采集的蔬菜样,按四分法进行缩分,其中个体大的样本,如大白菜等可采用纵向对称切成4份或8份,取其2份的方法进行缩分,最后分取3份,每份约1公斤,分别装入塑料袋,粘贴标签,扎紧袋口。

如需用鲜样进行测定,采样时最好连根带土一起挖出,用湿布或塑料袋装,防止萎蔫。采集根部样品时,在抖落泥土或洗净泥土过程中应尽量保持根系的完整。

市场采样可参照市场水果取样方法进行。

5.3.3 标签内容

采样序号、采样地点、样品名称、作物品种、土壤名称(或当地俗称)、成土母质、地形地势、耕作制度、前茬作物及产量、化肥农药施用情况、灌溉水源、采样点地理位置简图。果树要记载树龄、长势、载果数量等。

5.3.4 植株样品处理与保存

粮食籽实样品应及时晒干脱粒,充分混匀后用四分法缩分至所需量。需要洗涤时,注意时间不宜过长并及时风干。为了防止样品变质,虫咬,需要定期进行风干处理。使用不污染样品的工具将籽实粉碎,用0.5毫米筛子过筛制成待测样品。带壳类粮食如稻谷应去壳制成糙米,再进行粉碎过筛。测定重金属元素含量时,不要使用能造成污染的器械。

完整的植株样品先洗干净,根据作物生物学特性差异,采用能反映特征的植株部位,用不污染待测元素的工具剪碎样品,充分混匀用四分法缩分至所需的量,制成鲜样或于60℃烘箱中烘干后粉碎备用。

田间(或市场)所采集的新鲜水果、蔬菜、烟叶和茶叶样品若不能马上进行分析测定,应暂时放入冰箱保存。

6 土壤与植物测试

6.1 土壤测试

6.1.1 土壤质地

国际制;

全部样品均需采用手摸测定;质地分为:砂土、砂壤、壤土、粘壤、粘土等五级。

室内选取10%的样品采用比重计法(粒度分布仪法)测定。

6.1.2 土壤容重(选测项目)

环刀法测定。

6.1.3 土壤水分(选测项目)

6.1.3.1土壤含水量

烘干法测定。

6.1.3.2土壤田间持水量

环刀法测定。

6.1.4 土壤酸碱度和石灰需要量

6.1.4.1 土壤pH(必测项目)

土液比1:2.5,电位法测定。

6.1.4.2土壤交换酸(pH值<6.5的样品必测)

氯化钾交换——中和滴定法测定。

6.1.4.3 石灰需要量(pH值<6.5的样品必测)

氯化钙交换——中和滴定法测定。

6.1.5 土壤阳离子交换量(选定10%的样品)

EDTA-乙酸铵盐交换法测定。

6.1.6 土壤水溶性盐分(选测项目)

6.1.6.1土壤水溶性盐分总量

电导率法或重量法测定。

6.1.6.2碳酸根和重碳酸根

电位滴定法或双指示剂中和法测定。

6.1.6.3氯离子

硝酸银滴定法测定。

6.1.6.4 硫酸根离子

硫酸钡比浊法或EDTA间接滴定法测定。6.1.6.5 钙、镁离子

原子吸收分光光度法测定。

6.1.6.6 钾、钠离子

火焰光度法或原子吸收分光光度计法测定。

6.1.7 土壤氧化还原电位(水田必测项目)

电位法测定。

6.1.8 土壤有机质(必测项目)

油浴加热重铬酸钾氧化容量法测定。

6.1.9 土壤氮

6.1.9.1 土壤全氮(必测项目)

凯氏蒸馏法测定。

6.1.9.2 土壤水解性氮(选测项目)

碱解扩散法测定。

6.1.9.3 土壤氨态氮(选测项目)

氯化钾浸提——靛酚蓝比色法测定。

6.1.9.4 土壤硝态氮(选测项目)

氯化钙浸提——紫外分光光度法或酚二磺酸比色法测定。

6.1.10 土壤磷

6.1.10.1 土壤全磷(选10%的样品测定)

氢氧化钠熔融——钼锑抗比色法测定。

6.1.10.2 土壤有效磷(必测项目)

碳酸氢钠或氟化铵-盐酸浸提——钼锑抗比色法测定。

6.1.11 土壤钾

6.1.11.1 土壤全钾(选10%的样品测定)

氢氧化钠熔融——火焰光度计或原子吸收分光光度计法测定。

6.1.13.2 土壤缓效钾(必测项目)

硝酸提取——火焰光度计或原子吸收分光光度计法测定。

6.1.11.3 土壤速效钾(必测项目)

乙酸铵浸提——火焰光度计或原子吸收分光光度计法测定。

6.1.12 土壤交换性钙镁(pH值<6.5的样品必测)

乙酸铵交换——原子吸收分光光度法测定。

6.1.13 土壤有效硫(必测项目)

磷酸盐-乙酸或氯化钙浸提——硫酸钡比浊法测定。

6.1.14 土壤有效硅(选测项目)

柠檬酸或乙酸缓冲液浸提-硅钼蓝比色法测定。

6.1.15 土壤有效铜、锌、铁、锰(必测项目)

DTPA浸提-原子吸收分光光度法测定。

6.1.16 土壤有效硼(必测项目)

沸水浸提——甲亚胺-H比色法或姜黄素比色法测定。

6.1.17 土壤有效钼(一般区域选10%的样品,豆科作物主产区全测)

草酸-草酸铵浸提——极谱法测定。

6.2植物测试

6.2.1全氮、全磷、全钾

硫酸—过氧化氢消煮,或水杨酸—锌粉还原,硫酸—加速剂消煮,全氮采用蒸馏滴定法测定;全磷采用钒钼黄或钼锑抗比色法测定;全钾采用火焰光度法或原子吸收分光光度计法

测定。

6.2.2水分

常压恒温干燥法或减压干燥法测定。

6.2.3粗灰分

干灰化法测定。

6.2.4全钙、全镁

干灰化-稀盐酸溶解法或硝酸-高氯酸消煮,原子吸收分光光度计法或ICP法测定。

6.2.5全硫

硝酸-高氯酸消煮法或硝酸镁灰化法,硫酸钡比浊或ICP法测定。

6.2.6全硼、全钼

干灰化-稀盐酸溶解,硼采用姜黄素或甲亚胺比色法测定,钼采用石墨炉原子吸收法或极谱法测定。

6.2.7全量铜、锌、铁、锰

干灰化或湿灰化,原子吸收分光光度计或ICP法测定。

6.3土壤、植株营养诊断(选测项目)

6.3.1土壤硝态氮田间快速诊断

水浸提,硝酸盐反射仪法测定。

6.3.2冬小麦/夏玉米植株氮营养田间诊断

小麦茎基部、夏玉米最新展开叶叶脉中部榨汁,硝酸盐反射仪法测定。

6.3.3水稻氮营养快速诊断

叶绿素仪或叶色卡法测定。

7 田间基本情况调查

7.1调查内容

在土壤取样的同时,调查田间基本情况,填写测土配方施肥采样地块基本情况调查表,见附件3。同时开展农户施肥情况调查,填写农户施肥情况调查表,见附件7;参见11.2.1.2。

7.2调查对象

调查对象是取样点所属村组人员和地块所属农户。

8 基础数据库的建立

8.1 数据库建立标准

8.1.1 属性数据采集标准

按照测土配方施肥数据字典建立属性数据的采集标准。采集标准包含对每个指标完整的命名、格式、类型、取值区间等定义。在建立属性数据库时要按数据字典要求,制订统一的基础数据编码规则,进行属性数据录入。

8.1.2 空间数据采集标准

县级地图采用1:5万地形图为空间数学框架基础。

投影方式:高斯-克吕格投影,6度分带。

坐标系及椭球参数:北京54/克拉索夫斯基。

高程系统:1956年黄海高程基准。

野外调查GPS定位数据:初始数据采用经纬度并在调查表格中记载;装入GIS系统与图件匹配时,再投影转换为上述直角坐标系坐标。

8.2 数据库建立方法

8.2.1 属性数据库建立

属性数据库的内容包括田间试验示范数据、土壤与植物测试数据、田间基本情况及农户调查数据等。属性数据库的建立应独立于空间数据,按照数据字典要求在SQL 数据库中建立。

