飞机柔性装配工装关键技术及发展趋势分析

飞机柔性装配工装关键技术及发展趋势分析
飞机柔性装配工装关键技术及发展趋势分析

飞机柔性装配工装关键技术及发展趋势分析

飞机柔性装配工装关键技术,就是基于数字化技术所开发的新兴飞机尺寸调整方式,能够对飞机设计进行重组,建立出具有参考性的模块,进而形成数字化、自动化的工装系统,能够避免或是减少零部件的使用。

标签:飞机柔性装配;工装关键技术;发展趋势

飞机柔性装配工装关键技术在实际应用的过程中,必须要重视飞机制造过程以及制造时间的控制,利用柔性工装可以有效缩短制造周期,提高制造质量,并且减少工装的数量,进而实现较为完善的制造模式。

1 飞机柔性配置工装关键技术

现代化飞机柔性配置工装已经不再是单纯的结构工装,而是集成数字化制造方式、现代设计方式、现代化的测量方式等,结合仿真技术实施工装,不断的形成先进性工装研究内容。此时,关键技术主要包括以下几点:

1.1 飞机柔性装配工装模块化技术

对于飞机柔性装配工装模块化技术的应用而言,相关技术人员不仅要重视柔性工装的模块化单元构成情况,还要对每个模块进行单独的设计,保证不会出现不符合实际制造的情况。同时,还要对每个模块的功能加以重视,使设计人员在实施设计工作的时候,能够从装配集中挑选出一个模块单元,快速的实施重组设计工作,进而实现装配工装的柔性化。由此可见,柔性装配工装设计技术是整个技术体系中最为重要的,每个模块单元,不仅可以单独设计,还能与其他模块相互组合,保证了结构的相似性,同时,设计人员还可以根据飞机结构设计需求,对某个模块重点设计,结合通用模块组,对工装整体装配工作进行优化。

1.2 柔性工装夹紧定位技术

工装的柔性化,不仅可以快速的将产品变化情况显现出来,还能突出夹紧定位的应变能力。对于不同的工装对象,夹紧的方式与结构也是不同的,必须要重视柔性工装夹紧定位方案的实用性,保证能够促进其有效发展,同时,夹紧定位方案还决定着柔性装配工装技术能否有效实现,对其发展就有较为良好的意义。

1.3 柔性装配工装结构优化设计技术

与一般工装相比较,柔性工装的结构较为繁琐,合理的设计工作,不仅可以提升飞机结构的强度,還能增强其刚度与稳定性,使飞机装配工作得以有效完成。同时,在优化设计的过程中,要想装配工装满足相关要求,就要合理的利用装配优化设计技术,提出较为完善的工装结构方案,使其在一定程度上,得到有效的优化[1]。

飞机柔性装配工装关键技术及发展趋势分析

飞机柔性装配工装关键技术及发展趋势分析 飞机柔性装配工装关键技术,就是基于数字化技术所开发的新兴飞机尺寸调整方式,能够对飞机设计进行重组,建立出具有参考性的模块,进而形成数字化、自动化的工装系统,能够避免或是减少零部件的使用。 标签:飞机柔性装配;工装关键技术;发展趋势 飞机柔性装配工装关键技术在实际应用的过程中,必须要重视飞机制造过程以及制造时间的控制,利用柔性工装可以有效缩短制造周期,提高制造质量,并且减少工装的数量,进而实现较为完善的制造模式。 1 飞机柔性配置工装关键技术 现代化飞机柔性配置工装已经不再是单纯的结构工装,而是集成数字化制造方式、现代设计方式、现代化的测量方式等,结合仿真技术实施工装,不断的形成先进性工装研究内容。此时,关键技术主要包括以下几点: 1.1 飞机柔性装配工装模块化技术 对于飞机柔性装配工装模块化技术的应用而言,相关技术人员不仅要重视柔性工装的模块化单元构成情况,还要对每个模块进行单独的设计,保证不会出现不符合实际制造的情况。同时,还要对每个模块的功能加以重视,使设计人员在实施设计工作的时候,能够从装配集中挑选出一个模块单元,快速的实施重组设计工作,进而实现装配工装的柔性化。由此可见,柔性装配工装设计技术是整个技术体系中最为重要的,每个模块单元,不仅可以单独设计,还能与其他模块相互组合,保证了结构的相似性,同时,设计人员还可以根据飞机结构设计需求,对某个模块重点设计,结合通用模块组,对工装整体装配工作进行优化。 1.2 柔性工装夹紧定位技术 工装的柔性化,不仅可以快速的将产品变化情况显现出来,还能突出夹紧定位的应变能力。对于不同的工装对象,夹紧的方式与结构也是不同的,必须要重视柔性工装夹紧定位方案的实用性,保证能够促进其有效发展,同时,夹紧定位方案还决定着柔性装配工装技术能否有效实现,对其发展就有较为良好的意义。 1.3 柔性装配工装结构优化设计技术 与一般工装相比较,柔性工装的结构较为繁琐,合理的设计工作,不仅可以提升飞机结构的强度,還能增强其刚度与稳定性,使飞机装配工作得以有效完成。同时,在优化设计的过程中,要想装配工装满足相关要求,就要合理的利用装配优化设计技术,提出较为完善的工装结构方案,使其在一定程度上,得到有效的优化[1]。

