基于MATLAB的模拟线性调制

基于MATLAB的模拟线性调制
基于MATLAB的模拟线性调制

基于MATLAB 的模拟调制实验报告

一、实验目的

1.进一步学习调制的知识,掌握调频与调角两种模拟调制技术。

2.进一步学习MATLAB 的编程,熟练使用MATLAB 进行作图。

二、实验原理

1.调制的概念

调制(modulation )就是对信号源的信息进行处理加到载波上,使其变为适 合 于信道传输的形式的过程,是使载波随信号而改变的技术。

一般,用来传送消息的信号()t u c 叫作载波或受调信号,代表所欲传送消息的信

号叫作调制信号,调制后的信号()t u 叫作已调信号。用调制信号()t u Ω控制载波的某些参数,使之随()t u Ω而变化,就可实现调制。

2.调制的目的 频谱变换

当所要传送的信号的频率或者太低,或者频带很宽,对直接采用电磁波的形 式进行发送很不利,需要的天线尺寸很大,而且发射和接受短的天线与谐振回路的参数变化范围很大。为了信息有效与可靠传输,往往需要将低频信号的基带频谱搬移到适当的或指定的频段。这样可以提高传输性能,以较小的发送功率与较短的天线来辐射电磁波。 实现信道复用

为了使多个用户的信号共同利用同一个有较大带宽的信道,可以采用各种复用技术。如模拟电话长途传输是通过利用不同频率的载波进行调制。将各用户话音每隔4 kHz 搬移到高频段进行传输。 提高抗干扰能力

不同的调制方式,在提高传输的有效性和可靠性方面各有优势。如调频广播系统,它采用的频率调制技术,付出多倍带宽的代价,由于抗干扰性能强,其音质比只占10 kHz 带宽的调幅广播要好得多。扩频通信就是以大大扩展信号传输带宽,以达到有效抗拒外部干扰和短波信道多径衰落的特殊调制方式。

3.调制的种类

根据()t u Ω和()t u c 的不同类型和完成调制功能的调制器传递函数不同,调制分为以下多种方式: (1).按调制信号()t u Ω的类型分为:

● 模拟调制:调制信号()t u Ω是连续变化的模拟量,如话音与图像信号。 ● 数字调制:调制信号是数字化编码符号或脉冲编码波形。

(2).按载波信号()t u c 的类型分:

● 连续波调制:载波信号为连续波形,通常以正弦波作为载波。

● 脉冲调制:载波信号是脉冲波形序列。

(3).按调制器的不同功能分:

● 幅度调制:以调制信号去控制载波的幅度变化,如模拟调幅,脉冲幅度调制

(PAM ),幅移键控(ASK )。

● 频率调制:以调制信号去控制载波信号的频率变化,如模拟调频(FM ),频

移键控(FSK ),脉宽调制(PDM )。

● 相位调制:以调制信号去控制载波信号的相位变化,如模拟调相(PM ),相

移键控(PSK ),脉位调制(PPM )。 (4).按调制器的传输函数分:

● 线性调制:已调信号的频谱与调制信号频谱是线性的频谱位移关系。如各种

幅度调制,幅移键控(ASK )。 ● 非线性调制:已调信号的频谱与调制信号频谱没有线性关系,即调制后派生出大量不同于调制信号的新的频率成份。如调频(FM ),调相(PM ),频移键控(FSK )。

三、实验过程

这次实验主要利用MATLAB 实现幅度调制与角度调制。 1.幅度调制原理 AM 调制

AM 是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。如图1所示。

图1

调制信号()t m 叠加直流0A

后再与载波相乘,则输出的信号就是常规双边带(AM )调幅波。其时域表达式为:

0()[()]*cos AM c S t A m t t ω=+

AM 信号波形的包络与输入基带信号()t m 成正比,故用包络检波的方法很容易恢复原始调制信号。但为了保证包络检波时不发生失真,必须满足()m a x 0t m A ≥,否则将出现过调幅现象而带来失真。AM 信号的频谱是由载频分量和上、下两个边带组成。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。AM 信号是带有载波的双边带信号,它的带宽信号带宽的两倍2AM H B f =。

下面利用matlab 实现AM 的调制。为方便观察,令输入信号为单一正弦波信号。

-----------------AM调制输出信号和频谱---------------------- dt=0.0001; %时间采样频率

fH=10; %调制信号最高频率

fc=1000; %载波中心频率

T=0.2; %信号时长

N=T/dt;

t=[0:N-1]*dt;

mt=sqrt(2)*cos(2*pi*fH*t); %调制信号

A=2;

s_am=(A+mt).*cos(2*pi*fc*t);

[f,Xf]=FFT_SHIFT(t,s_am); %已调信号频谱

subplot(211);

plot(t,s_am);hold on; %画出AM信号波形

plot(t,A+mt,'r--'); %表示AM上包络

plot(t,-(A+mt),'r--'); %表示AM下包络

title('AM调制信号及其包络');

xlabel('时间t');

subplot(212); %画出AM波频谱

plot(f,abs(Xf));

axis([700 1300 0 max(Xf)]);

title('AM信号功率谱');

xlabel('频率f');

图2 结果分析:

从图2中频谱图可以看出,调幅过程实际就是频谱搬移,是一个线性过程。经调制后,调制信号的频谱被搬移到载频附近,成为下边频(带)和下边频(带)。信号功率正比于频谱的平方,所以可以看出载波信号的功率占整个调幅波功率的绝大部分。

同样由公式计算可以得到

2

(1)

2a O OT m P P =+

其中,OT P 为载波功率。

所以在发送中,我们可以只发送上、下边带,此时为DSB 调制;只发送上边带或者下边带,此时为SSB 。

DSB 调制

在幅度调制的一般模型中,若假设滤波器为全通网络(=1),,调制信号m(t)中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC )调制信号,简称双边带(DSB )信号。DSB 调制器模型如下图3所示。

t

c ωcos )

(t m )(t s DSB ×

图3-7 D SB 调制器模型

图3

下面利用matlab实现DSB的调制。为方便观察,令输入信号为单一正弦波信号。

------------------DSB调制信号输出和频谱-------------------- dt=0.0001; %时间采样频率

fH=10; %调制信号最高频率

fc=1000; %载波中心频率

T=0.1; %信号时长

N=T/dt;

t=[0:N-1]*dt;

mt=sqrt(2)*cos(2*pi*fH*t); %调制信号

s_dsb=mt.*cos(2*pi*fc*t);

[f,sf]=FFT_SHIFT(t,s_dsb); %已调信号频谱

subplot(211)

plot(t,s_dsb);hold on; %画出DSB信号波形

plot(t,mt,'r--'); %标示mt波形

plot(t,-mt,'r--');

title('DSB调制信号及其包络');

xlabel('时间t');

subplot(212)

plot(f,PSD);

axis([750, 1250, 0 ,0.015]);

title('DSB信号频谱');

xlabel('频率f');