8.2.2 空间数据库建立

空间数据库的内容包括土壤图、土地利用图、行政区划图、采样点位图等。应用GIS 软件,采用数字化仪或扫描后屏幕数字化的方式录入。图件比例尺为1:5万。对于采样点位图,将采样点经纬度坐标转换成为方里网坐标再生成点位图,或先将经纬度坐标生成点位图后再进行坐标转换。

8.2.3 施肥指导单元属性数据获取

可由土壤图和土地利用现状图或行政区划图叠加求交生成施肥指导单元图。在指导单元图内统计采样点,如果一个单元内有一个采样点,则该单元的数值就用该点的数值,如果一个单元内有多个采样点,则该单元的数值可采用多个采样点的平均值(数值型取平均值,文本型取大样本值,下同);如果某一单元内没有采样点,则该单元的值可用与该单元相邻同土种的单元的值代替;如果没有同土种单元相邻,或相邻同土种单元也没有数据则可用与之相邻的所有单元(有数据)的平均值代替。

8.3 数据库的质量控制

8.3.1 属性数据质量控制

数据录入前应仔细审核,数值型资料应注意量纲、上下限,地名应注意汉字多音字、繁

简体、简全称等问题,审核定稿后再录入。为保证数据录入准确无误,录入后还应逐条检查。

8.3.2 图件数据质量控制

扫描影像能够区分图中各要素,若有线条不清晰现象,需重新扫描。

扫描影像数据经过角度纠正,纠正后的图幅下方两个内图廓点的连线与水平线的角度误差不超过0.2度。

公里网格线交叉点为图形纠正控制点,每幅图应选取不少于20个控制点,纠正后控制点的点位绝对误差不超过0.2毫米(图面值)。

矢量化:要求图内各要素的采集无错漏现象,图层分类和命名符合统一的规范,各要素的采集与扫描数据相吻合,线划(点位)整体或部分偏移的距离不超过0.3毫米(图面值)。

所有数据层具有严格的拓扑结构。面状图形数据中没有碎片多边形。图形数据及属性数据的输入正确。

8.3.3 图件输出质量要求

图须覆盖整个辖区,不得丢漏。

图中要素必有项目包括评价单元图斑、各评价要素图斑和调查点位数据、线状地物、注记。要素的颜色、图案、线型等表示符合规范要求。

图外要素必有项目包括图名、图例、坐标系及高程系说明、成图比例尺、制图单位全称、制图时间等。

8.3.4 面积数据要求

耕地面积数据以当地政府公布的数据(土地详查面积)为控制面积。

8.3.5 统一的系统操作和数据管理

设置统一的系统操作和数据管理,各级用户通过规范的操作,来实现数据的采集、分析、利用和传输等功能。

9 肥料配方设计

9.1 基于田块的肥料配方设计

基于田块的肥料配方设计首先确定氮、磷、钾养分的用量,然后确定相应的肥料组合,通过提供配方肥料或发放配肥通知单,指导农民使用。肥料用量的确定方法主要包括土壤与植物测试推荐施肥方法、肥料效应函数法、土壤养分丰缺指标法和养分平衡法。

9.1.1 土壤、植物测试推荐施肥方法

该技术综合了目标产量法、养分丰缺指标法和作物营养诊断法的优点。对于大田作物,在综合考虑有机肥、作物秸秆应用和管理措施的基础上,根据氮、磷、钾和中、微量元素养分的不同特征,采取不同的养分优化调控与管理策略。其中,氮肥推荐根据土壤供氮状况和

作物需氮量,进行实时动态监测和精确调控,包括基肥和追肥的调控;磷、钾肥通过土壤测试和养分平衡进行监控;中、微量元素采用因缺补缺的矫正施肥策略。该技术包括氮素实时监控、磷钾养分恒量监控和中、微量元素养分矫正施肥技术。 9.1.1.1 氮素实时监控施肥技术

根据目标产量确定作物需氮量,以需氮量的30%~60%作为基肥用量。具体基施比例根据土壤全氮含量,同时参照当地丰缺指标来确定。一般在全氮含量偏低时,采用需氮量的50%~60%作为基肥;在全氮含量居中时,采用需氮量的40%~50%作为基肥;在全氮含量偏高时,采用需氮量的30%~40%作为基肥。30%~60%基肥比例可根据上述方法确定,并通过“3414”田间试验进行校验,建立当地不同作物的施肥指标体系。有条件的地区可在播种前对0~20厘米土壤无机氮(或硝态氮)进行监测,调节基肥用量。

肥料当季利用率

肥料中养分含量)

(土壤无机氮)(目标产量需氮量亩)基肥用量(公斤

??-=%60~%30/

其中:土壤无机氮(公斤/亩)=土壤无机氮测试值(毫克/公斤)×0.15×校正系数 氮肥追肥用量推荐以作物关键生育期的营养状况诊断或土壤硝态氮的测试为依据,这是实现氮肥准确推荐的关键环节,也是控制过量施氮或施氮不足、提高氮肥利用率和减少损失的重要措施。测试项目主要是土壤全氮含量、土壤硝态氮含量或小麦拔节期茎基部硝酸盐浓度、玉米最新展开叶叶脉中部硝酸盐浓度,水稻采用叶色卡或叶绿素仪进行叶色诊断,参见6.3。

9.1.1.2 磷钾养分恒量监控施肥技术

根据土壤有(速)效磷、钾含量水平,以土壤有(速)效磷、钾养分不成为实现目标产量的限制因子为前提,通过土壤测试和养分平衡监控,使土壤有(速)效磷、钾含量保持在一定范围内。对于磷肥,基本思路是根据土壤有效磷测试结果和养分丰缺指标进行分级,当有效磷水平处在中等偏上时,可以将目标产量需要量(只包括带出田块的收获物)的100%~110%作为当季磷肥用量;随着有效磷含量的增加,需要减少磷肥用量,直至不施;随着有效磷的降低,需要适当增加磷肥用量,在极缺磷的土壤上,可以施到需要量的150%~200%。在2~3年后再次测土时,根据土壤有效磷和产量的变化再对磷肥用量进行调整。钾肥首先需要确定施用钾肥是否有效,再参照上面方法确定钾肥用量,但需要考虑有机肥和秸秆还田带入的钾量。一般大田作物磷、钾肥料全部做基肥。 9.1.1.3 中微量元素养分矫正施肥技术

中、微量元素养分的含量变幅大,作物对其需要量也各不相同。主要与土壤特性(尤其

是母质)、作物种类和产量水平等有关。矫正施肥就是通过土壤测试,评价土壤中、微量元素养分的丰缺状况,进行有针对性的因缺补缺的施肥。 9.1.2 肥料效应函数法

根据“3414”方案田间试验结果建立当地主要作物的肥料效应函数,直接获得某一区域、某种作物的氮、磷、钾肥料的最佳施用量,为肥料配方和施肥推荐提供依据。 9.1.3 土壤养分丰缺指标法

通过土壤养分测试结果和田间肥效试验结果,建立不同作物、不同区域的土壤养分丰缺指标,提供肥料配方。

土壤养分丰缺指标田间试验也可采用“3414”部分实施方案,详见4.2.2。“3414”方案中的处理1为空白对照(CK ),处理6为全肥区(NPK ),处理2、4、8为缺素区(即PK 、NK 和NP )。收获后计算产量,用缺素区产量占全肥区产量百分数即相对产量的高低来表达土壤养分的丰缺情况。相对产量低于50%的土壤养分为极低;相对产量50%~75%为低;75%~95%为中,大于95%为高,从而确定适用于某一区域、某种作物的土壤养分丰缺指标及对应的肥料施用数量。对该区域其他田块,通过土壤养分测试,就可以了解土壤养分的丰缺状况,提出相应的推荐施肥量。 9.1.4 养分平衡法

9.1.4.1 基本原理与计算方法

根据作物目标产量需肥量与土壤供肥量之差估算施肥量,计算公式为:

肥料当季利用率

肥料中养分含量

土壤供肥量

目标产量所需养分总量施肥量?-=

养分平衡法涉及目标产量、作物需肥量、土壤供肥量、肥料利用率和肥料中有效养分含量五大参数。土壤供肥量即为“3414”方案中处理1的作物养分吸收量。目标产量确定后因土壤供肥量的确定方法不同,形成了地力差减法和土壤有效养分校正系数法两种。