飞机数字化柔性工装技术研究

飞机数字化柔性工装技术研究 陈昌伟,胡国清,张冬至 (华南理工大学机械与汽车工程学院,广东广州 510640) 摘要:中国工装设计制造水平低,已成为飞机快速研制及批量生产的瓶颈。分析了目前中国飞机装配中存在的问题,总结了国外飞机先进数字化柔性工装的研究及应用现状,综述了虚拟装配、柔性工装、数控钻铆、激光跟踪等数字化装配关键技术,指出了实现中国飞机数字化装配跨越发展的技术途径。 关键词:飞机;虚拟装配;柔性工装;数字化钻铆;激光跟踪 中图分类号:V262.4 文献标识码:A 文章编号:1672-1616(2009)09-0021-04 航空工业是国家经济和国防建设的战略性产业,它的持续发展推动了诸如新材料、通信及先进制造等技术的发展。飞机制造具有结构尺寸大、零件形状复杂且种类繁多、气动外形严格及加工精度高等特点,必须使用大量的装配型架来保证装配质量。用于设计制造装配型架(简称工装)的生产周期和成本在整机研制中占很大的比例,装配工作量占整个飞机制造总劳动量的40%~50%,且最终产品品质在很大程度上取决于装配的质量[1,2]。成套工装的设计制造需要大量人力、物力和财力的投入。目前,国内航空公司面临着多种型号飞机的同时研制及批量生产,工装难以满足装配需求,已成为飞机生产的瓶颈。 1 我国飞机工装设计制造研究现状我国航空工业主要沿袭前苏联的组织生产模式,飞机工装也不例外。目前,我国工装整体设计制造水平落后,主要表现在:工装设计虽采用了计算机辅助设计(CA TIA),但未充分利用优化分析(CAE)及虚拟预装配技术,致使型架需反复修改;制造能力差,采用外协加工存在资质认证困难、保密性差、交货周期长等问题;整机装配仍采用手工作业或人工控制,精度和效率较低。与西方先进航空企业相比,我国的工装型架数目多、占地面积大、制造周期长、成本高、安装在型架上的定位件及测量仪器缺乏标准化和模块化,同时以模拟量传输协调各工艺环节的“串行工程”模式,严重阻碍了装配质量的提高及研制周期的缩短。低效的传统飞机装配技术已成为制约我国飞机快速研制的巨大障碍。 近年来,我国航空企业及科研院校在引进国外先进装配技术的同时,在工装设计方面的研究较多,主要集中在采用CAD技术进行飞机型架及相关性设计,包括型架标准件库的建立和型架优化及参数设计等[3~5]。在测量技术方面,计算机辅助电子经纬仪(CA T)及激光跟踪仪(L T)等先进设备已逐步用于飞机装配并实现国产化。在虚拟预装配方面,开展了飞机装配工序可视化仿真、装配路径优化及装配容差分析等研究。总之,我国飞机工装整体研究格局相对较为零散,工程缺乏系统化。 2 国外飞机数字化柔性工装研究及应用 飞机数字化装配技术兴起于20世纪80年代后期,迅速发展于西方航空发达国家。1994年欧盟提出“基于协作型多功能操作机器人的航空产品柔性装配系统”研究项目[6],其最终目标是实现数字化无型架装配(JAM)。美国Boeing777研制周期缩短了50%,出错返工率减少了75%,成本降低了25%,成为数字化设计制造与并行工程技术成功应用的典范。 2001年~2004年欧洲的ADFAST项目把研究目标定位于经济实用的重构工装系统(AR T)和集成测量系统上,获得重大突破。空客公司2005年机翼盒自动装配的AWBA2研究项目应用了多种数字化柔性装配技术,降低了成本,缩短了周期, 收稿日期:2008-12-22 作者简介:陈昌伟(1985-),男,湖南衡阳人,华南理工大学硕士研究生,主要研究方向为飞机柔性工装。12 ?现代设计与先进制造技术? 陈昌伟 胡国清 张冬至 飞机数字化柔性工装技术研究

无人机柔性装配工装技术研究及应用

Mechanical Engineering and Technology 机械工程与技术, 2016, 5(4), 322-328 Published Online December 2016 in Hans. https://www.360docs.net/doc/1f17960306.html,/journal/met https://www.360docs.net/doc/1f17960306.html,/10.12677/met.2016.54039 文章引用: 杨铁江, 张明, 吴琼. 无人机柔性装配工装技术研究及应用[J]. 机械工程与技术, 2016, 5(4): 322-328. Study and Application on Flexible Assembly Tooling Technology of UAV Tiejiang Yang, Ming Zhang, Qiong Wu Institute 365 of Northwestern Polytechnical University, Xi’an Shaanxi Received: Nov. 29th , 2016; accepted: Dec. 23rd , 2016; published: Dec. 27th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/1f17960306.html,/licenses/by/4.0/ Abstract Based on assembly tooling of UAV, using the flexible modularize idea, the universality of assembly tooling of UAV is studied. And then, the typical flexible structure of UAV assembly tooling based on the flexible modularize technology is presented. Finally, a solution to shorten the cycle and lower the cost of UAV is given. Keywords UAV, Flexible, Modularize, Assembly Tooling 无人机柔性装配工装技术研究及应用 杨铁江,张 明,吴 琼 西北工业大学第365研究所,陕西 西安 收稿日期:2016年11月29日;录用日期:2016年12月23日;发布日期:2016年12月27日 摘 要 本文以无人机装配工装为研究对象,应用柔性模块化设计思想,对无人机各部件装配工装的通用性进行了研究和探索,并基于柔性模块化技术,给出了无人机装配工装典型柔性结构形式,为实现无人机装配Open Access

柔性装配生产线系统技术方案说明

柔性装配生产线系统技术方案

目录 1项目概述 (3) 1.1概述 (3) 1.2实现目标 (3) 1.2.1装配生产柔性化 (3) 1.2.2提升生产效率 (3) 1.2.3实现自动化生产管理,提高管理水平 (3) 1.3系统安全性 (4) 2系统方案 (4) 2.1设计原则 (4) 2.2产品装配工艺流程 (5) 2.3工件输送工艺流程 (10) 2.3.1入库流程简介 (10) 2.3.2出库及装配流程简介 (12) 2.3.3各区域、空托盘、空包装箱等物流流程 (13) 2.3.4研制阶段零部件物流流程 (13) 2.4总体方案 (13) 2.4.1系统构成 (13) 2.4.2系统概论 (14) 2.5装配工装设计 (15) 2.5.1功能 (15) 2.5.2使用方法 (16) 2.5.3主要结构 (16) 2.5.4互换性与增产办法 (17) 2.6物流方案 (17) 2.6.1零部件预处理区设计 (17) 2.6.2装配区设计 (22) 2.6.3检测区设计 (23)