图4

结果分析:

从图4可以看出,DSB 信号时域图与频谱中不含有载波分量,仅有上下边带,发射功率大大降低。

SSB

由于DSB 信号的上、下两个边带是完全对称的,皆携带了调制信号的全部信息,因此,从信息传输的角度来考虑,仅传输其中一个边带就够了。用滤波法实现单边带调制的原理图如下图5所示

t

c ωcos )

(t m )

(t s SSB ×

图3-9 S SB信号的滤波法产生)

(ωSSB H

图5

下面利用matlab实现SSB的调制。为方便观察,令输入信号为单一正弦波信号。

------------------SSB调制信号输出和频谱-------------------- dt=0.0001; %时间采样频率

fH=10; %调制信号最高频率

fc=1000; %载波中心频率

T=0.1;

N=T/dt;

t=[0:N-1]*dt;

mt=sqrt(2)*cos(2*pi*fH*t); %调制信号

s_ssb=real(hilbert(mt).*exp(j*2*pi*fc*t));

[f,sf]=FFT_SHIFT(t,s_ssb); %单边带信号频谱

subplot(211)

plot(t,s_ssb);hold on; %画出SSB信号波形

plot(t,mt,'r--'); %标示mt 的包络

plot(t,-mt,'r--'); %标示mt 的包络

title('SSB调制信号');

xlabel('时间t');

subplot(212)

plot(f,abs(sf));

axis([750 1250 0 max(abs(sf))]);

title('SSB信号频谱');

xlabel('频率f');

图6 结果分析:

从图6的调制信号频谱可以看出,输出信号只有上(或者下)边带,大大减小了发射功率。而且SSB 信号频带可节约一半,这对于日益拥挤的短波波段(3—30MHz )来说有重大意义,因为这样就能在同一波段中,使所容纳的频道数目增加一倍,大大提高了短波波段的利用率。 总结:

在以上模拟线性调制中,AM 波发送信号的上下边带和载波,带宽为调信号的最大频率的两倍,发射功率较大;DSB 波只发送信号的上下边带,发射功率大大减小,但带宽仍然为调信号的最大频率的两倍;SSB 波只发送信号上边带或者下边带,带宽是AM 与DSB 波的一半。但是,在解调过程中,AM 波采用非相干解调(包络检波),电路十分简单,采用二极管检波电路就可以恢复出调制信号。

DSB 、SSB 需采用相干解调,电路较复杂。所以在广播通信中广泛采用AM 调制。

2.角度调制

在调制时,若载波的频率随调制信号变化,称为频率调制,简称调频;若载波的相位随调制信号变化,称为相位调制,简称调相。在这两种调制中,载波的

幅度保持恒定不变,而频率和相位的变化都表现为载波的瞬时相位变化,故把调频和调相统称为角度调制或调角。

调角的一般表达式为

()cos[()]m c s t A t t ω?=+

式中:A 为载波的恒定振幅,[()]c t t ω?+为信号的瞬时相位,极为()t θ;()t ?为相对于载波的相位c t ω的瞬时相位偏移;[()]/c d t t t ω?+是信号的瞬时角频率,记为()t ω;而()/d t t ?成为相对于载频c ω的瞬时频偏。

FM 调频

调频就是使瞬时频率偏移随调制信号()m t 成比例变化,即

()

()f d t K m t t ?=

f

K 为调制灵敏度。

所以频率调制的一般表达式为:

()cos[cos ()]

FM c f s t A t K m d ωττ=+?

根据调制后载波瞬时相位偏移的大小,可将频率调制分为宽带调频(WBFM )与窄带调频(NBFM )。宽带与窄带调制的区分并无严格的界限,但通常认为由调频所引起的最大瞬时相位偏移远小于30°时,即

max ()6f K m d π

ττ<<

? 称为窄带调频。否则,称为宽带调频。 宽带调频一般用直接调频法,框图如图7。

图 7 直接调频法

窄带调制一般使用间接间接调频法,框图如图8。

()()()FM m t dt PM S t →?→→? 图 8 间接调频法

为方便起见,无妨假设正弦载波的振幅A =1,则由调频信号的一般表达式,

()cos[()]

cos cos[()]sin sin[()]

t

FM c F t t

c F c F S t t K m t

d t K m d K m d -∞

-∞

-∞

=ω+τ=ωττ-ωττ???

通过化解,利用傅立叶变化公式可得NBFM 信号的频域表达式:

在NBFM 中,由于下边频为负,因而合成矢量不与载波同相,而是存在相位

偏移,当最大相位偏移满足式时,合成矢量的幅度基本不变,这样就形成了FM 信号。

图9 NBFM 信号频谱

根据卡森公式

2()FM m B f f =?+

所以,在宽带调频中,2FM B f =? 在窄带调皮中,2FM H B f =

下面利用matlab 实现FM 的调制。

--------------------FM 调制信号输出和频谱------------------- t0=0.2; %信号的持续时间,用来定义时间向量 ts=0.001; %抽样间隔 fs=1/ts; %抽样频率

fc=300; %载波频率,fc 可以任意改变 t=[-t0/2:ts:t0/2]; %时间向量 kf=100; %偏差常数

df=0.25; %所需的频率分辨率,用在求傅里叶变换时,它表示

%FFT 的最小频率间隔

m=sin(100*t); %调制信号,m(t)可以任意更改int_m(1)=0; %求信号m(t)的积分

for i=1:length(t)-1

int_m(i+1)=int_m(i)+m(i)*ts;

end

[M,m,df1]=fftseq(m,ts,df); %对调制信号m(t)求傅里叶变换M=M/fs; %缩放,便于在频谱图上整体观察f=[0:df1:df1*(length(m)-1)]-fs/2; %时间向量对应的频率向量u=cos(2*pi*fc*t+2*pi*kf*int_m); %调制后的信号[U,u,df1]=fftseq(u,ts,df); %对调制后的信号u求傅里叶变换U=U/fs; %缩放

figure(1)

subplot(2,1,1) %子图形式显示结果

plot(t,m(1:length(t))) %现在的m信号是重新构建的信号

%因为在对m求傅里叶变换时

axis([-0.1 0.1 -1 1]) %定义两轴的刻度

xlabel('时间t')

title('原调制信号的时域图')

subplot(2,1,2)

plot(t,u(1:length(t)))

axis([-0.1 0.1 -1 1])

xlabel('时间t')

title('已调信号的时域图')

figure(2)

subplot(2,1,1)

plot(f,abs(fftshift(M)))%fftshift:将FFT中的DC分量移到频谱中心axis([-600 600 0 0.04])

xlabel('频率f')

title('原调制信号的频谱图')

subplot(2,1,2)

plot(f,abs(fftshift(U)))

axis([-600 600 0 0.04])

xlabel('频率f')

title('已调信号的频谱图')

function [M,m,df]=fftseq(m,ts,df)

fs=1/ts;

if nargin==2 n1=0; %nargin为输入参量的个数

else n1=fs/df;

end

n2=length(m);

n=2^(max(nextpow2(n1),nextpow2(n2))); %nextpow2(n)取n最接

近的较大2次幂M=fft(m,n); %M为信号m的傅里叶变换,n为快速傅

里叶变换的点数,及基n-FFT变换m=[m,zeros(1,n-n2)]; %构建新的m信号df=fs/n;

