用遗传算法求解多维背包问题

用遗传算法求解多维背包问题
用遗传算法求解多维背包问题

遗传算法求解实例

yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值 0.2)*10sin()(+=x x x f π,∈x [-1, 2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9, 最大遗传代数为25 译码矩阵结构:?????????? ??????? ???? ?=ubin lbin scale code ub lb len FieldD 译码矩阵说明: len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界; code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码, code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术 刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或 ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I), Y, 'bo'); 中variable(I)越界 yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为: ∑ == n i i x x f 1 2 )(, 512512≤≤-i x 这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量: NIND (个体的数量):=40; MAXGEN (最大遗传代数):=500; NV AR (变量维数):=20; PRECI (每个变量使用多少位来表示):=20; GGAP (代沟):=0.9 注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab 保留字,下同! yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】

基于遗传算法的一种新的约束处理方法

基于遗传算法的一种新的约束处理方法 苏勇彦1,王攀1,范衠2 (1武汉理工大学 自动化学院, 湖北 武汉 430070) (2丹麦理工大学 机械系 哥本哈根) 摘 要:本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 关键词:遗传算法、约束处理、可行解、不可行解、两种群混合交叉 1引言 科学研究和工程应用中许多问题都可以转化为求解一个带约束条件的函数优化问题[1]。遗传算法(Genetic Algorithm )与许多基于梯度的算法比较,具有不需要目标函数和约束条件可微,且能收敛到全局最优解的优点 [2],因此,它成为一种约束优化问题求解的有力工具。目前,基于GA 的约束处理方法有拒绝策略,修复策略,改进遗传算子策略以及惩罚函数策略等。但是这些方法都存在一些问题[3]:修复策略对问题本身的依赖性,对于每个问题必须设计专门的修复程序。改进遗传算子策略则需要设计针对问题的表达方式以及专门的遗传算子来维持解的可行性。惩罚策略解的质量严重依赖于惩罚因子的选取,当惩罚因子不适当时,算法可能收敛于不可行解。 本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 2约束处理方法描述 2.1单目标有约束优化问题一般形式 )(max x f ..t s ;0)(≤x g i 1,,2,1m i L L =;0)(=x h i )(,,1211m m m m i +=+=L X x ∈ 这里都是定义在m m m m h h h g g g f ,,,;,,;2121111L L ++n E 上的实值函数。X 是n E 上的 子集,x 是维实向量,其分量为。上述问题要求在变量满足约 束的同时极大化函数。函数通常为目标函数。约束n n x x x ,,,21L n x x x ,,,21L f f ;0)(≤x g i 称为不等式约束;约束称为等式约束。集合;0)(=x h i X 通常为变量的上下界限定的区域。向量且满足所有约束,则称之为问题的可行解。所有可行解构成可行域。否则,为问题的不可行解,所有不可行解构成不可行域。问题的目标是找到一个可行解X x ∈x 使得)()(x f x f ≤对于所有可行解x 成立。那么,x 为最优解[4]。 2.2算法描述 目前,最常采用的约束处理方法为惩罚函数法。但优化搜索的效率对惩罚因子的选择有