2.6.4输送线设计 (23) 2.6.5助力机械臂 (24) 2.7柔性装配生产线管理信息系统 (25) 2.7.1系统架构 (25) 2.7.2物理部署 (27) 2.7.3网络构成 (28) 2.7.4软件实现 (29) 1.方案特点说明 (47) 2.附图说明 (49)

1项目概述 1.1概述 通过总装生产线的柔性化设计,实现在一条生产线上同时生产多品种型号产品,企业可根据需求调整生产的型号和产量,提高企业应变能力,实现可持续发展和灵活变化。 通过装配线管理信息系统的实施,对企业生产制造过程实行全面监控、加强生产过程控制,提高产品质量。同时,企业可根据生产的需求调配资源,实现资源的优化配置。进而实现控制决策与过程改进,最终实现制造过程的可视化,提高生产管理水平,提高整体竞争力和可持续发展能力。 1.2实现目标 1.2.1装配生产柔性化 满足5种不同型号共100套产品的现场同时库存周转、装配生产和调度需求。建设装配工位10个、测试工位5个的总目标。每个装配工位适应不同装配工序的装配需求,每个装配工位可实现6个自由度的装配工艺需求。 建设投产后,装配工位满足产品研制阶段的研制需求,生产调度满足反向作业的操作与管理,零部件的存储货位可实现动态优化。 检测分为在线检测及性能检测,在线检测时工件无需搬运、将检测设备推到其附近实施检测;性能检测集中在测试区进行,用户自备专用设施。各检测结果需人工输入并上传到管理系统。 1.2.2提升生产效率 系统实施后,装配人员仅需在装配工位作业,工件、配件均自动输送到装配工位附近;当某一工序装完后,采取在线检查及检测,减少过程搬运时间;装配工装要求自由度大、灵活,调节便捷、快速;站台与工装间借助助力机械臂,达到省力目的。 1.2.3实现自动化生产管理,提高管理水平 (1) 投产后的柔性装配线,物流配送智能化、自动化; (2) 物料管理数字信息化,实现物联网在装配生产中的应用,每个配件、半成品状态实时跟踪并上传管理系统,能及时对所需了解的物料数量、所处位置、流转 信息以及装配状态进行查询和统计; (3) 过程控制信息化,装配生产点装配工艺仿真提示,装配过程实时视频监控;

飞机数字化柔性工装技术研究

万方数据

222009年5月中同制造、№信息化第38卷第9期 实现了月产38套概翼。 波脊公司在研制737时构建的基于构型控制的数字化制造信息管理系统(r必C/MRM)t7|,及近年来研裁787所采用的全球协同管理技术(GlobalCo- lalx)rationEnvinmnmat,G旺),使得数字化技术平台在同行业航空企业竞争中取褥优势,象征性事件是2∞7年7月8器波音78死嘛鞠liner的如期下线,网时波音公司宣布已取得1100多亿美元的707架波音787飞机的订单。 洛克希德?马丁公司牵头研制的J汀战机原翟机x一35,采用具有激光定位、电磁精密制孔等数字他柔性装配特点的龙门钻剿系统,使装配周期减少了2/3,工装数繁由350件减少到19件,成本降低1/2。LeicaLTD500激光定位配合液压校平系统及移动装配生产线,大大减少了对按时闻,实现了大部件的对接装配数字化。先进的装配理念和方法,如决定性装配【8J(DeterminantA.蹬sembly,DA)、以嚣架为基准的自动装醚技术等也广泛应孀于大型飞机自动化装配。图l为Boein9787总装及移动概念图。 图1泼膏787总装及移动 Boein9787枧身第毒3段的复合材料整体筒体与钛合金框件实现了自动化装配。采用内外两套独立的装鼹,在装配时实现自动定位、夹紧、制孔、安装环横钉并完成环蓬鑫动镦铆,由电磁提供铆接动力,目前该技术已在日本三菱重工投入使用。为实现飞机复合材料平尾升降舵装配,空客公司研制的复合誊考料升降舵柔性装配系统霹自动完成后缘的测量和校准、上下壁板钻孔和锪窝、铆钉选择及供给、注胶、铆接及壁板表面波纹度测繁等【9,10】。 3数字化柔性工装关键技术 数字化柔性装既是建立在计算机数字信息处理平台上,一个融合飞机特征的全数字量协调体系。通过自动夹持、制孔、铆接及无缝校准对接,完成组装、部装及总装。它能适应飞机的尺寸规格、批麓、装配工艺、场地及时闯变化,在有限的场地内完成快速装配,达到优质、高效、低成本。数字化装配关键技术包括虚拟装配技术、柔性(无型架)装配技术、自动钻铆技术及激光跟踪渊爨/检测技术等。图2所示为数字化装配技术框架。 大粼传砖接装配 数字化棠性旋雕平台卜_——叫数拄钻铆rl=烈 零ftt6-:/柔性l:装库/垒|l识l‘2序 圉2数字化装配技术搬架 3.1虚拟装配技术 虚拟装配是基于并行设计与分析嚣境的数字化预装配(DigitalPreassembly,DpA),装配过程仿真综合考虑了零件的几何信息、工装信息、BOM定义、作业路线、工作指令等,在预装瓢仿真孛发现阙题,优化工艺,提高效率及降低成本。图3所示为国外某航窀公闭先进虚拟装配环境界面。 膊3先进虚拟装配用户界面 3.2柔性(无型架)装配技术 柔性装配技术是一种能适应快速研制、低成本制造及工装可驻组模块化的先进装配技术。发展目标是无型架数字纯装酝平台,滋盖了柔性工装、精确定位与测嚣、数据采集/处理系统。无型架数字化装配技术将彻底减少飞机装配对型架的依赖性。曩翦国外粱性纯装配技术主要表现在泼下凡个方面【11叫4J: a.行列式高速柱柔性工装。行列式高速柱工 万方数据