地力差减法是根据作物目标产量与基础产量之差来计算施肥量的一种方法。其计算公式为:

()肥料利用率

肥料中养分含量

单位经济产量养分吸收

基础产量

目标产量

施肥量??-=

基础产量即为“3414”方案中处理1的产量。

土壤有效养分校正系数法是通过测定土壤有效养分含量来计算施肥量。其计算公式为:

肥料利用率

肥料中养分含量

土壤有效养分校正系数

土壤测试值目标产量量作物单位产量养分吸收施肥量???-?=

15.0

9.1.4.2 有关参数的确定

——目标产量

目标产量可采用平均单产法来确定。平均单产法是利用施肥区前三年平均单产和年递增率为基础确定目标产量,其计算公式是:

目标产量(公斤/亩)=(1+递增率)×前3年平均单产(公斤/亩)

一般粮食作物的递增率为10%~15%为宜,露地蔬菜一般为20%左右,设施蔬菜为30%左右。

——作物需肥量

通过对正常成熟的农作物全株养分的分析,测定各种作物百公斤经济产量所需养分量,乘以目标常量即可获得作物需肥量。 作物目标产量所需养分量(公斤)=(公斤)

百公斤产量所需养分量

目标产量(公斤)

?100

——土壤供肥量

土壤供肥量可以通过测定基础产量、土壤有效养分校正系数两种方法估算: 通过基础产量估算(处理1产量):不施肥区作物所吸收的养分量作为土壤供肥量。 土壤供肥量(公斤)=

100

(公斤)

不施养分区农作物产量

×百公斤产量所需养分量(公斤)

通过土壤有效养分校正系数估算:将土壤有效养分测定值乘一个校正系数,以表达土壤“真实”供肥量。该系数称为土壤有效养分校正系数。

土壤有效养分校正系数(%)=

()

()15

.0//?公斤毫克该元素土壤测定值

亩公斤收该元素量

缺素区作物地上部分吸

——肥料利用率

一般通过差减法来计算:利用施肥区作物吸收的养分量减去不施肥区农作物吸收的养分量,其差值视为肥料供应的养分量,再除以所用肥料养分量就是肥料利用率。 肥料利用率(%)=

()()

()()

%

100%///??-肥料中养分含量亩公斤肥料施用量

亩公斤量缺素区农作物吸收养分

亩公斤量施肥区农作物吸收养分

上述公式以计算氮肥利用率为例来进一步说明。

施肥区(NPK 区)农作物吸收养分量(公斤/亩):“3414”方案中处理6的作物总吸氮量;

测土配方施肥技术在的发展与现状

测土配方施肥技术在的 发展与现状 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

测土配方施肥技术在我国的发展与现状 测土配方施肥技术是科学施肥工作的具体落实形势,它不仅涉及肥料施用技术、推广服务形势,还包括与肥料有关的管理工作。 测土配方施肥技术在我国应用情况回顾 纵观测土配方施肥技术在我国应用与发展的历史,可以发现,1979年开始的、历时10年的全国第二次土壤普查,为我国测土配方施肥工作奠定了大规模的人力、物力和技术基础,具有重要的历史意义。这次普查,在全国范围内建立起县级土壤肥料分析化验室,配备了相应的技术人员和分析化验人员,按统一规定面积采集土壤样品并进行分析,获得上亿个化验数据,为土壤改良和科学施肥工作提供了宝贵的技术资料。各级土肥站在土壤普查过程中,利用所学握的测试数据和图件资料,按土壤基层分类单元和不同作物,定点连续布置大田科学施肥试验,积累了大量的土壤养分动态变化资料。应用土壤肥力差减法、多水平试验选优法、养分丰缺指标法等方法制定了不同的因土因作物施肥的技术方案。到1993年全国已有1800多个县(市)开展了测土配方施肥等科学施肥技术的试验与推广。 1992年6月,联合国开发计划署与农业部签订定了平衡施肥项目合作协议,在河北省唐山市、黑龙江省双城市、陕西省宝鸡市、江苏省盐城市、浙江省金华市、湖南省邵阳市、四川省泸县7个主要农作物带开展平衡施肥技术试验、示范和推广。国内土肥工作者借此机会接触到国际上最先进的科学施肥技术、设备和操作管理模式,为农业部和各项目省培养了一批土肥技术人才和管理人员,国内科学施肥工作水平得到大幅度提高。该项目共在33个土壤类型上完成田间

土壤样品采集技术规范

土壤样品采集技术规范 黄海农场农业服务中心 土壤样品的采集是土壤测试的一个重要环节,采集有代表性的样品,是如实反映客观情况,是测土配方施肥的先决条件。因此,应选择有代表性的地段和有代表性的土壤采样,并根据不同分析项目采用相关的采样和处理方法。为保证土壤样品的代表性,必须采取以下技术措施控制采样误差。 1、采样单元 采样前要详细了解采样地区的土壤类型、肥力等级和地形等因素,将测土配方施肥区域划分为若干个采样单元,每个采样单元的土壤要尽可能均匀一致。 由于我场地势平坦,肥力均匀,采样单元一般为200~300亩。采样单元应集中在典型地块,相对在中心部位。每个采样单元采一个混合样。为使采样更加方便快捷,对于土壤均一、地块形状规则的,亦可在采样单元内距地头100~200米面积为1~10亩的典型地段采一个混合样。 2、采样时间 在作物收获后或播种前采集(上茬作物已经基本完成生育进程,下茬作物还没有施肥),一般在秋收后。进行氮肥追肥推荐时,应在追肥前或作物生长的关键时期。 3、采样周期 同一采样单元,土壤有机质、全氮、碱解氮每季或每年采集1次,无机氮每个施肥时期前采集1次,土壤有效磷钾2~4年,微量元素3~5年,采集1次。植株样品每个主要生长期采集1次。 4、采样点数量 要保证足够的采样点,使之能代表采样单元的土壤特性。采样点的多少,取决于采样单元的大小、土壤肥力的一致性等,一般为7-20个点为宜。 5、采样路线 采样时应沿着一定的线路,按照“随机”、“等量”和“多点混合”的原则进行采样。一般采用S形布点采样,能够较好地克服耕作、施肥等所造成的误差。在地形较小、地力较均匀、采样单元面积较小的情况下,也可采用梅花形布点取样,要避开路边、田埂、沟边、肥堆等特殊部位。 6、采样点定位 有条件的可采用GPS定位,记录经纬度,精确到0.01″。无条件的可在地图上标明采样点位臵,并记录样点名称、田块名称、固定参照物的距离和方位。 7、采样深度 采样深度一般为0-20cm,土壤硝态氮或无机氮的测定,采样深度应根据不同作物、不同生育期的主要根系分布深度来确定。 8、采样方法