用遗传算法解决0-1背包问题概述

实现遗传算法的0-1背包问题 求解及其改进 姓名: 学号: 班级: 提交日期:2012年6月27日

实现遗传算法的0-1背包问题求解 摘要:研究了遗传算法解决0-1背包问题中的几个问题: 1)对于过程中不满足重量限制条件的个体的处理,通过代换上代最优解保持种群的进化性 2)对于交换率和变异率的理解和处理方法,采用逐个体和逐位判断的处理方法 3)对于早熟性问题,引入相似度衡量值并通过重新生成个体替换最差个体方式保持种群多样性。4)一种最优解只向更好进化方法的尝试。 通过实际计算比较表明,本文改进遗传算法在背包问题求解中具有很好的收敛性、稳定性和计算效率。通过实例计算,表明本文改进遗传算法优于简单遗传算法和普通改进的遗传算法。 关键词:遗传算法;背包问题;优化 1.基本实现原理: 一、问题描述 0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。01背包问题的一般描述如下: 给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。选择合适的物品装入背包,使得背包中装入的物品的总价值最大。注意的一点是,背包内的物品的重量之和不能大于背包的容量C。在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。称此类问题为0/1背包问题。 其数学模型为: 0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。传统的方法不能有效地解决0-1背包问题。遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。 二、遗传算法特点介绍: 遗传算法(Genetic Algorithm, GA)是1962年Holland教授首次提出了GA算法的思想是近年来随着信息数据量激增,发展起来的一种崭新的全局优化算法,它借用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。 基本遗传算法求解步骤: Step 1 参数设置:在论域空间U上定义一个适应度函数f(x),给定种群规模N,交叉率P c 和变异率P m,代数T; Step 2 初始种群:随机产生U中的N个染色体s1, s2, …, s N,组成初始种群S={s1, s2, …, s N},置代数计数器t=1; Step 3计算适应度:S中每个染色体的适应度f() ; Step 4 判断:若终止条件满足,则取S中适应度最大的染色体作为所求结果,算法结束。Step 5 选择-复制:按选择概率P(x i)所决定的选中机会,每次从S中随机选定1个染色体并将其复制,共做N次,然后将复制所得的N个染色体组成群体S1; Step 6 交叉:按交叉率P c所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; Step 7 变异:按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3; Step 8 更新:将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3;

使用遗传算法求解函数最大值

使用遗传算法求解函数最大值 题目 使用遗传算法求解函数 在及y的最大值。 解答 算法 使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。 定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。 设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。 然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。 一选择操作 首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。 二交叉操作 首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。 三变异操作 首先是根据变异概率probMutation选择要变异的个体。 变异时先随机生成变异的位置,然后把改位的01值翻转。

遗传算法求解背包问题

遗传算法求解背包问题 信管专业李鹏 201101002044 一、遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。 二、背包问题描述 背包问题是一个典型的组合优化问题,在计算理论中属于NP完全问题,主要应用于管理中的资源分配,资金预算,投资决策、装载问题的建模。传统“0/1”背包问题可以描述为:把具有一定体积和价值的n件不同种类物品放到一个有限容量的背包里,使得背包中物品的价值总量最大。 三、数学模型 背包问题可以描述如下:假设有n个物体,其重量用表示,价值用表示,背包的最大容量为b。这里和b都大于0。问题是要求背包所装的物体的总价值最大。背包问题的数学模型描述如下: (1) (2) (3) 约束条件(3)中表示物体i被选入背包,反之,表示物体i没有被选入背包。约束条件(2)表示背包的容量约束。

四、使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。 五、程序整体流程 (1)读取存取包的限种、商品的重要和价值的TXT文件; (2)初始化种群; (3)计算群体上每个个体的适应度值(Fitness) ; (4)评估适应度,对当前群体P(t)中每个个体Pi计算其适应度F(Pi),适应度表示了该个体的性能好坏; (5)依照Pc选择个体进行交叉操作; (6)仿照Pm对繁殖个体进行变异操作 (7)没有满足某种停止条件,则转第3步,否则进入8 ; (8)输出种群中适应度值最优的个体。 六、代码 function Main() %定义全局变量 global VariableNum POPSIZE MaxGens PXOVER PMutation VariableNum=3 %变量个数 POPSIZE=50 %种群大小 MaxGens=1000 %种群代数 PXOVER=0.8 %交叉概率 PMutation=0.2 %变异概率 %读取数据文件

背包算法问题

背包问题贪心方法 实验日志 实验题目: 1)求以下情况背包问题的最优解:n=7,M=15,(71,,p p )=(10,5,15,7,6,18, 3)和(71,,w w )=(2,3,5,7,1,4,1)。 实验目的: 1. 掌握贪心方法算法思想; 2. 熟练使用贪心算法之背包问题解决相应的问题。 实验思想: 贪心方法是一种改进了的分级处理方法。它首先根据题意,选取一种量度标准。然后按这种量度标准对这n 个输入排序,并按排序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最优解加在一起不能产生一个可行解,则不把此解输入加到这部分解中。这种能够得到某种度量意义下的最优解的分级处理方法称为贪心方法。 1.背包问题 (1)背包问题的描述:已知有n 种物品和一个可容纳M 重量的背包,每种物 品i 的重量为i w 。假定将物品i 的一部分i x 放入背包就会得到i i x p 的效益,这里,10≤≤i x , 0>i p 。显然,由于背包容量是M ,因此,要求所有选中要装入背包的物品总重量不得超过M.。如果这n 件物品的总重量不超过M ,则把所有物品装入背包自然获得最大效益。现需解决的问题是,这些物品重量的和大于M ,该如何装包。由以上叙述,可将这个问题形式表述如下: 极 大 化 ∑≤≤n i i x p 1i 约束条件 M x w n i i ≤∑≤≤1i n i w p x i i i ≤≤>>≤≤1,0,0,10 (2)用贪心策略求解背包问题 首先需选出最优的量度标准。不妨先取目标函数作为量度标准,即每装 入一件物品就使背包获得最大可能的效益值增量。在这种量度标准下的贪心