柔性制造技术及其发展

柔性制造技术及其发展 近30年来,在制造自动化技术领域,以柔性制造单元(Flexible Manufacturing Cell, FMC)和柔性制造系统(Flexible Manufacturing System, FMS)为代表的柔性制造技术(Flexible Manufacturing Technology, FMT)得到了快速发展和应用,用以实现高柔性、高生产率、高质量、低成本的产品制造,使企业生产 经营能力整体优化,适应产品更新和市场快速变化,保持企业在国内外市场上的竞争优势。 1 柔性制造技术(FTM)概念 在制造业领域中,FMT概念的提出和实现,其技术观点的变化、发展和进步是近二三十年间人类生活的现实社会产品制造业发展、进步的实际需求推动的结果。在现实社会中,人们通常将用以生产产品的制造系统根据其一次投产的数量而分为大量、批量和单件生产3种类型。制造系统设计师们经过长期艰苦努力,开发、设计、制造出与之相适应的制造系统,以满足社会化产品生产的需求。 用于大量生产的制造系统的特点在于其“刚性自动化”(Rigid Automation),或者说具有一种不能变化的自动化,加工设备有明显的专用性特征。传统的自动生产线就是这种类型制造系统的典型例子。自动生产线是一种仅适合于单一品种产品大量生产的制造系统,一旦产品零件设计改变,生产线将不适应,必须进行改造,甚至整条生产线必须推倒重建,表现出极低的柔性。 用于批量生产(典型每批10~10000件)的制造系统,其加工设备通常比大量生产时具有更强的通用性,同时必须有能力用各种不同的工具、不同的方法进行适当调整,以便于生产不同产品的一定范围内的多种不同零件。 某些产品和零件市场需求量很小,适合用单件加工方法生产。对单件产品生产来说,采用专用的工、夹、量具显然是不经济的,通常应采用通用加工设备和工装,配合一定量的手工加工。因此,单件产品生产的费用较高,但它却能满足市场某些少数、愿付出更多费用的顾客的需求。图1所示是这3类制造系统产品品种、设备专用程度和产量间的一般关系[1]。 图1 典型的产品品种、设备专用程度与产量间的关系 Fig.1 Typical relationships between product variety, speciality of the equipment and the output of product 近20年来,世界市场情况发生了极大变化,从相对稳定型转向动态多变型,市场的需求和企业产品特点表现为: (1)市场的竞争日益激烈。一个企业产品市场的占有率已成为判断该企业是否具有竞争力的最重要标志。为及时占有市场,要求企业产品制造周期日益缩短。 (2)市场需求的多变性和不可预测性。传统的制造业靠以市场预测和订单为基础组织企业进行大规模生产的方式越来越不能适应多变和不可预测的市场需

飞机柔性装配工装设计分析

飞机柔性装配工装设计分析 摘要柔性装配工装技术在国外飞机的设计和制造中得到了广泛的应用。近年来,已引起国内飞机研究人员的注意。柔性化装配工装技术可以适应装配环境的变化,具有多种定位功能。基于此,本文对飞机柔性装配设计流程进行了详细的分析,以供参考。 关键词飞机;柔性;装配工装设计 前言 近年来,国内也开始重视飞机柔性装配工装设计工艺研究,并且设计了大量的飞机柔性装配工装,举些例子,如:行列吸盘式壁板柔性装配工装、壁板组件预装配柔性工装、数控柔性多点装配型架、大部件对接柔性装配工装等等,这些装配工装工艺具有相通点,即:利用定位单元、夹紧单元、柔性骨架单元、锁紧单元等,进行了相应的定位执行末端设计。 1 飞机工装设计制造的特点 第一,受到模拟量传递研制方法应用的影响,导致其工装与自身之间、与零部件之间的协调性要求较多,且关系比较复杂。第二,飞机零组件需要多种工装进行实现,同时不同工装用于不同的制造工序,对此飞机工装的种类较多,数量大且研制的时间较长。第三,工装决定着飞机制造的质量,对此对于飞机工装的质量、精度要求等要高于零组件质量。第四,工装与其飞机制造效率的提高有着直接的关系[1]。 2 飞机工装设计制造技术 2.1 工装柔性化 柔性装配技术,是国外一些大型航空企业常应用的技术,其不仅缩短生产周期,同时也降低了飞机工装制造的成本。柔性装配工装是以产品数字量尺寸协调体系模块为基础,从而实现其自动重组,直接规避了产品设计制造中,由于指定装配型架应用而带来的经济负担。 2.2 工装数字化 工装数字化,包含工装数字化设计,工装数字化制造以及工装数字化检测几方面内容;第一,工装数字化设计,是借助三维数字化环境,实现结构零组件、预装配设计的数字化。第二,工装模型的数字化设计,借助数字化制造,实现主要特征型面等的数字化加工装配。第三,工装数字化检测,借助数字化检测设备,实现设计制造工装过程的数字化检验。