测土配方施肥技术详解

核心提示:测土配方施肥是根据作物需肥规律、土壤供肥特性与肥料效应,在以有机肥为基础的条件下,产前提出氮、磷、钾和微肥的适宜用量和比例,以及相应的施肥技术。 肥料是农作物的营养,科学施肥是农业可持续发展的重要保障。为了解决当前肥料施用上的重化肥、轻有机肥,盲目施肥和过量施肥现象普遍等问题,农业部在2005年初提出要将测土配方施肥技术作为科技入户工程的第一大技术在全国推广,并将该项技术的推广作为为农民办实事之一,达到提高肥料利用率,减少肥料资源浪费,减轻农业面源污染,保护生态环境,确保农业可持续发展的目的。今年2月21日,农业部又专门召开了全国测土配方施肥工作视频会议,总结2005年测土配方施肥行动的成效与经验,全面动员和部署今年的测土配方施肥工作,推动春耕备耕开展。农业部决定2006年把测土配方施肥工作为农民办理15件实事的第一件,为1亿农户提供测土配方施肥服务,使100%农户获得配方施肥建议卡、100%得到施肥技术指导,测土配方施肥技术应用覆盖面积达到6.8亿亩,并带动全国全面开展测土配方施肥。农业部部长杜青林在会上提出,今年,国家将加大对测土配方施肥的扶持力度,财政补贴资金由去年的2亿元增加到5亿元以上。全年免费为4000万以上农户提供测土配方施肥服务,力求配方施肥建议卡和施肥技术指导入户率达到100%,核心示范区实施面积达到2.8亿亩以上,辐射带动6.8亿亩,为做好2006年测土配方施肥工作,杜青林要求:一是切实加强组织领导。各级农业部门主要负责同志要亲自过问,有专人负责组织,打破部门界限和常规做法,进一步整合力量,建立目标责任制,确保今年测土配方施肥各项工作全面落实。二是加强技术队伍建设。各级农业部门要进一步充实加强土肥工作的技术力量,广泛调动农业科研、教学、推广等技术部门的积极性,形成面向基层、面向农民的技术服务合力。同时,要重视肥料配方师职业资格认定,以提高农业科技人员的技术水平和业务能力。三是完善仪器装备和技术规范。各地积极争取,科学整合,有效利用各方面的资金,从需要出发,购置必备的测试仪器、设备,形成一套先进完备的土壤肥料测试系统。严格按照农业部统一的技术规范要求,开展采样、测土、试验、配方和施肥。四是加强技术培训。各地要运用广播、电视、报刊、网络等形式,向农民宣传技术知识,充分发挥种植大户、科技示范户和科技带头人作用。五是强化肥料市场监管。各级农业部门要积极会同质检、工商等有关部门,加强肥料市场监管,依法惩治销售假冒伪劣肥料的不法行为。省级农业部门要对配方肥质量进行严格把关,简化登记手续,主动为企业提供优质服务。杜青林强调,全面推进测土配方施肥工作,是深入贯彻落实中央一号文件精神,提高农业综合生产能力的一项重大措施。各级农业部门要在建设社会主义新农村的开局之年,切实把测土配方施肥作为给农民办实事的重要内容,创造性地工作,深入实际,转变作风,全面扎实地推进测土配方施肥工作顺利开展,为粮食稳定增产和农民持续增收做出新的贡献。测土配方施肥技术也是浙江省2 006年10项农业主推技术之一,温岭市作为浙江省首批测土配方施肥技术推广重点县(市),在过去的一年中,根据省、市部署和要求,以采集土壤样品化验和标准农田普查及第二次土壤普查数据为依据,以科技入户及办方示范为抓手,以建立组织为保障,在全市范围内开展了测土配方施肥技术推广工作。并根据当地实际情况,突出推广以水稻为主的粮食作物,兼顾果蔗等经济作物的测土配方施肥技术。全市推广测土配方施肥面积达到了19.83万亩,平均每亩节肥17.2元,增收56.58元,全市累计节本增效1463.80万元,取得了较为显著的节本增效效果。为了进一步深入开展该项工作,巩固工作成果,现将测土配方施肥有关技术作如下介绍,供参考:

大北农科技奖奖励办法实施细则

大北农科技奖奖励办法实施细则 第一章总则 第二章奖励范围和评审标准 第三章评审组织 第四章申报或推荐 第五章评审 第六章异议和处理 第七章授奖 第八章附则 第一章 总 则 第一条 为了做好大北农科技奖工作,保证大北农科技奖的评审质量,根据《大北农科技奖奖励办法》,制定本细则。 第二条 本细则适用于大北农科技奖的申报(推荐)、评审、授奖等各项活动。第三条 大北农科技奖贯彻“尊重知识、尊重人才”的方针,营造鼓励自主创新的环境,促进科技成果向现实生产力转化,推动农业科技进步,加速报国兴农和可持续发展战略的实施。 第四条 大北农科技奖的申报(推荐)、评审、授奖,遵循公开、公平、公正的原则,实行科学的评审制度,不受任何组织或个人的非法干涉。 第五条 大北农科技奖奖励委员会(以下简称奖励委员会)负责大北农科技奖的宏观管理和指导。大北农科技奖评审委员会(以下简称评审委员会)负责

评审工作。大北农科技奖奖励办公室(以下简称奖励办)负责日常工作。 第二章 奖励范围和评审标准 第六条 大北农科技奖秉承“报国兴农、争创第一、共同发展”的企业理念,回馈农业、回报社会,无偿奖励在农业应用研究领域作出突出贡献的科技人员。第七条 奖励范围主要包括: (一)植物基因工程领域 1.分离、克隆获得的植物用重要功能基因; 2.构建形成的高效表达、易转化、安全适用的载体,包括适宜表达或特异表达的启动子、增强基因表达效率的增强子等元件; 3.功能基因高效、大规模转化方法(体系),综合性状优良的转化体; 4.与重要农艺性状紧密相关的分子标记。 (二)农作物(玉米、水稻、棉花、油菜等)领域 1.高产、优质、多抗新品种或优异亲本; 2.高效品种选育及繁制种技术、产品或工具; 3.新型、高效、轻简栽培管理技术、产品或工具。 (三)植物营养与保护领域 1.农药剂型加工与农药应用工艺学的研究; 2.新农药合成的创制; 3.生物农药及植物源农药新技术; 4.农药表面活性剂的开发与应用; 5.农药使用技术的研究; 6.农药环境毒理的研究; 7.新型生物肥料的研究;

1、什么是测土配方施肥技术

一、什么是测土配方施肥技术? (百度百科):以土壤测试和肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用数量、施肥时期和施用方法。通俗地讲,就是在农业科技人员指导下科学施用配方肥。测土配方施肥技术的核心是调节和解决作物需肥与土壤供肥之间的矛盾。同时有针对性地补充作物所需的营养元素,作物缺什么元素就补充什么元素,需要多少补多少,实现各种养分平衡供应,满足作物的需要;达到提高肥料利用率和减少用量,提高作物产量,改善农产品品质,节省劳力,节支增收的目的。 (中国农业推广网):测土配方施肥是依照配方施肥技术原理,通过开展土壤测试和肥料田间试验,摸清土壤供肥能力、作物需肥规律和肥料效应状况,获得、校正配方施肥参数,建立不同作物、不同土壤类型的配方施肥模型。采取“测土-配方-配肥-供肥-施肥技术指导”一体化的综合服务技术路线,根据土壤测试结果和相关条件,应用配方施肥模型,结合专家经验,提出配方施肥推荐方案,由配肥站按照配方生产配方肥,直接供应农民施用,并提供施肥技术指导。同时通过肥料质量检测手段,保证各种肥料的质量。通过一体化服务的技术路线,逐步实现技术推广的社会化和产业化,保证配方施肥的精度和到位率,提高配方施肥的普及率。 (测土配肥网):病人去医院,医生首先要为你检查化验做出诊断后再根据病情开药方对症下药,会很快好起来。测土配方施肥就是土壤医生为你的土地看病开方配药。 我们所说的测土配方施肥在国际上通称的“平衡施肥”,这项技术是联合国在全世界推行的先进农业技术。概括来说,一是测土,取土样检测化验土壤养分含量;二是配方,经过对土壤的养分诊断,按照庄稼需要的营养“开出药方、按方配药”,也就是按需配肥;三是合理施肥,就是在技术人员指导下科学施用配方肥。 测土配方施肥,不仅可以节约肥料使用量,还可以合理搭配、使作物营养更全面,从而节本增收。对于环境,更是能够减少肥料浪费造成的环境污染,对农业和环境的持续发展具有重要意义。 测土配方施肥,从2005年提出以来,取得了良好的效果,不仅节本增收了,还可以减少作物病害,提高农产品质量。

测土配方施肥技术规范

测土配方施肥技术规范 (年修订版) 范围 本规范规定了全国测土配方施肥工作肥料效应田间实验、样品采集与制备、田间基本情况调查、土壤与植株测试、肥料配方设计、配方肥料合理使用、效果反馈与评价、数据汇总、报告撰写、耕地地力评价等内容、方法和操作规程。 本规范适用于全国不同区域、不同土壤和不同主要作物的测土配方施肥工作。 引用标准 本规范引用下列国家或行业标准: 肥料和土壤调理剂术语 肥料合理使用准则通则 肥料效应鉴定田间实验技术规程 全国耕地类型区、耕地地力等级划分 全国中低产田类型划分与改良技术规范 土壤监测规程 耕地地力调查与质量评价技术规程 术语和定义 下列术语和定义适用于本规范: 测土配方施肥 测土配方施肥是以土壤测试和肥料田间实验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用品种、数量、施肥时期和施用方法。 配方肥料 以土壤测试、肥料田间实验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,用各种单质肥料和(或)复混肥料为原料,配制成的适合于特定区域、特定作物品种的肥料。肥料效应 肥料效应是肥料对作物产量或品质的作用效果,通常以肥料单位养分的施用量所能获得的作物增产量和效益表示。