图10

图11

结果分析:

从图10已调信号的时域图中可以看出载波的频率随着调制信号的改变而改变,幅度不发生变化。从图11频谱图中可以得出,已调信号的带宽明显大于调制信号最高频率的两倍,并且产生了很多新的频率分量,是一种非线性调制。从频谱的幅值大小还可以看出,载波频谱的幅值明显大于已调波频谱的幅值,实际上,调频实现了载波的能量的搬移。

PM 调制

在模拟调制中,当幅度和频率保持不变时,改变载波的相位使之随未调信号的大小而改变,这就是调相。

设高频载波为u c =U cm cos ωc t ,调制信号为U Ω(t),则调相信号的瞬时相位 φ(t)=ωct +K p U Ω(t)

瞬时角频率 ω(t)=dt

(t)d =ωc +K p dt

)t (du Ω

调相信号 u PM =U cm cos [ωc t+K p u Ω(t)]

将信号的信息加在载波的相位上则形成调相信号,调相的表达式为: S PM (t)=Acos[ωC t+K PM f(t)+φ0]

这里K PM 称为相移指数,这种调制方式,载波的幅度和角频率不变,而瞬时相位偏移是调制信号f(t)的线性函数,称为相位调制。

调相与调频有着相当密切的关系,我们知道相位与频率有如下关系式:

ω=dt

t d )( =ωC +K PM f(t) φ(t)=?=dt ωC t+K PM dt t ?)(f

所以在调相时可以先将调制信号进行微分后在进行频率调制,这样等效于调相,

此方法称为间接调相,与此相对应,上述方法称为直接调相。调相信号的产生如图12所示:

图12 PM 调相信号的产生

实现相位调制的基本原理是使角频率为ωc 的高频载波u c (t)通过一个可控相移网络, 此网络产生的相移Δφ受调制电压u Ω(t)控制, 满足Δφ=K p u Ω(t)的关系。

下面利用matlab实现PM的调制。

-------------------PM调制信号输出和频---------------------- t0=0.2; %信号的持续时间,用来定义时间向量ts=0.0001; %抽样间隔

fs=1/ts; %抽样频率

fc=300; %载波频率,fc可以任意改变

t=[-t0/2:ts:t0/2]; %时间向量

kf=100; %偏差常数

df=0.25; %所需的频率分辨率,用在求傅里叶变换

时,它表示FFT的最小频率间隔m=sin(100*t); %调制信号,m(t)可以任意更改

int_m(1)=0; %求信号m(t)的积分

for i=1:length(t)-1

int_m(i+1)=int_m(i)+m(i)*ts;

end

[M,m,df1]=fftseq(m,ts,df); %对调制信号m(t)求傅里叶变换M=M/fs; %缩放,便于在频谱图上整体观察f=[0:df1:df1*(length(m)-1)]-fs/2; %时间向量对应的频率向量

u=cos(2*pi*fc*t+2*pi*kf*int_m); %调制后的信号

[U,u,df1]=fftseq(u,ts,df); %对调制后的信号u求傅里叶变换U=U/fs; %缩放

%通过调用子程序env_phas和loweq来实现解调功能

[v,phase]=env_phas(u,ts,fc); %解调,求出u的相位

phi=unwrap(phase); %校正相位角,使相位在整体上连续,便于%

后面对该相位角求导dem=(1/(2*pi*kf))*(diff(phi)*fs); %对校正后的相位求导

%再经一些线性变换来恢复原调制信号

%乘以fs是为了恢复原信号,因为前面使用了缩放figure(1)

subplot(2,1,1) %子图形式显示结果

plot(t,m(1:length(t))) %现在的m信号是重新构建的信号axis([-0.1 0.1 -1 1]) %定义两轴的刻度

xlabel('时间t')

title('原调制信号的时域图')

subplot(2,1,2)

plot(t,u(1:length(t)))

axis([-0.1 0.1 -1.5 1.5])

xlabel('时间t')

title('已调信号的时域图')

figure(2)

subplot(2,1,1)

plot(f,abs(fftshift(M)) %fftshift:将FFT中的DC分量移到频谱中心axis([-600 600 0 0.1])

xlabel('频率f')

title('原调制信号的频谱图')

subplot(2,1,2)

plot(f,abs(fftshift(U)))

axis([0 600 0 0.05])

xlabel('频率f')

title('已调信号的频谱图')

图13

图14

结果分析:

从图15已调信号的时域图中可以看出载波的频率随着调制信号的改变而改变,幅度不发生变化。从图16频谱图中可以得出,已调信号的带宽明显大于调制信号最高频率的两倍,并且产生了很多新的频率分量,是一种非线性调制。总结:

调频与调相的比较

FM、PM很相似,都是一种非线性调制,产生了新的频率分量,带宽明显增大。调频与调相还是有区别的,从公式可以看出,调频波的额最大频移与调制频率无关,最大相移与调制频率成反比,调相波的最大频移与调制频率成正比,最大相移则与调制频率无关。这是两种调制的根本区别。正是由于这一点,调频波的频谱宽度对于不同的调制频率几乎维持恒定,调相波的频谱宽度则随着调制频率的不同而剧烈变化,所以一般使用调频广播,而不使用调相广播。

调幅与调频的比较

调幅和调频在无线电中是最常见的,调幅是使高频载波的频率随信号改变的调制(AM)。其中,载波信号的振幅随着调制信号的某种特征的变换而变化。调频是使载波频率按照调制信号改变的调制(FM)。调幅波的幅度受外界的影响较大,所以抗干扰性能差,而调频波的调制信号幅度不会受外界的影响,抗干扰性能好;调频波的频带宽度比调幅波的频带宽度大得多,调频波是以牺牲带宽来提高信噪比的;由于调频波比调幅波频带宽,所以也带来选择性的问题,所以不适合在射频的低频段使用,往往使用100M左右的波段;发射总功率中,边频功率为传送调制信号的有效功率,而边频功率与调制系数有关,调制系数大,边频功率大。由于调频系数mf大于调幅系数ma,所以,调频制的功率利用率比调幅制高。

四、实验总结

通过这一次实验,我进一步巩固了以前所学的模拟调制的知识以及现在正在学习的知识。温故而知新,这次实验中,通过仿真,查阅资料,我还了解了许多应用的知识,增长我的见识,扩大了我的知识面。更加深入地去学习了很多关于专业的知识,以前每次学这些知识时,总是不知道这些东西具体拿来有什么用,现在才知道,几个短短输入信号,在有了一个简单的电路流程后,就能仿真成我们生活中很多常见的东西。在Matlab的使用中,我深深地感受要其功能的强大,并增强了我进一步学好matlab的信念。

五、参考文献

[1] 樊昌信. 通信原理(第6版).国防工业出版社,2006,09

[2] 黎洪松. 数字通信原理.西安电子系科技大学出版社,2005,07

[3] 任嘉伟. 数字频带通信系统计算机仿真[J].电脑知识与技术,2008,07

[4] 吕跃广通信系统仿真.电子工业出版社,2010.03

[5] 席在芳等基于SIMULINK 的现代通信系统仿真分析[J].系统仿真学报2006,18(10)

.