飞机柔性装配工装设计分析

龙源期刊网 https://www.360docs.net/doc/1f17960306.html, 飞机柔性装配工装设计分析 作者:孙晓光 来源:《科学与财富》2017年第25期 摘要:飞机柔性装配工整技术,是数字化技术发展的产物,实现了不同形状、特征的统一结构族多部件的装配。目前来说,飞机柔性装配工装技术已经广泛应用在生产实践中,国外对于相关技术领域的理论研究较为成熟,科学工作者提出了可重构柔性工装、决定性装配等多种装配方式,而我国目前针对不同的飞机产品,也设计出了行列吸盘式壁板柔性装配工装等多种实践性工艺,促进了我国飞机制造业的发展。为了进一步保障技术应用效果,在设计分析过程中,首先需要进行目标产品设计特点分析,了解柔性定位特点,确定柔性定位器功能,加强定位执行末端的设计,在最终环节定位单元行程,进行布局优化。 关键词:飞机;柔性装配工装设计;分析 飞机是目前应用于交通运输领域较为先进的一种交通工具,其生产制造水平对于国家经济发展有着较大影响。随着飞机制造行业的发展,其制造理论体系不断完善,制作工艺水平不断提升,柔性装配工装关键技术是基于数字化技术开发出来的一种飞机新型生产技术,能够通过调整飞机零件尺寸实现重组设计,形成一个数字化、自动化的工装系统,对于提高飞机制作水平具有积极意义[1]。在传统的飞机装配工装中,一旦产品设计调整,工装调整耗费时间较 长,使用柔性装配工装设计技术,只要是同一结构族的装配工程,即使是尺寸、形状不同的多个部件,也可以统一完成装配,这样能够有效缩短飞机装配工装的设计与制造周期。 1.飞机柔性装配工装设计现状分析 目前,柔性工装技术在国外飞机装配工装中广泛应用,主要的施工技术理论有:①适用于含有大曲率或复杂形状工件定位的柔性工装技术。通过控制真空吸盘生成吸附点阵,可保证装配工件曲面外形一致,在进行钻孔、铆接等工作时可有效固定住工件,保证定位的精准性;②主要用于机翼装配的可重构柔性工装技术。由标准量和装配造型架构成工装静态框架,并在其主梁上安装动态模块,能够实现使定位夹紧器的精准控制;③主要用于机翼与翼梁装配中的决定性装配方法(DA)。该技术通过合理的设计与紧密的加工,降低了常规工艺设备使用率,降低了飞机装配对于型架的依赖性;④主要用于翼身对接的定位系统,通过定位单元的重用实现新的飞机部件的柔性装配[2]。 我国在柔性装配技术的研究水平也处于世界领先地位,针对国内不同的飞机产品,出现了不同类型的施工技术,比如说行列吸盘式壁板柔性装配工装,用于机身部件、翼面类部件、机翼翼盒装配等,这些技术体系都已经比较完善,在生产实践中得到了广泛的应用。在飞机装配工装中,设计方案的频繁更改是难免的,但是这样会延长工装调整的时间,是飞机快速生产的一个瓶颈,潘志毅等人针对这一问题,通过对主几何层、源控制几何层等进行综合运算建立了型架变型设计模型,有效解决了这一问题。

航空宇航制造——柔性装配技术

航空制造工程概论报告题目:飞机柔性装配技术 学院:机电学院 班级:05010703 学号:2007 姓名: 2010年04月27日

【摘要】结合我国现阶段飞机装配背景,将国内外装配进行比较,探讨了飞机柔性装配技术的优势与发展前景。对柔性装配工装,柔性制孔,虚拟装配等进行了分析与研究,报告目前国内外飞机柔性装配技术的现状,以及柔性装配技术在未来飞机制造业中的作用。 关键词:柔性装配技术;柔性装配工装;柔性制孔;虚拟装配。 1 背景 飞机装配是飞机制造过程的主要环节。飞机装配过程就是将大量的飞机零件按图纸、技术要求等进行组合、连接的过程,分为部装(零件→组合件→段件→部件)和总装(各部件→全机身)。飞机的设计制造难度大,周期长,不仅表现在它的零件数控加工量大,而且表现在它的装配复杂性和难度。飞机的装配工作量约占整个飞机制造劳动量的40%~50%(一般的机械制造只占20% 左右)。飞机装配质量和效率取决于飞机机械连接技术,如自动钻铆、干涉连接、高质量紧密制孔、孔挤压强化、电磁铆接等,而装配件准确度受制于装配型架的制造和安装准确度。迄今为止,装配技术已经历了从手工装配、半机械/ 半自动化装配、机械/自动化装配到柔性装配的发展历程。飞机柔性装配技术的应用是当前国内外飞机制造业数字化制造的大趋势,能够克服飞机制造模线--样板法在模拟量协调体系下需要大量实物工装且应用单一、制造周期长、费用高等缺点,通过与自动化制孔设备、数控钻铆或自动电磁铆接设备等自动化装备的集成可组成自动化、数字化的柔性装配系统,缩短装配周期,提高和稳定装配质量。柔性装配技术的范畴很广,涵盖了柔性装配工装、柔性制孔、装配系统、装配(含装配工艺)设计、虚拟装配、装配集成管理、数字化检测、面向柔性装配的设计等技术领域。 2 国内外研究现状 目前,国内仍大量采用传统型架进行人工装配,装配的自动化和柔性化水平较低,数字量协调尚未贯穿飞机整个装配过程,面向装配的设计理念还未形成共识。总体来看,与国外的飞机柔性数字化装配技术相比,还存在较大的差距,主要体现在如下几个方面:(1)飞机装配尺寸协调体系以数字量传递为主,模拟量传递为辅。飞机产品和装配工装采用CATIA进行数字化设计,利用Delmia V5平台进行数字化装配设计、装配仿真等工作刚刚起步; (2)自动装配系统的工程应用处于空白阶段,铆接大部分采用手工锤铆,螺栓连接全部为手工操作,自动化制孔、电磁铆接技术的工程化应用刚刚启动。自动化柔性装配技术涉及的单元技术和系统集成技术尚处于实验室研究阶段。由于数控托架技术和自动化钻铆工艺技术尚未合理地配套,引进的自动钻铆机未得到充分应用; (3)移动生产线技术处于起步研究阶段吗,由于我国的飞机装配技术比较落后,导致批生产与多品种变批量快速转换能力较差,仍然采用传统的批量刚性生产线,生产线的调整和生产准备周期很长。目前,我国航空工业尚不具备多品种变批量生产的快速转换能力,装配技术是主要的制约因素。 不过,乐观地来说,国内已经开展了与飞机柔性装配技术相关的技术方面一些工作。比如,在数字化工装设计技术方面,采用CAD技术进行飞机型架设计,开发了型架设计系统,