施肥量; 施于单位面积耕地或单位质量生长介质中的肥料或养分的质量或体积。 常规施肥 亦称习惯施肥,指当地有代表性的农户前三年平均施肥量(主要指氮、磷、钾肥)、施肥品种、施肥方法和施肥时期。可通过农户调查确定。 空白对照 无肥处理,用于确定肥料效应的绝对值,评价土壤自然生产力和计算肥料利用率等。优化施肥 指针对当地(一定区域)的土壤肥力水平、作物需肥特点、肥料利用效率和相关配套栽培技术而建立的作物高产高效或优质适产施肥种类、时期、数量、比例和方法。 地力 是指在当前管理水平下,由土壤本身特性、自然背景条件和农田基础设施等要素综合构成的耕地生产能力。 耕地地力评价 耕地地力是指根据耕地所在地的气候、地形地貌、成土母质、土壤理化性状、农田基础设施等要素相互作用表现出的综合特征。耕地地力评价是对耕地生态环境优劣、农作物种植适宜性、耕地潜在生物生产力高低进行评价。 肥料利用率 是指作物吸收来自所施肥料的养分占所施肥料养分总量的百分率。 肥料效应田间实验 主要包括大田作物肥料效应田间实验、蔬菜和果树作物田间实验。 大田作物肥料效应田间实验 4.1.1 实验目的 肥料效应田间实验是获得各种作物最佳施肥品种、施肥比例、施肥数量、施肥时期、施肥方法的根本途径,也是筛选、验证土壤养分测试方法、建立施肥指标体系的基本环节。通过田间实验,掌握各个施肥单元不同作物优化施肥数量,基、追肥分配比例,施肥时期和施肥方法;摸清土壤养分校正系数、土壤供肥能力、不同作物养分吸收量和肥料利用率等基本参数;构建作物施肥模型,为施肥分区和肥料配方设计提供依据。 4.1.2 实验设计

《浙江省饮用水水源保护条例》(全文)

《浙江省饮用水水源保护条例》(全文) 为了加强饮用水水源保护,保障饮用水安全,维护人民群众生命安全和健康,制定了《浙江省饮用水水源保护》,下面是详细内容。 《浙江省饮用水水源保护条例》 第一章总则 第一条为了加强饮用水水源保护,保障饮用水安全,维护人民群众生命安全和健康,根据《中华人民共和国水法》、《中华人民共和国水污染防治法》和其他有关法律、行政法规,结合本省实际,制定本条例。 第二条本条例适用于本省行政区域内的饮用水水源保护及相关的管理工作。

本条例所称的饮用水水源,是指用于城乡集中式供水的江河、湖泊、水库、山塘等地表水水源和地下水水源。 前款所称的集中式供水是指以公共供水系统向城乡居民提供生活饮用水的供水方式。 第三条县级以上人民政府应当将饮用水水源保护纳入国民经济和社会发展规划,加大公共财政对饮用水水源保护的投入,建立健全饮用水水源保护的部门联动和重大事项会商机制,合理布局和调整饮用水水源地及上下游地区的产业结构,促进经济建设和饮用水水源保护协调发展。 饮用水水源保护工作实行行政首长负责制。县级以上人民政府应当将饮用水水源保护工作纳入政府环境保护责任考核范围和领导干部政绩考核评价体系。 第四条县级以上人民政府环境保护主管部门负责本行政区域

内饮用水水源保护区的划定及相关环境管理的具体工作,对饮用水水源污染防治实施统一监督管理。 县级以上人民政府水行政主管部门负责本行政区域内饮用水水源地规划及相关水源工程建设的具体工作,对饮用水水资源实施统一监督管理。 发展和改革、财政、住房和城乡建设、国土资源、卫生、农业、林业、交通运输、海洋与渔业、公安等有关部门和海事管理机构,应当按照各自职责做好饮用水水源保护相关工作。 第五条乡(镇)人民政府、街道办事处应当依法做好本行政区域内的饮用水水源保护工作,配合有关主管部门做好饮用水水源保护的有关工作。 村(居)民委员会应当依法做好本区域内的饮用水水源保护工作。

测土配方施肥的原理及方法

《现代农业科技》2010年第3期 我国当前农业用肥普遍存在肥料的表施或浅施、过量施用氮肥和过多地使用某种营养元素等不合理的施肥现象,造成肥料易挥发、流失,难以达到作物根部,不利于作物吸收,肥料利用率低;容易造成种子的烧伤或铵中毒,还可能会对作物产生毒害,妨碍作物对其他营养元素的吸收,引起缺素症。 对于施肥来说,首先要确定氮、磷、钾养分的用量,然后确定相应的肥料组合,通过提供配方肥或发放施肥建议卡,指导农民正确施用肥料。测土配方施肥技术是综合运用现代农业科技成果,根据作物需肥规律、土壤供肥性能与肥料效应在有机肥为基础的条件下,产前提供氮磷钾和微肥的施用量和比例,以及相应的施肥技术,其特征是“产前定肥”[1,2]。 1测土配方施肥的原理 一是元素的营养学说。植物的生长发育离不开N、P、K、C、H、O、Ca、Mg、S、Fe、B、Mn、Mo、Zn、Cu、Cl等16种营养元素,其中N、P、K是大量元素,C、H、O、Ca、Mg、S是中量元素,Fe、B、Mn、Mo、Zn、Cu、Cl是微量元素。二是营养元素的同等重要律和不可代替律。植物所需的各种营养元素不论在植物体内含量多少,均有各自的生物功能,它们的营养作用是同等重要的,而每种营养元素具有的特殊的生理功能是其他元素不可代替的。三是养分归还学说。植物在生长发育过程中,要从土壤中不断吸收各种营养物质,植物的长期吸收利用会使土壤的某些养分变的越来越少,养分失去平衡,地力逐渐下降,若要恢复地力就必须归还从土壤中带走的各种营养元素。四是最小养分律。植物为了生长发育需要吸收各种养分,但决定其产量高低的是土壤中有效含量最低的那个养分,在一定的范围内产量随这个养分含量的增减而增减,忽视这个最低养分,即使再增加其他养分也难以提高作物的产量。五是报酬递减律。在其他栽培条件不变的前提下,随着施肥量的增加,作物产量随之增加,达到一定程度后,随着施肥量的增加,作物产量反而减少。六是综合因子作用律。作物生长发育除养分因子外,还有水分、温度、光照、空气等环境因子和良种、植保、耕作、栽培等农业技术措施,单靠一个因子或一项措施是不可能使作物获得高产的,存在着诸多因子的交互效应。 2测土配方施肥遵循的原则 一是有机肥与无机肥相结合的原则。土壤有机质是土壤肥沃的重要指标,增施有机肥可以增加土壤的有机质,提高土壤的肥沃度。二是大量、中量、微量元素相配合的原则。强调氮、磷、钾肥的相互配合,并补充必要的中、微量元素才能获得高产稳产。三是用地与养地相结合的原则。只有坚持用养结合,才能使作物—土壤—肥料形成物质和能量的良性循环。 3肥料用量的确定方法 一是土壤、植株测试推荐施肥法。这个技术综合了目标产量法、养分丰缺法和作物营养诊断法的优点,根据氮、磷、钾和中微量元素养分的不同特征,采取不同养分的调控,主要包括氮素的实时监控、磷与钾养分的恒量监控及中、微量元素养分的矫正施肥技术。二是肥料效应函数法。该方法是根据“3414”的田间试验结果建立当地主要作物的肥料效应函数,直接获得某一区域,某种作物的氮、磷、钾肥料的最佳施用量,为肥料配方和科学施肥提供依据。三是土壤养分丰缺指标法。通过土壤养分测试结果和田间肥效试验结果,建立特别地区、不同作物的土壤养分丰缺指标,提供肥料配方。土壤养分丰缺状况用“3414”试验的相对产量的高低来表示,对某一地区的土壤通过养分测定,就可以了解土壤养分的丰缺状况,提出相应的推荐施肥量。四是养分平衡法。根据作物目标产量的需肥量与土壤供肥量之间的差测算目标产量的施肥量,通过施肥补充土壤供应不足的那部分养分。养分平衡法涉及到作物需肥量、土壤供肥量、肥料利用率、肥料中有效养分含量等参数[3,4]。 4测土配方施肥的步骤 一是土壤养分含量的测定。土壤养分含量是制定肥料配方的重要依据之一,通过土壤养分含量的测定可以了解土壤的供肥能力。二是田间试验。田间试验是获得各种作物最佳施肥量、施肥时期、施肥方法的根本途径,也是筛选、验证土壤养分测试技术,建立施肥指导体系的基本环节。通过田间试验能摸清土壤养分矫正系数、土壤供肥量、农作物施肥量、肥料利用率等基本参数,为构建施肥模型和肥料配方提供依据。三是配方设计。肥料配方设计是测土施肥技术的核心。通过总结田间试验、土壤养分含量等数据,划分不同施肥区域,同时根据气候、地貌、土壤、耕作程度等的相似性和差异性,结合专家经验,提出不同作物的施肥配方。四是矫正试验。为了保证肥料配方的准确性,最大限度地减少肥料的批量生产和大面积应用的风险,在施肥分区设矫正试验,验证其施肥配方的正确性,并完善肥料配方改进施肥参数。五是配方加工。配方落实到农户田间是配方施肥的最终目的,根据不同地区和不同作物的需肥量,加工配方肥—— — 测土配方施肥的原理及方法 卢学中 (青海省互助县农机化学校,青海互助810500) 摘要测土配方施肥是一种科学施肥技术,主要阐述了测土配方施肥的原理、原则以及方法、步骤,旨在探寻节本增效显著的科学施肥方法。 关键词测土配方施肥;原理;原则;方法;步骤 中图分类号S147.2文献标识码B文章编号1007-5739(2010)03-0295-02 收稿日期2010-01-22 资源与环境科学 295