线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告 1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具 有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。 (1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控; 判断能控程序设计如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; Qc=ctrb(A,B) Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 Rc=rank(Qc) Rc =2 Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。 (2)求取状态反馈器中的K,设的期望特征根为-7,-9; 其设计程序如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; P=[-7 -9]; k=place(A,B,P) k = 1.0e+003 * -0.0200 9.0000 0.0072 -0.4500 程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。

基于Matlab的FM仿真实现

摘要 本次设计主要是以Matlab为基础平台,对FM信号进行仿真。介绍了FM信号,及其调制和解调的基本原理,并设计M文件,分析在混入噪声环境下的波形失真,以及分析FM的抗噪声性能。本设计的主要目的是对Matlab的熟悉和对模拟通信理论的更深化理解。 关键词:Matlab;FM;噪声

前言 (2) 1 设计基础 (3) 1.1 Matlab及M文件的简介 (3) 1.2模拟调制概述 (4) 1.2.1模拟调制系统各个环节分析 (5) 1.2.2 模拟调制的意义 (6) 2 FM基本原理与实现 (7) 2.1 FM的基本原理 (7) 2.1.1调制 (7) 2.1.2解调 (8) 2.2 FM的实现 (8) 2.2.1 FM调制的实现 (8) 2.2.2 FM解调的实现 (9) 2.3 调频系统的抗噪声性能 (10) 2.3.1 高斯白噪声信道特性 (10) 3 FM的仿真实现与分析 (14) 3.1 未加噪声的FM解调实现 (14) 3.2 叠加噪声时的 FM解调 (16) 总结 (20) 致谢 (21) 参考文献 (22) 附录 (23)

通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的命脉。信息作为一种资源,只有通过广泛传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术、计算机技术相融合,已成为21世纪国际社会和世界经济发展的强大动力。可以预见,未来的通信对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 在通信系统中,从消息变换过来的原始信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这种信号直接在信道中进行传输,则会严重影响信息传送的有效性和可靠性,因此这种信号在许多信道中均是不适宜直接进行传输的。在通信系统的发射端通常需要有调制过程,将调制信号的频谱搬移到所希望的位置上,使之转换成适于信道传输或便于信道多路复用的已调信号;而在接收端则需要有解调过程,以恢复原来有用的信号。调制解调方式常常决定了一个通信系统的性能。随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调过程。 调制在通信系统中具有重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输可靠性有着很大的影响。调制方式往往决定了一个通信系统的性能。调制技术是指把基带信号变换成传输信号的技术。基带信号是原始的电信号,一般是指基本的信号波形,在数字通信中则指相应的电脉冲。在无线遥测遥控系统和无线电技术中调制就是用基带信号控制高频载波的参数(振幅、频率和相位),使这些参数随基带信号变化。用来控制高频载波参数的基带信号称为调制信号。未调制的高频电振荡称为载波(可以是正弦波,也可以是非正弦波,如方波、脉冲序列等)。被调制信号调制过的高频电振荡称为已调波或已调信号。已调信号通过信道传送到接收端,在接收端经解调后恢复成原始基带信号。

线性系统理论大作业

目录 题目一 (2) (一)状态反馈加积分器校正的输出反馈系统设计 (2) (1)建立被控对象的状态空间模型,并判断系统性质 (2) (2)状态反馈增益矩阵和积分增益常数的设计 (4) (3)全维观测器设计 (6) (4)如何在闭环调速系统中增加限流环节 (8) (二)二次型最优全状态反馈控制和按负载扰动前馈补偿的复合控制系统设计 (8) (1)线性二次型最优全状态反馈设计 (8) (2)降维观测器设计 (13) 题目二 (15) (1)判断系统是否存在最优控制律 (15) (2)非零给定点的最优控制设计和仿真分析 (16) (3)权矩阵的各权值对动态性能影响分析 (17)

题目一 (一)状态反馈加积分器校正的输出反馈系统设计 (1)建立被控对象的状态空间模型,并判断系统性质 1)画出与题目对应的模拟结构图,如图1所示: 图1原始系统结构图 取状态变量为1x =n ,2x =d I ,3x =d u ,控制输入u=c u 1222212333375375111 T L e la la la s s s C x x T GD GD C x x x x RT T RT K x x u T T ?=-???=--+???=-+?? 将已知参数代人并设输出y=n=1x ,得被控对象的状态空间表达式为 L x Ax Bu ET y Cx =++= 其中,2 37500039.768011=-3.696-17.85727.05600-588.2351 00 T e la la la s C GD C A RT T RT T ???? ? ???????=- -?????? ??????-??? ? ,

基于MATLAB的模拟调制系统仿真与测试(AM调制)

闽江学院 《通信原理设计报告》 题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系 专业:12通信工程 组长:曾锴(3121102220) 组员:薛兰兰(3121102236) 项施旭(3121102222) 施敏(3121102121) 杨帆(3121102106) 冯铭坚(3121102230) 叶少群(3121102203) 张浩(3121102226) 指导教师:余根坚 日期:2014年12月29日——2015年1月4日

摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。 在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。 关键词模拟调制;仿真;Simulink 目录 第一章绪论 (1) 1.1 引言 (1) 1.2 关键技术 (1) 1.3 研究目的及意义 (2) 1.4 本文工作及内容安排 (2) 第二章模拟调制原理 (3) 2.1 幅度调制原理 (3) 2.1.1 AM调制 (4) 第三章基于Simulink的模拟调制系统仿真与分析 (6) 3.1 Simulink工具箱简介 (6) 3.2 幅度调制解调仿真与分析 (8) 3.2.1 AM调制解调仿真及分析 (8) 第四章总结 (12) 4.1 代码 (13) 4.2 总结 (14)