柔性工装

飞机薄壁杆柔性工装技术 0引言 随着航空制造技术的飞速发展,在现代飞机设计中,整体机加铝合金薄璧零件的应用越来越广泛,从框、梁、地板到壁板都大量采用整体机加薄璧结构。整体机加薄璧零件有许多优势,它既可以减轻结构的重量,提高飞机的有效载重,同时也可以增强结构强度,减少连接件数量,提高飞机的疲劳寿命,提高飞机的承载重量,极大地满足现代飞机设计的要求。但是超长薄壁结构件由于其结构刚度低,加工工艺性差,在切削力、切削热、装夹力作用下易发生加工变形、切削振颤等现象,很难保证加工精度和表面质量的要求,是飞机研制中普遍存在的难题。 关于大型薄壁件加工变形问题,国内研究人员也进行了大量的探索提出了一些实用的方法,但理论研究工作与国外发达国家相比还存在较大差距,到目前为止对大型薄壁零件的加工仍缺乏十分有效的方法,特别是在以飞机蒙皮为代表的大型薄壁曲面零件加工方面,生产厂家一般采用“先加工后成形工艺”,但该方法存在以下严重问题。经过成形工序后原先加工好的零件周边轮廓和窗孔部位将产生很大变形,使后续总装工序必须通过人工修整才能完成各零件的装配,这种通过人工修整进行总装的方法,不仅效率低而且更为严重的是难以保证精度,往往造成各零件结合部之间的间隙不均匀,对飞行器的气动性能和隐身性能均造成很大影响。新发展起来的“先成形后加工工艺”为解决传统的“先加工后成形工艺”存在的问题开辟了新的途径。但是实施这一新工艺时碰到一大难题成形后的半成品为刚度极差的弹性薄壁件且其表面轮廓为自由曲面,传统的针对刚性体的六点定位原理不适用于这类弹性体曲面零件,无法根据现有理论设计制造相应的工艺装备。由此严重影响机械加工的正常进行,目前解决此问题的技术途径主要有两条: 1刚性途径。弹性体曲面刚性定位技术按此得到的工装定位,支承曲面不具有可变性,因此一种工装只能用于一种零件,这将大幅度降低制造柔性和效率,同时也涉及大量刚性工装的存放,维护,管理等问题。

浅谈飞机总装自动化装配生产线[1](精)

Equipment Manufactring Technology No.10,2011 飞机自动化装配是实现缩短生产周期、降低成本、提高生产效率目标的重大关键技术。由于现代飞机都有较高的寿命要求,因而装配精度和装配品质起着重要的作用。一架飞机所用的连接件少则数十万件,多则上百万件,从减重、防腐、抗疲劳、密封、安装等方面出发,采用自动装配技术不仅可实现对不开敞、难加工部位的装配,而且还能有效提高装配效率和装配品质,降低装配成本,改变传统的装配方式,这是手工装配所不能完成的。 1国外飞机自动化装配技术的发展 国外飞机装配技术,基本上经历了传统的手工装配、半机械化装配、机械化装配和自动化装配的过程。上世纪中期,一些航空制造业巨头,如波音、空客等花大力气,投入巨资研究了以自动化装配为基本单元的飞机移动总装配生产线,并很快取得了令人瞩目的成功。先进的飞机装配技术和生产管理模式,彻底改变了人们的飞机装配制造理念,大幅度提高了飞机装配品质和效率。 波音公司最先尝试并探讨了改变传统装配方法的途径,从最初利用共用定位来减少工装,广泛采用自动化装配站到实现柔性化装配,最终形成移动生产线,这个发展过程,使飞机装配技术发生了革命性的变化。通过模块化装配、自动化装配站、脉动式生产线、移动生产等飞机总装技术,波音777飞机的研制,使研制周期缩短50%,出错返工率减少75%,成本降低25%,成为自动化装配技术在飞机制造中应用的标志和典范。 2国内飞机总装配技术发展现状 国内飞机总装,通常采用固定机位装配方式,即人、物、设备、工装等围绕着飞机转。整个总装过程,基本上是全部依靠人工装配,所用的工装主要是工作梯,测量设备落后、效率低下。虽然近年来国内也开展了一些相关技术的研究和应用探索,局部装配环节采用了一些数字化装配技术,但总体上与航空工业发达国家相差甚远。远远不能满足新型号的要求。这种差距,综合体现在以下4个方面:

探究飞行器大型薄壁件制造的柔性工装技术

探究飞行器大型薄壁件制造的柔性工装技术 摘要航天和航空工业牵涉到非常多专业和学科,属于富集高新技术的行业。当今,发达国家为了使先进航天航空产品的性能提高,普遍地应用大尺度与整体构造的薄壁件,像是飞机的蒙皮与骨架。为此,本文阐述了飞行器大型薄壁件制造的柔性工装技术。 关键词飞行器;薄壁件;制造;柔性工装 当前形势下,全面地分析柔性工装的技术、方法、理论,且以此作为前提条件研发与应用柔性工装产品,有利于飞行器制造一系列问题的解决,以及推动国内航天和航空工业的进步,有着重大的现实价值。 1 离散单元面组成可变定位/支承曲面的实现技术 为了结合弹性曲面定位原理对有着柔性飞行器薄壁件工装进行开发,务必处理工装定位/支承曲面生成柔性问题。处理这种问题的技术和原理是,借助M×N 个离散小单元面阵列包络的形成组合而成对应工件表面的工装定位/支承表面。因为这样是离散的工装定位/支承表面,能够调节所有的单元面。为此,基于计算机的控制影响之下,能够跟要求使异样的定位/支承包络曲面形成,即能准确地支承和定位形状不一的大型薄壁件。如此一来,一种工装能够加工各种工件,进而使弹性大型薄壁件的柔性制造实现[1]。 2 基于弹性曲面定位原理的技术 飞行器大型薄壁件是弹性的大尺度零件,以及其属于自由表面曲面的表面,跟通常的机械产品具备的容易定位的常规表面(圆柱面、平面等)不同,传统的面向刚体的六点定位原理难以对定位这种工件的问题进行有效的解决,也难以根据如此的原理对弹性曲面工件柔性工装系统进行设计。为了处理这种问题,要求分析面向弹性的大型薄壁件弹性曲面定位原理,且结合原理开来开发飞行器薄壁件柔性工装。为此,解决六点定位原理的不足之处,创建新型的面向弹性大型薄壁件弹性曲面定位原理,这属于开发柔性工装务必处理的理论性问题。具备了这种理论,才能够有效地突破飞行器薄壁件制造的柔性工装技术[2]。 3 动态地调度与理想地规划定位/支承阵列布局技术 为了有效地应用定位/支承单元总数(系统资源),尽量地控制变形的工件,要求分析最为理想的规划,从而科学地布局分布的定位/支承曲面包络点。这种技术的实质是基于工艺人员与理论模型的热值,分析与预测加工过程中的工件受热变形与受力变形等要素,从而对最为理想的定位/支承单元布局进行求解。在运行的时候,有效地借助动态变形控制技术,结合工装与工件的温度改变和受力现状等状况,动态地调度布局的柔性定位/支承曲面包络点,也就是结合实际的工件改变现状,动态地调整定位/支承点位置,进而减小变形形成的加工误差。

飞机柔性装配工装关键技术及发展趋势分析

飞机柔性装配工装关键技术及发展趋势分析 论文针对飞机柔性装配工装关键技术及发展趋势进行了研究,希望在论文的研究帮助下,能够为飞机制造行业发展中的柔性装配技术应用提供参考,同时还能按照其技术应用发展预测具体的技术应用控制要点,以此满足技术整合关键性要点控制。 【Abstract】The paper studies the key technology and development trend of aircraft flexible assembly tooling. It is hoped that with the help of the research in this paper,reference can be provided for the application of flexible assembly technology in the development of aircraft manufacturing industry,and the specific technical application control points can be predicted according to the development of its technical application,so as to meet the key points control of technical integration. 标签:飞机柔性;装配工装;关键技术;发展趋势 1 引言 飞机装配工装技术应用对于飞机制造行业发展中的技术应用构建具有重要意义,在其技术的应用整合控制处理中,为了将整体的技术应用关键性能力转变奠定基础,以柔性装配工艺技术应用控制符合飞机制造行业发展中的装配技术应用控制需求,在其装配技术的处理中,应该按照装配技术实施中的关键性技术控制进行及时的分析整合,保障其裝配技术应用控制能够和具体的飞机装配工艺技术应用整合,并且能够按照工装装配技术应用中的需求,去设计和调整对应的技术实施要点,提升飞机制造行业发展中的装配技术应用控制性能,以此满足整体的飞机装配技术发展应用实施需求。 飞机作为当前经济建设发展中的一种重要性设备,无论是在航空交通运输业发展建设上,还是在航空运输及灌溉监测上都需要借助飞机进行专门的技术应用分析。只有保障了飞机制造行业发展的技术应用科学,才能实现其整体技术应用控制的实践性能力转变。以柔性装配工装技术实施能够将飞机制造行业发展中的技术应用控制实践性能力转化,提升了飞机装配制造技术应用的精准性及实践性。 2飞机柔性装配工装关键技术构成 2.1 工装模块化技术 飞机装配技术应用作为工装技术实施中的关键性装配技术,在其技术的装配实施中,需要以模块化工装技术作为整体装配技术应用中的关键性技术控制,并且需要严格的按照其装配技术处理中的模块化技术处理进行整合优化。按照这种装配技术应用发展中的技术处理需求,在实施工装模块化技术中,按照飞机设计制造中的装配技术应用需求,对每个装配模块内的点进行细化,以模块作为固定