测土配方施肥技术规范(2011年修订版)

测土配方施肥技术规范 (2011年修订版) 1 范围 本规范规定了全国测土配方施肥工作肥料效应田间试验、样品采集与制备、田间基本情况调查、土壤与植株测试、肥料配方设计、配方肥料合理使用、效果反馈与评价、数据汇总、报告撰写、耕地地力评价等内容、方法和操作规程。 本规范适用于全国不同区域、不同土壤和不同主要作物的测土配方施肥工作。 2 引用标准 本规范引用下列国家或行业标准: GB/T 6274 肥料和土壤调理剂术语 NY/T 496 肥料合理使用准则通则 NY/T 497 肥料效应鉴定田间试验技术规程 NY/T 309 全国耕地类型区、耕地地力等级划分 NY/T 310 全国中低产田类型划分与改良技术规范 NY/T 1119 土壤监测规程 NY/T 1634 耕地地力调查与质量评价技术规程 3 术语和定义 下列术语和定义适用于本规范: 3.1 测土配方施肥soil testing and formulated fertilization 测土配方施肥是以土壤测试和肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用品种、数量、施肥时期和施用方法。 3.2 配方肥料formula fertilizer 以土壤测试、肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,用各种单质肥料和(或)复混肥料为原料,配制成的适合于特定区域、特定作物品种的肥料。 3.3 肥料效应fertilizer response 肥料效应是肥料对作物产量或品质的作用效果,通常以肥料单位养分的施用量所能获得

的作物增产量和效益表示。 3.4 施肥量dose rate; dose 施于单位面积耕地或单位质量生长介质中的肥料或养分的质量或体积。 3.5 常规施肥coventional fertilizing 亦称习惯施肥,指当地有代表性的农户前三年平均施肥量(主要指氮、磷、钾肥)、施肥品种、施肥方法和施肥时期。可通过农户调查确定。 3.6 空白对照control 无肥处理,用于确定肥料效应的绝对值,评价土壤自然生产力和计算肥料利用率等。 3.7 优化施肥optimized fertilization 指针对当地(一定区域)的土壤肥力水平、作物需肥特点、肥料利用效率和相关配套栽培技术而建立的作物高产高效或优质适产施肥种类、时期、数量、比例和方法。 3.8 地力soil fertility 是指在当前管理水平下,由土壤本身特性、自然背景条件和农田基础设施等要素综合构成的耕地生产能力。 3.9 耕地地力评价soil productivity assessment 耕地地力是指根据耕地所在地的气候、地形地貌、成土母质、土壤理化性状、农田基础设施等要素相互作用表现出的综合特征。耕地地力评价是对耕地生态环境优劣、农作物种植适宜性、耕地潜在生物生产力高低进行评价。 3.10 肥料利用率recovery efficiency of fertilizer 是指作物吸收来自所施肥料的养分占所施肥料养分总量的百分率。 4 肥料效应田间试验 主要包括大田作物肥料效应田间试验、蔬菜和果树作物田间试验。 4.1 大田作物肥料效应田间试验 4.1.1 试验目的 肥料效应田间试验是获得各种作物最佳施肥品种、施肥比例、施肥数量、施肥时期、施肥方法的根本途径,也是筛选、验证土壤养分测试方法、建立施肥指标体系的基本环节。通过田间试验,掌握各个施肥单元不同作物优化施肥数量,基、追肥分配比例,施肥时期和施肥方法;摸清土壤养分校正系数、土壤供肥能力、不同作物养分吸收量和肥料利用率等基本参数;构建作物施肥模型,为施肥分区和肥料配方设计提供依据。

农业部测土配方施肥技术规范

测土配方施肥技术规范(试行) (修订稿) 二○○六年四月

1 范围 本规范规定了全国测土配方施肥工作中肥料效应田间试验、样品采集与制备、田间基本情况调查、土壤与植株测试、肥料配方设计、配方肥料合理使用、效果反馈与评价、数据汇总、报告撰写等内容、方法与操作规程和耕地地力评价方法。 本规范适用于全国不同区域、不同土壤和不同作物的测土配方施肥工作。 2 引用标准 本规范引用下列国家或行业标准: GB/T 6274 肥料和土壤调理剂术语 NY/T 496 肥料合理使用准则通则 NY/T 497 肥料效应鉴定田间试验技术规程 NY/T 309-1996 全国耕地类型区、耕地地力等级划分 NY/T 310-1996 全国中低产田类型划分与改良技术规范 3 术语和定义 下列术语和定义适用于本规范: 3.1 测土配方施肥 soil testing and formulated fertilization 测土配方施肥是以肥料田间试验和土壤测试为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用品种、数量、施肥时期和施用方法。 3.2 肥料 fertilizer 以提供植物养分为其主要功效的物料(GB/T 6274-1997中2.1.2)。 3.3 有机肥料 organic fertilizer 主要来源于植物和(或)动物,施于土壤以提供植物营养为其主要功效的含碳物料(GB/T 6274-1997中2.1.4)。 3.4 无机[矿质]肥料 inorganic[mineral] fertilizer 标明养分呈无机盐形式的肥料,由提取、物理和(或)化学工业方法制成(GB/T 6274-1997中2.1.3)。 注:硫磺、氰氨化钙、尿素及其缩缔合产品,骨粉过磷酸钙,习惯上归作无机肥料。 3.5 单一肥料 straight fertilizer 氮、磷、钾三种养分中,仅具有一种养分标明量的氮肥、磷肥和钾肥的通称(GB/T

甘肃省耕地质量管理办法

甘肃省耕地质量管理办法 甘肃省人民政府令 第74号  《甘肃省耕地质量管理办法》已经2010年11月15日省人民政府第66次常务会议讨论通过,现予公布。自2011年1月15日起施行。 代省长刘伟平 二○一○年十一月十七日 甘肃省耕地质量管理办法 第一章总则 第一条为加强耕地质量保护和建设,促进农业可持续发展,根据《中华人民共和国农业法》、《基本农田保护条例》等法律法规,结合本省实际,制定本办法。 第二条在本省行政区域内从事耕地质量保护、建设、监测、验收、监督管理等活动,适用本办法。 第三条本办法所称耕地质量,是指由耕地地力、田间基础设施、耕地环境质量等构成的满足农作物安全和持续生产的能力。 耕地质量管理包括对耕地的使用和养护、耕地地力建设、耕地质量监测、农田环境质量监测、补充耕地的质量评价与检查验收。 第四条耕地质量管理应当科学规划、合理利用、用养结合、严格保护。 非农业建设占用耕地的,按照占补平衡的原则,补充数量和质量相当的耕地。补充耕地质量低于占用耕地质量的,占用者应当采取有效措施,使其达到占用耕地的质量水平。 第五条省农业行政主管部门负责全省耕地质量保护建设工作,组建耕地质量验收专家库。县级以上农业行政主管部门负责本行政区域内耕地质量的保护建设与监督管理,主要职责是: (一)依法对影响耕地质量的行为进行调查; (二)对占补平衡补充耕地的质量进行评定验收; (三)组织实施耕地质量的等级认定; (四)对耕地质量实施动态监测; (五)拟定耕地质量保护和建设技术规程; (六)组织实施耕地质量建设,开展测土配方施肥、有机质提升、中低产田改造、科学用水、新技术研发等技术推广活动,为耕地使用者提供技术指导和服务。 农业行政主管部门可委托其所属的土壤肥力管理机构负责具体工作。