线性系统理论Matlab实践仿真报告指南

线性系统理论实验报告 学院:电信学院 姓名:邵昌娟 学号:152085270006 专业:电气工程

线性系统理论Matlab实验报告 1、由分析可知系统的状态空间描述,因系统综合实质上是通过引入适当状态反馈矩阵K,使得闭环系统的特征值均位于复平面S的期望位置。而只有当特征根均位于S的左半平面时系统稳定。故当特征根是正数时系统不稳定,设计无意义。所以设满足题目中所需要求的系统的期望特征根分别为λ1*=-2,λ2*=-4。 (a) 判断系统的能控性,即得系统的能控性判别矩阵Q c,然后判断rankQ c,若rank Q c =n=2则可得系统可控;利用Matlab判断系统可控性的程序如图1(a)所示。由程序运行结果可知:rank Q c =n=2,故系统完全可控,可对其进行状态反馈设计。 (b) 求状态反馈器中的反馈矩阵K,因设系统的期望特征根分别为λ1*=-2,λ2*=-4;所以利用Matlab求反馈矩阵K的程序如图1(b)所示。由程序运行结果可知:K即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 图1(a) 系统的能控性图1(b) 状态反馈矩阵 2、(a) 求系统的能控型矩阵Q c,验证若rank Q c

基于MATLAB的模拟信号频率调制(FM)与解调分析

课程设计任务书 学生姓名:杨刚专业班级:电信1302 指导教师:工作单位:武汉理工大学 题目:信号分析处理课程设计 -基于MATLAB的模拟信号频率调制(FM)与解调分析 初始条件: 1.Matlab6.5以上版本软件; 2.先修课程:通信原理等; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观 察波形变化 2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结 果和图表等),并对实验结果进行分析和总结; 3、课程设计说明书按学校统一规范来撰写,具体包括: ⑴目录;⑵理论分析; ⑶程序设计;⑷程序运行结果及图表分析和总结; ⑸课程设计的心得体会(至少800字,必须手写。); ⑹参考文献(不少于5篇)。 时间安排: 周一、周二查阅资料,了解设计内容; 周三、周四程序设计,上机调试程序; 周五、整理实验结果,撰写课程设计说明书。 指导教师签名: 2013 年 7月 2 日 系主任(或责任教师)签名: 2013年 7月 2日

目录 1 Simulink简介 (1) 1.1 Matlab简介······················································错误!未定义书签。 1.2 Simulink介绍 ···················································错误!未定义书签。 2 原理分析 ·····························································错误!未定义书签。 2.1通信系统 ·························································错误!未定义书签。 2.1.1通信系统的一般模型 ···································错误!未定义书签。 2.1.2 模拟通信系统 (3) 2.2 FM调制与解调原理···········································错误!未定义书签。 3 基于Matlab方案设计 (6) 3.1 Matlab代码 (6) 3.2 Matlab仿真 (8) 4 基于Simulink方案设计 (12) 4.1 使用Simulink建模和仿真的过程 (12) 4.1.1 Simulink模块库简介 (12) 4.1.2 调制解调模块库简介 (13) 4.2 FM调制与解调电路及仿真 (14) 4.3 仿真结果分析 (17) 5 心得体会 ·····························································错误!未定义书签。 6 参考文献 (20) 本科生课程设计评定表

线性系统理论

Linear Systems Theory: A Structural Decomposition Approach 线性系统理论: 结构分解法 Ben M. Chen (陈本美) 新加坡国立大学 Zongli Lin(林宗利) 美国弗吉尼亚大学 Yacov Shamash (雅科夫 司马诩) 美国纽约州立大学石溪分校

此书献给我们的家人 前两位作者谨以这中译版献给他们的母校 厦门大学

目录 绪论 1 导论和预览 1.1 背景 1.2 各章预览 1.3 符号和术语 2 数学基础 2.1 导论 2.2 矢量空间和子空间 2.3 矩阵代数和特性 2.3.1 行列式、逆和求导 2.3.2 秩、特征值和约当型 2.3.3 特殊矩阵 2.3.4 奇异值分解 2.4 范数 2.4.1 矢量范数 2.4.2矩阵范数 2.4.3 连续时间信号范数 2.4.4 离散时间信号范数 2.4.5 连续时间系统范数 2.4.6 离散时间系统范数 3 线性系统理论复习 3.1 导论 3.2 动态响应 3.3 系统稳定性 3.4 可控性和可观性 3.5 系统可逆性 3.6 常态秩、有限零点和无限零点3.7 几何子空间 3.8 状态反馈和输出馈入的特性3.9 练习

4 无驱动和/或无检测系统的分解 4.1 导论 4.2 自治系统 4.3 无驱动系统 4.4 无检测系统 4.5 练习 5. 正则系统的分解 5.1 导论 5.2 SISO系统 5.3 严格正则系统 5.4 非严格正则系统 5.5 结构化分解特性的证明 5.6 系统矩阵的Kronecker型和Smith型5.7 离散时间系统 5.8 练习 6 奇异系统的分解 6.1 导论 6.2 SISO奇异系统 6.3 MIMO描述系统 6.4 定理6.3.1的证明和性质 6.5 离散时间奇异系统 6.6 练习 7 双线性变换的结构化映射 7.1 导论 7.2 连续到离散时间系统的映射 7.3 离散时间到连续时间系统的映射7.4 定理7.2.1的证明 7.5 练习 8 系统因子分解 8.1 导论 8.2 严格正则系统 8.3 非严格正则系统 8.4 离散时间系统 8.5 练习 9 通过选择传感器/执行器实现的结构配置9.1 导论 9.2 同时有限和无限零点结构配置 9.2.1 SISO系统 9.2.2 MIMO系统

基于MATLAB模拟调制系统的仿真设计

1 线性模拟调制 1.1模拟调制原理 模拟调制是指用来自信源的基带模拟信号去调制某个载波,而载波是一个确知的周期性波形。模拟调制可分为线性调制和非线性调制,本文主要研究线性调制。 线性调制的原理模型如图1.1所示。设c(t)=Acos2t f o π,调制信号为m(t),已调信号为s(t)。 图1.1 线性调制的远离模型 调制信号m(t)和载波在乘法器中相乘的结果为:t A t m t s w o cos )()('=,然后通过一个传输函数为H(f)的带通滤波器,得出已调信号为。 从图1.1中可得已调信号的时域和频域表达式为: (1-1) 式(1-1)中,M(f)为调制信号m(t)的频谱。 由于调制信号m(t)和乘法器输出信号之间是线性关系,所以成为线性调制。带通滤波器H(f)可以有不同的设计,从而得到不同的调制种类。 1.2双边带调制DSB 的基本原理 在幅度调制的一般模型中,若假设滤波器为全通网络,调制信号m(t)中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB )调制信号,简称双边带(DSB )信号。 设正弦型载波c(t)=Acos( t) ,式中:A 为载波幅度, 为载波角频率。 根据调制定义,幅度调制信号(已调信号)一般可表示为: (t)=Am(t)cos(t) (1-2) ?? ???-++==) ()]()([21)()(*]cos )([)(f H f f M f f M f s t h t t m t s o o o w m(t) H(t) A os t w o c s(t) )(' t s