遗传算法求解动态规划

Using Genetic Algorithms for Dynamic Scheduling
Ana Madureira * Carlos Ramos * Sílvio do Carmo Silva ? anamadur@dei.isep.ipp.pt,, csr@dei.isep.ipp.pt, scarmo@dps.uminho.pt
1
Institute of Engineering Polytechnic of Porto, GECAD - Knowledge Engineering and Decision Support Research Group, Dept. of Computer Science Rua de S?o Tomé, 4200 Porto-Portugal Phone: +351 228340500 Fax: +351 228321159
2 Minho University, Dept. of Production and Systems 4710-057, Braga -– Portugal, Phone: +351 253604745
Abstract
In most practical environments, scheduling is an ongoing reactive process where the presence of real time information continually forces reconsideration and revision of pre-established schedules. Scheduling algorithms that achieve good or near optimal solutions and can efficiently adapt them to perturbations are, in most cases, preferable to those that achieve optimal ones but that cannot implement such an adaptation. This reality, motivated us to concentrate on tools, which could deal with such dynamic, disturbed scheduling problems, both for single and multi-machine manufacturing settings, even though, due to the complexity of these problems, optimal solutions may not be possible to find. We decided to address the problem drawing upon the potential of Genetic Algorithms to deal with such complex situations. We decided to address the problem drawing upon the potential of Genetic Algorithms to deal with such complex situations. Since in a sense natural evolution is a process of continuous adaptation, it seems appropriate to consider Genetic Algorithms as good candidates for dynamic scheduling problems. This paper is concerned with vertical oriented detailed scheduling of Extended Job-Shop on dynamic environments. It addresses the scheduling of tasks, either simple or complex products, comprehending the parts fabrication and their multistage assembly into complex products. Key Words: Dynamic Scheduling, Population Dynamic Adaptation, Regenerating Mechanism, Genetic Algorithms.
1. INTRODUCTION
Research on the theory and practice of scheduling has been pursued for many years. Theoretical scheduling problems concerned with searching for optimal schedules subject to a limited number of constraints have adopted a variety of techniques including branch-and-bound and dynamic programming. From the point of view of combinatorial optimization the question of how to sequence and schedule jobs in a dynamic environment looks rather complex and is known to be NP-hard. For literature on this subject, see for example, Baker (1974), French (1982), Blazewicz et al. (2001), Pinedo (2001) and Brucker (2001). In generic terms, the scheduling process can be defined as the assignment of time-constrained jobs to timeconstrained resources within a pre-defined time framework, which represents the complete time horizon of the schedule. An admissible schedule will have to satisfy a set of hard and soft constraints imposed on jobs and resources. So, a scheduling problems can be seen as a decision making process for operations starting and resources to be used. A variety of characteristics and constraints related with jobs and production system, such as operation processing times, release and due dates, precedence constraints and resource availability, can affect scheduling decisions. If all jobs are known before processing starts a scheduling problem is said to be static, while, to classify a problem as dynamic it is sufficient that job release times are not fixed at a single point in time, i.e. jobs arrive to the system at different times. Scheduling problems can also be classified as either deterministic, when processing times and all other parameters are known and fixed, or as non-deterministic, when some or all parameters are uncertain (French, 1982). Most of the known work on scheduling deals with optimisation of scheduling problems in static environments, whereas, due to several sorts of random occurrences and perturbations, real world scheduling problems are usually of dynamic nature. Due to their dynamic nature, real scheduling problems have additional complexity in relation to static ones. However, in many situations, both static and dynamic problems, even for apparently simple cases, are hard to

matlab、lingo程序代码3-背包问题(遗传算法)复习过程

背包问题---遗传算法解决 function Population1=GA_copy(Population,p,w0,w) %复制算子 %Population为种群 n=length(Population(:,1)); fvalue=zeros(1,n); for i=1:n fvalue(i)=GA_beibao_fitnessvalue(Population(i,:),p,w0,w); end fval=fvalue/sum(fvalue); F(1)=0; for j=1:n F(j+1)=0; for k=1:j F(j+1)=F(j+1)+fval(k); end end for i=1:n test=rand; for j=1:n if((test>=F(j))&&(test