土壤样品采集技术规范

土壤样品采集技术规范 土壤样品的采集是土壤测试的一个重要环节,采集有代表性的样品,是如实反映客观情况,是测土配方施肥的先决条件。因此,应选择有代表性的地段和有代表性的土壤采样,为保证土壤样品的代表性,必须采取以下技术措施控制采样误差。 1、采样单元(严格按照已经给定大家的GPS定位为准,如果该点已经有建筑非农田,可以就近取土壤类型、种植作物一致的露天大田非大棚土壤,如玉米小麦是山东典型作物。如果就近实在没有作物地块,可以标注上是蔬菜地,如白菜地。非原始点位的,需要文字说明点位漂移的大致方位距离等) 点位漂移的另选取典型代表地块,采样地块的土壤要尽可能均匀一致。选取地势平坦,肥力均匀,采样单元一般为100平方米地块。采样单元应集中在典型地块,相对在中心部位,采一个混合样。 3、采样路线 采样时应“等量”和“多点混合”的原则进行采样。一般采用S形(下图)布点采样,能够较好地克服耕作、施肥等所造成的误差。或者梅花采样即取四个角加中心点。田块选取要避开路边(有交通工具汽车尾气扬尘等污染影响结果的准确性)、田埂、沟边、肥堆等特殊部位。 3、采样点数量 一个样点至少采集6个点位的土壤,然后混匀。(要保证足够的点,使之能代表采样单元的土壤特性),混匀后,用四分法(见下图)将多余的土壤弃去。方法是将采集的土壤样品混匀后放在盘子里或塑料布上、蛇皮袋上,剔除落叶石块等杂物后弄碎、混匀,铺成四方形,划对角线将土样分成四份,把对角的两份分别合并成一份,保留一份,弃去一份。如果所得的样品依然很多,可再用四分法处理,直至所需数量为止。一个混和土样以取土1公斤左右为宜。 4、采样点定位(必须有,尤其是点位漂移的) 采用GPS定位,记录经纬度,精确到0.01″。并记录样点名称、田块名称、固定参照物的距离和方位。 5、采样深度 采样深度一般为0-20cm,采样前去除杂物和浮土 6、采样方法

测土配方施肥技术在我国的发展与现状

测土配方施肥技术在我国的发展与现状 测土配方施肥技术是科学施肥工作的具体落实形势,它不仅涉及肥料施用技术、推广服务形势,还包括与肥料有关的管理工作。 测土配方施肥技术在我国应用情况回顾纵观测土配方施肥技术在我国应用与发展的历史,可以发现,1979 年开始的、历时10 年的全国第二次土壤普查,为我国测土配方施肥工作奠定了大规模的人力、物力和技术基础,具有重要的历史意义。这次普查,在全国范围内建立起县级土壤肥料分析化验室,配备了相应的技术人员和分析化验人员,按统一规定面积采集土壤样品并进行分析,获得上亿个化验数据,为土壤改良和科学施肥工作提供了宝贵的技术资料。各级土肥站在土壤普查过程中,利用所学握的测试数据和图件资料,按土壤基层分类单元和不同作物,定点连续布置大田科学施肥试验,积累了大量的土壤养分动态变化资料。应用土壤肥力差减法、多水平试验选优法、养分丰缺指标法等方法制定了不同的因土因作物施肥的技术方案。到1993 年全国已有1800 多个县(市)开展了测土配方施肥等科学施肥技术的试验与推广。 1992 年6 月,联合国开发计划署与农业部签订定了平衡施肥项目合作协议,在河北省唐山市、黑龙江省双城市、陕西省宝鸡市、江苏省盐城市、浙江省金华市、湖南省邵阳市、四川省泸县7 个主要农作物带开展平衡施肥技术试验、示范和推广。国内土肥工作者借

此机会接触到国际上最先进的科学施肥技术、设备和操作管理模式,为农业部和各项目省培养了一批土肥技术人才和管理人员,国内科学施肥工作水平得到大幅度提高。该项目共在33 个土壤类型上完成田间试验651 个,获得数据15414 个。同时开展多点、多种形式的示范推广工作,设立对比示范田块2696 块,示范面积达到59 .9 公顷,为指导当地科学施肥起到了重要的作用,也为目前我国测土配方施肥技术的应用与推广提供了理论和实践依据。1997 年项目区平均当季化肥利用率为37 3 %,比 1 992 年提高8 2 个百分点。 在科学施肥技术推广的同时,土壤肥料管理体系和监测体系初步建立,土壤监测工作已持续了19 年,连续 3 年以上的国家级土壤监测点 1 57 ,分布在全国 1 7个省(市、区)、95 个县的1 6 个土类上,带动建立省级土壤监测点4000 多个,地、县级20000 个,初步形成了国家、省级两层监测体系的雏型,为掌握和了解我国耕地质量的动态变化情况,指导我国耕地培肥及施肥工作起到了重要的作用。 我国测土配方施肥技术应用现状 2004 年12 月31 日《中共中央国务院关于进一步加强农村工作提高农业综合生产能力若干政策的意见》(2005 年中央一号文件)提出:中央和省级财政要较大幅度增加农业综合开发投 入,新增资金主要安排在粮食主产区集中用于中低产田改造,建设高标准基本农田。搞好“沃土工程”建设,增加投入,加大土壤肥力调查和监测工作力度,尽快建立全国耕地质量动态监测和预警系统,为

测土配方施肥技术

测土配方施肥技术 中国化肥网 2008-5-22 15:46:00 来源:本网论坛【大中小】【关闭】【讨论】 关键词: 施肥技术测土配方 实践证明,推广测土配方施肥技术,可以提高化肥利用率5%-10%,增产率一般为10%-15%,高的可达20%以上。实行测土配方施肥不但能提高化肥利用率,获得稳产高产,还能改善农产品质量,是一项增产节肥、 节支增收的技术措施。 一、测土配方施肥的理论依据 测土配方施肥,考虑到作物、土壤、肥料体系的相互联系,其理论依据主要有以下几个方面。 (一)作物增产曲线证实了肥料报酬递减律的存在。因此,对某一作物品种的肥料投入量应有一定的限度。在缺肥的中低地区,施用肥料的增产幅度大,而高产地区,施用肥料的技术要求则比较严格。肥料的过量投入,不论是哪类地区,都会导致肥料效益下降,以致减产的后果。因此,确定最经济的肥料用量是配方 施肥的核心。 (二)作物生长所必需的多种营养元素之间有一定的比例。有针对性地解决限制当地产量提高的最小养分,协调各营养元素之间的比例关系,纠正过去单一施肥的偏见,实行氮、磷、钾和微量元素肥料的配合施用,发挥诸养分之间的互相促进作用,是配方施肥的重要依据。 (三)在养分归还(补偿)学说的指导下,配方施肥体现了解决作物需肥与土壤供肥的矛盾。作物的生长,不但消耗土壤养分,同时消耗土壤有机质。因此,正确处理好肥料(有机与无机肥料)投入与作物产出、用地与养地的关系,是提高作物产量和改善品质,也是维持和提高土壤肥力的重要措施。 (四)测土配方施肥又是一项综合性技术体系。它虽然以确定不同养分的施肥总量为主要内容,但为了充分发挥肥料的最大增产效益,施肥必须与选用良种,肥水管理耕作制度,气候变化等影响肥效的诸因素相结合,配方肥料生产要求有严密的组织和系列化的服务,形成一套完整的施肥技术体系。 二、确定配方的基本技术 当前所推广的配方施肥技术从定量施肥的不同依据来划分,可以归纳为以下三个类型: 第一类地力分区(级)配方法 地力分区(级)配方法的作法是,按土壤肥力高低分为若干等级,或划出一个肥力均等的田片,作为一个配方区,利用土壤普查资料和过去田间试验成果,结合群众的实践经验,估算出这一配方区内比较适宜的 肥料种类及其施用量。 地力分区(级)配方法的优点是具有针对性强,提出的用量和措施接近当地经验,群众易于接受,推广的阻力比较小。但其缺点是,在地区局限性,依赖于经验较多。适用于生产水平差异小、基础较差的地区。 在推行过程中,必须结合试验示范,逐步扩大科学测试手段和指导的比重。 第二类目标产量配方法 目标产量配方法是根据作物产量的构成,由土壤和肥料两个方面供给养分原理来计算施肥量。目标产量确定以后,计算作为需要吸收多少养分来施用肥料。目前有以下两种方法: 1、养分平衡法