其中,m(t)为基带调制信号。 设调制信号m(t)的频谱为M(),则由公式2-2不难得到已调信号 (t)的频谱: )]()([2 )(c c m M M A s ωωωωω-++= (1-3) 由以上表示式可见,在波形上,幅度已调信号随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域的简单搬移。 标准振幅就是常规双边带调制,简称调幅(AM )。假设调制信号m(t)的平均值为0,将其叠加一个直流偏量 后与载波相乘,即可形成调幅信号。其时域表达式为: )cos())(()(0t t m t c AM A s ω+= (1-4) 式中: 为外加的直流分量;m(t)可以是确知信号,也可以是随机信号。 若为确知信号,则AM 信号的频谱为: (1-5) AM 信号的频谱由载频分量、上边带、下边带三部分组成。AM 信号的总功率包括载波功率和边带功率两部分。只有边带功率才与调制信号有关,也就是说,载波分量并不携带信息。因此,AM 信号的功率利用率比较低。 AM 调制器模型如下图所示。 图1.2 AM 调制器模型 AM 信号的时域和频域表达式分别为 (1-6) (1-7) 式中,A o 为外加的直流分量;m(t)可以是确知信号也可以是随机信号,但通常认为其平均值为0,即0)(=t m — 。 由频谱可以看出,AM 信号的频谱由载波分量、上边带、下边带三部分组成。上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。因此,AM 信号是带有载波 分量的双边带信号,他的带宽是基带信号带宽 的2倍,即 ) (cos )()(cos ) (cos )]([)(t w c t m t w c A t w c t m A o t s o AM +=+=)]()([2 1)]()([)(w c w M w c w M w c w w c w A o t s AM -+++-++=δδπ)] ()([2 1)]()([)(0 ω ω ω ω ωωωδωδπωc c c c m M M A s -+++-++=f H

实验一 模拟通信的MATLAB仿真

实验一 模拟通信的MATLAB 仿真 姓名:左立刚 学号:031040522 简要说明: 实验报告注意包括AM ,DSB ,SSB ,VSB ,FM 五种调制与解调方式的实验原理,程序流程图,程序运行波形图,simulink 仿真模型及波形,心得体会,最后在附录中给出了m 语言的源程序代码。 一.实验原理 1.幅度调制(AM ) 幅度调制(AM )是指用调制信号去控制高频载波的幅度,使其随调制信号呈线性变化的过程。AM 信号的数学模型如图3-1所示。 图2-1 AM 信号的数学模型 为了分析问题的方便,令 δ =0, 1.1 AM 信号的时域和频域表达式 ()t S AM =[A 0 +m ()t ]cos t c ω (2-1) ()t S AM =A 0 π[()()ωωωωδC C ++-]+()()[]ωωωωc c M M ++-2 1 (2-2)

AM 信号的带宽 2 =B AM f H (2-3) 式中, f H 为调制信号的最高频率。 2.1.3 AM 信号的功率P AM 与调制效率 η AM P AM =()222 2 t m A +=P P m c + (2-4) 式中,P C =2 A 为不携带信息的载波功率;()2 2 t m P m =为携带信息的边带 功率。 ()() t t m A m P P AM C AM 2 2 2+= = η (2-5) AM 调制的优点是可用包络检波法解调,不需要本地同步载波信号,设备简单。AM 调制的最大缺点是调制效率低。 2.2、双边带调制(DSB ) 如果将在AM 信号中载波抑制,只需在图3-1中将直流 A 0 去掉,即可输出 抑制载波双边带信号。 2.2.1 DSB 信号的时域和频域表达式 ()()t t m t c DSB S ωcos = (2-6) ()()()[]ωωωωωC C DSB M M S ++-=2 1 (2-7) DSB 信号的带宽 f B B H AM DSB 2 == (2-8)

线性系统极点配置和状态观测器基于设计(matlab) - 最新版本

一. 极点配置原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且: 这时,闭环系统的状态空间模型为: ()x A BK x Bv y Cx =-+?? =? 二. 状态观测器设计原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可观的,则可引入全维状态观测器,且: ??(y y)??x Ax Bu G y Cx ?=++-??=?? 设?x x x =-,闭环系统的状态空间模型为: ()x A GC x =- 解得: (A GC)t (0),t 0x e x -=≥ 由上式可以看出,在t 0≥所有时间内,如果(0)x =0,即状态估计值x 与x 相等。如果(0)0x ≠,两者初值不相等,但是()A GC -的所有特征值具有负实部,这样 x 就能渐进衰减至零,观测器的状态向量?x 就能够渐进地逼近实际状态向量x 。状态逼近的速度取决于G 的选择和A GC -的特征配置。 三. 状态观测的实现 为什么要输出y 和输入u 对系统状态x 进行重构。 u Kx v =-+

证明 输出方程对t 逐次求导,并将状态方程x Ax Bu =+代入整理,得 2(n 1)(n 2)(n 3)21n n y Cx y CBu CAx y CBu CABu CA x y CBu CABu CA Bu CA x -----=??-=??--=????----=? 将等号左边分别用z 的各分量12,, ,n z z z 表示,有 121(n 1)(n 2)(n 3) 2 n n n y C z y CBu CA z z y CBu CABu x Qx z CA y CBu CABu CA Bu -----?? ???????? -?? ????? ? ? ?????==--==?? ????????????????????----?? ? 如果系统完全能观,则 rankQ n = 即 1?(Q Q)T T x Q z -= (类似于最小二乘参数估计) 综上所述,构造一个新系统z ,它是以原系统的输出y 和输入u ,其输出经过变 换1(Q Q)T T Q -后得到状态向量?x 。也就是说系统完全能观,状态就能被系统的输入输出以及各阶倒数估计出来。 四. 实例 给定受控系统为 再指定期望的闭环极点为12,341,1,2i λλλ*** =-=-±=-,观测器的特征值为 12,33,32i λλ=-=-±,试设计一个观测器和一个状态反馈控制系统,并画出系统 的组成结构图。 []0100000101000100 05 021000x x u y x ???? ????-????=+????????-???? =