POP(j,z)=Population(i,z); end POP(j,l+1)=i; p(j)=randint(1,1,[1 l-1]); j=j+1; end end k0=j-1; k=floor(k0/2); if k>=1 for m=1:k for t=p(2*m-1)+1:l s=POP(2*m-1,t); POP(2*m-1,t)=POP(2*m,t); POP(2*m,t)=s; end end for m=1:k0 for i=1:l Population1(POP(m,l+1),i)=POP(m,i); end end end function fitnessvalue=GA_fitnessvalue(x,p,w0,w) %使用惩罚法计算适应度值 %x为染色体 %p为背包问题中每个被选物体的价值 %w0为背包问题中背包总容积 %w为背包问题中每个被选物品的容积 l=length(x); for i=1:l a(i)=p(i).*x(i); end f=sum(a); b=min(w0,abs(sum(w)-w0)); for i=1:l wx(i)=w(i).*x(i); end if abs(sum(wx)-w0)>b*0.99 p=0.99;

01背包问题不同算法设计、分析与对比报告

实验三01背包问题不同算法设计、分析与对比一.问题描述 给定n种物品和一背包。物品i的重量是w i ,其价值为v i ,背包的容量为c。 问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。 二.实验内容与要求 实验内容: 1.分析该问题适合采用哪些算法求解(包括近似解)。 ^ 动态规划、贪心、回溯和分支限界算法。 2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。 动态规划: 递推方程: m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi; m(i-1,j) j < wi; 时间复杂度为O(n). 贪心法: ^ 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中, 直到把所有数据枚举完,或者不能再添加为止。 回溯法:

回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。这种具有限界函数的深度优先生成法称为回溯法。 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进入右子树搜索。 时间复杂度为:O(2n) 空间复杂度为:O(n) : 分支限界算法: 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点时为问题的最优值。 3.设计并实现所设计的算法。 4.对比不同算法求解该问题的优劣。 这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。 5.需要提交不同算法的实现代码和总结报告。 动态规划方法: public class Knapsack {

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

遗传算法求解VRP问题的技术报告【精品毕业设计】(完整版)

遗传算法求解VRP 问题的技术报告 摘要:本文通过遗传算法解决基本的无时限车辆调度问题。采用车辆和客户对应排列编码的遗传算法,通过种群初始化,选择,交叉,变异等操作最终得到车辆配送的最短路径。通过MA TLAB 仿真结果可知,通过遗传算法配送的路径为61.5000km,比随机配送路径67km 缩短了5.5km 。此结果表明遗传算法可以有效的求解VRP 问题。 一、 问题描述 1.问题描述 车辆调度问题(Vehicle Scheduling/Routing Problem,VSP/VRP )的一般定义为[1]:对一系列送货点和/或收货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量,送发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆数尽量少等)。问题描述如下[2]:有一个或几个配送中心),...,1(n i D i =,每个配送中心有K 种不同类型的车型,每种车型有n 辆车。有一批配送业务),...,1(n i R i =,已知每个配送业务需求量),...,1(n i q i =和位置或要求在一定的时间范围内完成,求在满足不超过配送车辆载重等的约束条件下,安排配送车辆在合适的时间、最优路线使用成本最小。 2.数学模型 设配送中心有K 台车,每台车的载重量为),...,2,1(K k Q k =,其一次配送的最大行驶距离为k D ,需要向L 个客户送货,每个客户的货物需求量为),...,2,1(L i q i =,客户i 到j 的运距为ij d ,配送中心到各个客户的距离为),...,2,1,(0L j i d j =,再设k n 为第K 台车配送的客户数(k n =0表示未使用第K 台车),用集合k R 表示第k 条路径,其中ki r 表示客户ki r 在路径 k 中的顺序为 (不包括配送中心),令 0k r 表示配送中心,若以配送总里程最短为目标函数,则可建立如下数学模型: ∑∑==?+=-K k k rk r n i r r n sign d d Z k kn k ki i k 101)] ([min )1( (1) k n i ki Q qr k ≤∑=1 (2) k k rk r n i r r D n sign d d k kn k ki i k ≤?+∑=-)(01)1( (3) L n k ≤≤0 (4)