科学测土配方施肥技术

科学测土配方施肥技术 发表时间:2009-09-28T10:59:13.373Z 来源:《农民致富之友》2009年第1期供稿作者:郭炬[导读] 这一技术的推广应用,标志着我国农业生产中科学计量施肥的开始。 一、科学测土配方施肥是我国施肥技术的一项重大改革 这一技术的推广应用,标志着我国农业生产中科学计量施肥的开始。 二、科学测土配方的作用意义 1.是提高化肥利用率的主要途径。我国目前化肥利用率比较低,平均只有30%,氮肥20%~45%,磷肥10%~25%,钾肥25%~45%。主要原因是施肥量、施肥比例不合理。通过配方施肥可以合理的确定施肥量,有效提高化肥利用率。 2.推广应用测土配方施肥,可以节约成本,增加效益。化肥这种生产资、料占农业总投入的50%,合理各种肥料的比例,可达到增产作用。 3.测土配方施肥效益明显,表现明显的增产作用。首先是调肥增产,不增加化肥量,仅调节氮磷钾就可增产:减肥增产,在高肥高产地区,减少化肥用量而达到一样增产或平产效果;增肥增产,发现缺的,多施可增加产量。 4.合理配方施肥还可培肥地力,保护生态,协调养分,防止病害,可对有效肥力合理应用分配。 三、测土配方施肥的理论依据 以前的错误观念是多施肥就有高产出,实际上施肥不合理反而会造成植株倒伏,籽粒不饱,这叫高成本低收入。现在的科学施肥理念必须掌握以下原则: 1.最大与最小的施肥原则。如果不计划成本,盲目施肥,会造成最大施肥量获得最小收入。近代科学施肥提出,要以最小的投入获得最大的经济效益,其理论依据是最小养分率,包括三个方面的内容:其一,作物产量是由土壤中最小养分决定的,所以必须合理增加;其二,最小养分增加到能满足,作物需要时,就不再是最小养分了;其三,如果不是最小养分,多施也无益。 2.递增与递减的施肥原则。刚开始施肥时,产量是递增的,到增产一定程度后,产量会减少,每一单位肥料报酬递减率是客观存在的,我们要承认这一点。 3.按作物营养特性的施肥原则。什么作物,什么时期需什么肥,这是有一定科学道理的。同一作物在不同生长发育时期对外界营养要求不同,同一作物不同品种,不同作物所需比例也不同。比如,禾谷类,所需氮、磷多,钾次之,所以供给合理的氮磷是增产的关键;豆类虽说对氮的需要量大些,但其根瘤有固氮作用,可以满足50%的量,因此应以农家肥等含磷的多施,再施钾肥,少施氮肥;叶类蔬菜,所需钾肥、氮肥较多,应把农家肥、灰土粪、工业钾肥多分给块根、块茎类和蔬菜;另外耐肥作物只-有栽培在水肥充足条件下,才能生长良好,获得高产,不耐肥的水肥充足反而会有不良后果。 四、土壤养分测定要注意的事项 1.土样的采集处理。所采土样要有代表性,否则分析化验配方施肥就没有意义了。采样时要尽量减小误差。要根据作物长相,地的肥力水平,而且面积不要过大,以不超过3公顷为宜。大致有三种方法,一是对角线采样法,适用于1公顷以下,地势平,肥力均匀的地块,采取10个点;二是棋盘式采样法,适用于面积中等,大约1~2公顷,有肥力差别的地块,采10~15个点;三是蛇形式,适用于面积大,约2~3公顷,肥力不均,地势不平的地块,采15~20个点。然后各自把所采土样混在一起,作为一个混合样,捏碎,拣掉植株残体,充分拌匀,用四分法筛选,直到剩0.25~0.5千克,然后装袋,放上标签,标签上要写明采样名称、日期、地点、采样人等。 2.分析化验的项目。氮磷钾是作物所需的主要营养成分,对这三种营养成分测定含量是有必要的。土壤肥力状况不仅取决于养分的含量,还取决于养分存在的形态。有的形态,可直接利用,称速效养分,有的形态不可直接利用,称迟效养分。 五、配方施肥方案的制定 配方施肥是科学性很强的一项技术,涉及到土壤,肥料,环境条件的各个方面。其方案的制定有以下几个方法: 1.地力分区法,也叫地区分析法,把测试结果按土壤养分含量划分三级,即丰、中、缺,并结合群众实践经验,计算这一级别区域内所需的营养成分,措施接近当地经验,有一定的针对性。 2.应用养分平衡法公式计算施肥量的方法。 肥料施用量(千克/公顷)=目标产量×作物单位产量养分吸收量~土壤养分测定值(毫克/千克)×2.25×校正系数肥料中有效成分含量×肥料利用率。 六、大力开展推广科学配方施肥技术,配方施肥是一项科学性强,技术要求高的施肥方法,要抓好以下几个环节 1.划定好配方区,收集当地有关技术资料。 2.制定当地配方施肥的技术措施。 3.加强简化配方施肥技术,将要点制成配方施肥建议卡,群众易接受。 4.推广、示范、实验相结合,让群众眼见为实,要多实验,改善施肥技术,优化施肥方法。 5.搞好技术培训,做好各级培训工作。使村级技术员真正掌握技术,做到懂配方,会用配方。(作者单位:151600 黑龙江省青冈县德胜乡农牧业综合服务中心)

测土配方施肥的概念及意义

测土配方施肥的概念及意义 一、测土配方施肥的概念 根据农业部制定的测土配方施肥规范,测土配方施肥是以肥料田间试验和土壤测试为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用品种、数量、施用时期和施用方法。 二、测土配方施肥的意义 1、提高作物产量,保证粮食生产安全 通过土壤养分测定,根据作物需要,正确确定施用肥料的种类和用量,才能不断改善土壤营养状况,使作物获得持续稳定的增产,从而保证粮食生产安全。 2、降低农业生产成本,增加农民收入; 肥料在农业生产资料的投入中约占50%,但是施入土壤的化学肥料大部分不能补作物吸收,未被作物吸收利用的肥料,在土壤中发生挥发、淋溶,被土壤固定。因此提高肥料利用率,减少肥料的浪费,对提高农业生产的效益至关重要。 3、节约资源,保证农业可持续发展; 采用测土配方施肥技术,提高肥料的利用率是构建节约型社会的具体体现。据测算,如果氮肥利用率提高10%,则可以节约2.5亿立方米的天然气或节约375万吨的原煤。在能源和资源极其紧缺的时代,进行测土配方施肥具有非常重要的现实意义。

4、减少污染,保护农业生态环境。 不合理的施肥会造成肥料的大量浪费,浪费的肥料必然进入环境中,造成大量原料和能源的浪费,破坏生态环境,如氮、磷的大量流失可造成大体的富养分化。所以,使施入土壤中的化学肥料尽可能多的被作物吸收,尽可能减少在环境中滞留,对保护农业生态环境也是有益的。 测土配方施肥是以土壤测试和肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用数量、施肥时期和施用方法。通俗地讲就是在技术人员的指导下科学地配方施用肥料。测土配方施肥技术核心是调节和解决作物需肥与土壤供肥之间的矛盾。同时有针对性地补充作物所需的营养元素,作物缺什么元素补什么元素,需多少补多少,实现各种养分平衡供应,满足作物的需要。 开展测土配方施肥工作,对于提高作物产量、降低成本、提高肥料利用率、保持农业生态环境、保证农产品安全,实现农业可持续发展都具有深远的影响和意义。

相关文档
最新文档