MATLAB仿真 BPSK调制

matlab BPSK 调制与解调 1、调制 clear all; g=[1 0 1 0 1 0 0 1];%基带信号 f=100; %载波频率 t=0:2*pi/99:2*pi; cp=[];sp=[]; mod=[];mod1=[];bit=[]; for n=1:length(g); if g(n)==0; die=-ones(1,100); %Modulante se=zeros(1,100); % else g(n)==1; die=ones(1,100); %Modulante se=ones(1,100); % end c=sin(f*t); cp=[cp die]; mod=[mod c]; bit=[bit se]; end bpsk=cp.*mod; subplot(2,1,1);plot(bit,'LineWidth',1.5);grid on; title('Binary Signal'); axis([0 100*length(g) -2.5 2.5]); subplot(2,1,2);plot(bpsk,'LineWidth',1.5);grid on; title('ASK modulation'); axis([0 100*length(g) -2.5 2.5]); 2、调制解调加噪声 clc; close all; clear; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % 假定:

% 2倍载波频率采样的bpsk信号 % 调制速率为在波频率的 N/2m % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m=128; N=512; n=1:1:N; N0=0.5*randn(1,N) %噪声 h0=zeros(1,N); % 30阶低通滤波器 h0 f = [0 0.3 0.3 1]; w0 = [1 1 0 0]; b = fir2(30,f,w0); [h,w] = freqz(b,1,N/2); h0(1,1:N/2)=abs(h'); for i=1:N/2 h0(1,N-i+1)=h0(1,i); end; %%%%%%%%% 随机序列 a=rand(1,m); for i=1:m if(a(1,i)>0.5) a(1,i)=1; else a(1,i)=-1; end; end; %%% 生成BPSK信号 bpsk_m=zeros(1,N); j=1;k=1; for i=1:N if(j==(N/m+1)) j=1; k=k+1; end; % 0.05*pi 为初始相位,可以任意改变 bpsk_m(1,i)=a(1,k)*sin(2*pi*0.5*i+0.05*pi)+a(1,k)*cos(2*pi*0.5*i+ 0.05*pi); j=j+1; end; bpsk_m=bpsk_m+N0;% 信号加噪声,模拟过信道 % 接收处理用正交本振与信号相乘,变频 bpsk_m1=bpsk_m.*sin(2*pi*0.5*n); bpsk_m2=bpsk_m.*cos(2*pi*0.5*n); %滤波 tempx=fft(bpsk_m1);

线性系统理论作业

《线性系统理论》 设计报告 专业: 学号: 姓名: 教师:

取状态变量为X=[U d,I d,n]T, 则系统的状态空间描述为:{X=AX+Bu+ET l Y=CX 其中A= [?1 T s 0 0 1 T la R ?1 T la ?C e T la R 0 375C T GD2 0] B=[ K s T S ]E=[ ?375 GD2 ] C=[0 0 1 ] 代入数据得:A=[?588.235 0 0 26.709 ?20.833 ?3.678 0 48.821 0 ]B=[ 23529.41 ] 通过matlab检测系统的能控能观性并求出系统的特征值: 对应的matlab程序如下: %原始系统能控能观性判断与特征值求解% A=[-588.235 0 0;26.709 -20.833 -3.678;0 48.821 0]; B=[23529.41 0 0]'; C=[0 0 1]; D=0; disp(eig(A)); % 计算并输出特征值 % sys1=ss(A,B,C,D); Qc=ctrb(A,B); %生成能控性判别矩阵% Qo=obsv(A,C); %生成能观性判别矩阵% if length(A)==rank(Qc) %系统能控性判别% disp('系统完全可控!'); else disp('系统不完全可控!'); end if length(A)==rank(Qo) %系统能观性判别% disp('系统完全可观!'); else disp('系统不完全可观!'); end 运行结果如下: 1.0e+002 * -0.104165000000000 + 0.084297191975771i -0.104165000000000 - 0.084297191975771i -5.882350000000000 系统完全可控! 系统完全可观! 系统特征值实部均为负,由此可知该系统为外部稳定的能控但不能观测系统,设负载转矩为0时,输入为阶跃信号,系统的simulink仿真如下:

matlabFM调制仿真

Matlab FM调制仿真

目录 引言.................................................................................. 一.课程设计的目的与要求 .............................................. 1.1课程设计的目的.................................................... 1.2课程设计的要求.................................................... 二.FM调制解调系统设计............................................... 2.1FM调制模型的建立............................................. 2.2调制过程分析........................................................ 2.3FM解调模型的建立............................................. 2.4解调过程分析........................................................ 2.5高斯白噪声信道特性 ............................................ 2.6调频系统的抗噪声性能分析 ................................ 三.仿真实现...................................................................... 3.1MATLAB源代码.................................................. 3.2仿真结果................................................................ 四.心得体会...................................................................... 五.参考文献...................................................................... 引言 本课程设计用于实现DSB信号的调制解调过程。信号的调制与解调在通信系统中具有重要的作用。调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位

线性系统理论MATLAB大作业.(DOC)

兰州理工大学2015级线性系统理论大作业 线性系统理论Matlab 实验报告 1、在造纸流程中,投料箱应该把纸浆流变成2cm 的射流,并均匀喷洒在网状传送带上。为此,要精确控制喷射速度和传送速度之间的比例关系。投料箱内的压力是需要控制的主要变量,它决定了纸浆的喷射速度。投料箱内的总压力是纸浆液压和另外灌注的气压之和。由压力控制的投料箱是个耦合系统,因此,我们很难用手工方法保证纸张的质量。 在特定的工作点上,将投料箱线性化,可以得到下面的状态空间模型: u x x ?? ????+??????-+-=0001.0105.0002.002.08.0. []21,x x y = 其中,系统的状态变量x1=液面高度,x2=压力,系统的控制变量u1=纸浆流量u2=气压阀门的开启量。在上述条件下,试设计合适的状态变量反馈控制器,使系统具有实特征根,且有一个根大于5 解:本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数时系统不稳定,这样的设计是无意义的,故而不妨采用状态反馈后的两个期望特征根为-7,-6,这样满足题目中所需的要求。要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控。 Matlab 判断该系统可控性和求取状态反馈矩阵K 的程序,如图1所示,同时求得加入状态反馈后的特征根并与原系统的特征根进行了对比。