0-1背包问题四种不同算法的实现要点

兰州交通大学数理与软件工程学院 题目0-1背包问题算法实现 院系数理院 专业班级信计09 学生姓名雷雪艳 学号200905130 指导教师李秦 二O一二年六月五日

一、问题描述: 1、0—1背包问题:给定n 种物品和一个背包,背包最大容量为M ,物 品i 的重量是w i ,其价值是平P i ,问应当如何选择装入背包的物品,似的装入背包的物品的总价值最大? 背包问题的数学描述如下: 2、要求找到一个n 元向量(x1,x2…xn),在满足约束条件: ????? ≤≤≤∑1 0i i i x M w x 情况下,使得目标函数 p x i i ∑max ,其中,1≤i ≤n ;M>0; wi>0;pi>0。满足约束条件的任何向量都是一个可行解,而使得目标函数 达到最大的那个可行解则为最优解[1]。 给定n 种物品和1个背包。物品i 的重量是wi ,其价值为pi ,背包的容量为M 。问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。不能将物品i 装人背包多次,也不能只装入部分的物品i 。该问题称为0-1背包问题。 0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得 M w x i i ≤∑ ,而且 p x i i ∑达到最大[2]。 二、解决方案: 方案一:贪心算法 1、贪心算法的基本原理与分析 贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广的许多问题它能产生整体最优解。在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解的很好近似解。 贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 2、0-1背包问题的实现 对于0-1背包问题,设A 是能装入容量为c 的背包的具有最大价值的物品集合,则Aj=A-{j}是n-1个物品1,2,...,j-1,j+1,...,n 可装入容量为c-wj 的背包的具有最大价值的物品集合。 用贪心算法求解0-1背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi ;然后,将物品进行排序,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c ,则选择单位重量价值次高的物品并尽可能多地装入背包。

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题 一、问题描述 给定n种物品和容量为C的背包。物品i的重量是wi,其价值为vi。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 二、知识表示 1、状态表示 (1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。 (2)基因:染色体的每一个比特。 (3)种群:解的集合。 (4)适应度:衡量个体优劣的函数值。 2、控制参数 (1)种群规模:解的个数。 (2)最大遗传的代数 (3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。 3、算法描述 (1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T; (2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1; (3)计算S中每个个体的适应度f() ; (4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。 (5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1; (6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; (7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3; (8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。 三、算法实现 1、主要的数据结构 染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。 种群:用二维数组表示,每一行表示一个染色体。 具有最大价值的染色体:由于每一个染色体经过选择、交叉、变异后都可能发生变化,所以对于产生的新的总群,需要记录每个物品的选中状态。同时保存该状态下物品的最大价值,如果新的总群能够产生更优的值,则替换具有最大价值的染色体。

算法 0-1背包问题

一、实验目的与要求 掌握回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对回溯法、分支限界法的理解。 1.要求分别用回溯法和分支限界法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验方案 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 三、实验结果和数据处理 1.用回溯法解决0-1背包问题: 代码: import java.util.*; public class Knapsack { private double[] p,w;//分别代表价值和重量 private int n; private double c,bestp,cp,cw; private int x[]; //记录可选的物品 private int[] cx; public Knapsack (double pp[],double ww[],double cc) { this.p=pp;this.w=ww;this.n=pp.length-1; this.c=cc;this.cp=0;this.cw=0; this.bestp=0; x=new int[ww.length]; cx=new int[pp.length]; } void Knapsack() { backtrack(0); } void backtrack(int i) { if(i>n) { //判断是否到达了叶子节点 if(cp>bestp) { for(int j=0;j

遗传算法求解函数极值

题目:生成两个整型,求在这两个整形之间cost=x1+x2-10*(cos(2*3.14*x1)+cos(2*3.14*x2))函数的最小值 源程序: #include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) {

相关文档
最新文档