图1系统能控性、状态反馈矩阵和特征根的分析程序上述程序的运行结果如图2所示: 图2系统能控性、反馈矩阵和特征根的运行结果

我的基于MATLAB仿真的数字调制与解调设计

摘要:设计了二进制振幅键控(2ASK)、二进制移频键控(2FSK) 、二进制移相键控(2PSK)调制解调系统的工作流程图,并得用了MATLAB软件对该系统的动态进行了模拟仿真,得用仿真的结果,从而衡量数字信号的传输质量。(仿宋、小五号) 关键词:调制解调、2ASK、2FSK、2PSK、2DPSK、MATLAB(宋体、小五号) ABSTRACT(四号加粗居中放置): The work stream diagrams of 2ASK、2FSK、2PSK are designed .MA TLAB softwave is used to simulate the modem system by the scatter diagrams and wave diagrams, then the transmit quality of digital signal can be measured.(小五号) Key word:Amodulate and ademodulate 、2ASK、2FSK、2PSK、2DPSK、MATLAB(小五号) (正文:宋体、五号 一级标题:黑体、四号,小标题上下空一行。) 一、数字调制解调相关原理 在通信系统中,信道的频段往往是很有限的,而原始的通信信号的频段与信道要求的频段是不匹配的,这就要求将原始信号进行调制再进行发送.相应的在接收端对调制的信号进行解调,恢复原始的信号,而且调制解调还可以在一定程度上抑制噪声对通信信号的干扰。 调制解调技术按照通信信号是模拟的还是数字的可分为模拟调制解调和数字调制解调。数字调制的基本方式可以归结为3类:振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。此外还有这3类的混合方式。 对于数字调制信号,为了提高系统的抗噪声性能,衡量系统性能的指标是误码率。1.1二进制振幅键控(2ASK) 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为: 其中: Ts是二进制基带信号时间间隔,g(t)是持续时间为Ts的矩形脉冲, 为单极性不归零脉冲序列,则根据幅度调制的原理,一个二进制的振幅键控信号可以表示成一个单极性矩形脉冲序列与一个正弦型载波的相乘,即 2ASK信号的时间波形如果是通断方式,就称为通断键控信号(OOK信号)。 二进制振幅键控信号的产生可以采用数字键控的方法实现也可以采用模拟相乘的方法实现。2ASK信号与模拟调制中的AM信号类似。所以,对2ASK信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图1.1所示。

1_用MATLAB处理线性系统数学模型

实验二 用MATLAB 处理线性系统数学模型 [说明] 一个控制系统主要由被控对象、测量装置、控制器和执行器四大部分构成。MATLAB 软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。采用MATLAB 软件仿真的关键问题之一是在MATLAB 软件平台上怎样正确表示被控对象的数学模型。 [实验目的] 1.了解MATLAB 软件的基本特点和功能; 2.掌握线性系统被控对象传递函数数学模型在MATLAB 环境下的表示方法及转换; 3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法; 4. 掌握在SIMULINK 环境下系统结构图的形成方法及整体传递函数的求取方法; 5.了解在MATLAB 环境下求取系统的输出时域表达式的方法。 [实验指导] 一、被控对象模型的建立 在线性系统理论中,一般常用的描述系统的数学模型形式有: (1)传递函数模型——有理多项式分式表达式 (2)传递函数模型——零极点增益表达式 (3)状态空间模型(系统的内部模型) 这些模型之间都有着内在的联系,可以相互进行转换。 1、传递函数模型——有理多项式分式表达式 设系统的传递函数模型为 111011 1......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++= =---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。 这时系统在MATLAB 中可以方便地由分子和分母各项系数构成的两个向量唯一地确定,这两个向量常用num 和den 表示。 num=[b m ,b m-1,…,b 1,b 0] den=[a n ,a n-1,…,a 1,a 0]

利用MATLAB仿真模拟调制系统

利用MATLAB仿真模拟调制系统 MATLAB的名称源自Matrix Laboratory,专门以矩阵形式处理数据,是目前国际上流行的进行科学研究、工程计算的软件,广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作中。MATLAB的出现使得通信系统的仿真能够用计算机模拟实现,只需要输入不同的参数就能得到不同情况下的系统性能,而且在结构的观测和数据的存储方面也比传统的方式有优势,因而MATLAB在通信仿真领域得到越来越多的应用。 本文中,我们对模拟调制系统、数字带通传输系统等列举了一些MATLAB仿真的实例,作为大家学习MATLAB的参考资料,让读者学会处理具体问题的建模编程方法,逐渐掌握MATLAB的通信系统仿真。 由本章的学习我们知道,各种信源所产生的基带信号并不能在大多数信道内直接传输,而是需要经调制后再送到信道中去。在接受端就必须通过相反的过程,即解调。本章中,我们以常规双边带调幅AM系统为例仿真模拟通信系统的各个过程。 我们假定信号频率为10Hz,载波频率为50Hz,采样率为1000Hz,信噪比SNR等于3。要求利用MATLAB软件仿真AM调制每一点的波形,包括信息信号、AM信号、载波信号、已调信号、通过带通滤波器后的信号,解调后的信号;并仿真AM信号频谱、已调信号频谱与解调信号频谱。 MATLAB程序如下:

% 标准调幅AM调制 a0=2;f0=10;fc=50;snr=3; fs=1000; % 变量定义 t=[-50:0.001:50]; am1=cos(2*pi*f0*t); % 产生信号频率为f0的基带信号 am=a0+am1; % 产生AM信号 c_am=cos(2*pi*fc*t); % 产生频率为fc的载波 AM_mod=am.*c_am; % 产生调制信号 am_f=fft(am); % AM频域 AM_modf=fft(AM_mod); y=awgn(AM_mod,snr); % 叠加噪声 figure(1); hold on; subplot(2,2,1); plot(t,am1); axis([0 0.4 -2 2]); title('基带信号波形'); % 绘图subplot(2,2,2); plot(t,am); axis([0 0.4 -2 6]); title('AM信号波形'); subplot(2,2,3); plot(t,c_am); axis([0 0.4 -2 2]); title('载波信号波形'); subplot(2,2,4); plot(t,AM_mod); axis([0 0.4 -8 8]); title('已调信号波形'); hold off; figure(2); hold on; subplot(2,2,1); plot(t,AM_mod); axis([0 0.4 -8 8]); title('已调信号波形'); subplot(2,2,2); plot(t,y); axis([0 0.4 -8 8]); title('叠加噪声后的信号波形');; a=[35,65];b=[30,70]; Wp=a/(fs/2);Ws=b/(fs/2);Rp=3; Rs=15; [N,Wn]= Buttord(Wp,Ws,Rp,Rs) ; % 计算巴特沃斯数字滤波器的阶数和 3db截止频率 [B,A]=Butter(N,Wn,'bandpass'); % 计算巴特沃斯模拟滤波器系统函数的分子、分母多项式系数向量 sig_bandpass=filtfilt(B,A,y); % 带通滤波后信号 subplot(2,2,3); plot(t,sig_bandpass); axis([0 0.4 -8 8]); title('经带通滤波后信号波形'); hold off; AM_dem=sig_bandpass.*c_am; Wp=15/(fs/2);Ws=40/(fs/2);Rp=3; Rs=20; [N,Wn]= Buttord(Wp,Ws,Rp,Rs) ; % 同上 [B,A]=Butter(N,Wn,'low'); AM_demod=filtfilt(B,A,AM_dem) % 低通滤波后信号 AM_demodf=fft(AM_demod); subplot(2,2,4); plot(t,AM_demod); axis([0 0.4 0 2]); title('解调信号波形'); hold off; f=(0:100000)*fs/100001-fs/2; figure(3); hold on;

相关文档
最新文档