柔性制造

柔性制造的现状及其发展趋势 随着社会的发展与科技水平的提高,传统的制造技术已经不能满足人们日益增长的生活需求,许多人对产品的样式和功能都有了更高层次追求。在计算机技术、微电子技术、机械制造自动化技术与通信技术日趋成熟的今天,柔性制造技术已经在国内外得到了广泛的认可并有着良好的发展趋势。 1.柔性制造的基本概念 柔性制造技术是在自动化技术、信息技术及制造技术的基础上,将以往企业中相互独立的工程设计、生产制造及经营管理等过程,在计算机及其软件的支撑下,构成一个覆盖整个企业的完整而有机的系统,以实现全局动态最优化,总体高效益、高柔性,并进而赢得竞争全胜的智能制造技术。柔性制造一方面是系统适应外部环境变化的能力,可用系统满足新产品要求的程度来衡量;另一方面是系统适应内部变化的能力,可用在有干扰(如机器出现故障)情况下,系统的生产率与无干扰情况下的生产率期望值之比来衡量。“柔性”是相对于“刚性”而言的,传统的“刚性”自动化生产线主要实现单一品种的大批量生产。 柔性可以表述为两个方面,一个方面是指生产能力的柔性反应能力,也就是机器设备的小批量生产能力。其优点是生产率很高,由于设备是固定的,所以设备利用率也很高,单件产品的成本低。但价格相当昂贵,且只能加工一个或几个相类似的零件,难以应付多品种中小批量的生产。随着批量生产时代正逐渐被适应市场动态变化的生产所替换,一个制造自动化系统的生存能力和竞争能力在很大程度上取决于它是否能在很短的开发周期内,生产出较低成本、较高质量的不同品种产品的能力。另一个方面,指的是供应链的敏捷和精准的反应能力。在柔性制造中,供应链系统对单个需求做出生产配送的响应。从传统“以产定销”的“产——供——销——人——财——物”,转变成“以销定产”,生产的指令完全是由消费者独个触发,其价值链展现为“人——财——产——物——销”这种完全定向的具有明确个性特征的活动。在这个过程中不仅对生产的机器提出了重大的挑战,也对传统的供应链提出了革命性的颠覆。 2.柔性制造的特征及优点 柔性制造的特征主要包括:(1) 机器柔性,是指系统的机器设备具有随产品变化而加工不同零件的能力;(2) 工艺柔性,系统能够根据加工对象的变化或原材料的变化而确定相应的工艺流程;(3) 产品柔性,产品更新或完全转向后,系统不仅对老产品的有用特性有继承能力和兼容能力,而且还具有迅速、经济地生产出新产品的能力;(4) 生产能力柔性,当生产量改变时,系统能及时作出反应而经济地运行;(5) 维护柔性,系统能采用多种方式查询、处理故障,保障生产正常进行;(6) 扩展柔性,当生产需要的时候,可以很容易地扩展系统结构,增加模块,构成一个更大的制造系统。具有这些特征的制造系统必然具有以下优点:(1)设备利用率高。(2)在制品减少80% 左右。(3)生产能力相对别的生产技术来说更为稳定。(4)产品质量高。(5)运行灵活。(6)在生产产品的过程中,机器的应变能力比较强。(7)经济效果显著。柔性制造技术是一种技术复杂、高度自动化的技术,它将微电子学、计算机和系统工程等技术有机地结合起来,理

飞机壁板类组件柔性工装系统研究

第36卷?第11期?2014-11(下)? 【133】 收稿日期:2014-07-11 作者简介:白新宇(1981 -),男,辽宁人,工程师,硕士,主要从事非标设备研制和工装设计的工作。 飞机壁板类组件柔性工装系统研究 Study on flexible tooling system of aircraft panel component 白新宇,王思聪 BAI Xin-yu, WANG Si-cong (中航工业沈阳飞机工业(集团)有限公司,沈阳 110850) 摘 要:针对国内飞机壁板类组件传统装配模式采用的刚性工装重构性差问题,采用柔性工装技术, 研制了一套壁板类组件柔性工装系统,替代了多套传统刚性工装。该柔性工装系统通过伺服电机驱动调形单元X、Y方向移动定位,调形单元定位可更换卡板,卡板内形定位、夹紧壁板组件,最终实现了壁板类组件的柔性装配。使用激光干涉仪测得移动单元X、Y方向的定位精度达到±0.05mm,重复定位精度均达到±0.02mm。最后实施了4套壁板组件在工装上的应用验证。 关键词:壁板组件;柔性工装;设计与验证 中图分类号:TH16;TH122 文献标识码:A 文章编号:1009-0134(2014)11(下)-0133-03Doi:10.3969/j.issn.1009-0134.2014.11(下).36 0 引言 壁板类组件是构成飞机气动外形的主要结构 件,具有结构尺寸大,刚度低,制造和装配精度高等特点,其装配精度直接影响后继机身、机翼部装和总装的装配质量,是保证飞机装配精度的基础。壁板类组件通常采用装配工装进行装配,不但可保证装配的飞机零部件精确定位,而且还可以限制装配过程中连接变形,使产品满足准确度和互换性的要求。为了保证定位精度和刚度,传统壁板类装配工装均采用刚性结构,即一套型架对应一套卡板,只能用于一套壁板组件的装配。采用这种一对一模式装配壁板组件需要大量工装,这不仅增加了制造成本,拖延了研制周期,还占用了大量厂房空间。随着国内新机型号逐渐增多,生产厂面临多品种、小批量、短周期和低成本的生产要求,传统刚性结构工装已经无法满足对飞机壁板类组件装配要求。 柔性装配工装是基于产品数字量尺寸协调体系的、可重构的模块化、自动化装配工装系统,其目的是免除设计和制造各种产品装配专用的传统装配型架/夹具,从而降低工装制造成本,缩短工装准备周期,同时大幅度提高装配生产率[1]。柔性装配工装在国内外已成功应用,并取得良好效果。实际应用中的柔性装配工装主要有:美国CAN 制造系统公司的基于POGO 单元的柔性工装系统;西班牙M.Torres 公司的飞机板类零件的柔性工装TORRESTOOL [3];英国Electroimpact 公司为空客 飞机机翼开发的大型柔性装配系统[3]。国内企业和高校紧跟国际发展趋势,也研发了大量柔性工装系统,并得到初步应用[4~7]。 基于柔性装配工装的优点和应用案例,大力发展柔性工装是解决生产厂目前难题的有效手段。本文根据国内某系列飞机壁板类组件的结构特点,结合国内壁板类组件的装配现状,研制出一套壁板类组件柔性装配工装,并进行应用验证,取得良好效果。 1 壁板类组件结构及装配过程 壁板类组件主要由蒙皮、长桁和隔框等部分组成,有时还包括与其他部件对接的接头或对接型材[8]。壁板类组件的装配过程主要有以下几个步骤:1)零件的定位及定位铆接。在卡板上安放长桁,蒙皮,隔框及补偿角片等,然后进行定位铆接。2)钻孔、锪窝和铆接。3)补充铆接及安装工作。壁板类组件及装配卡板如图1所示 。 1.卡板; 2.蒙皮; 3.长桁; 4.隔框; 5.长桁定位器; 6.隔框定位器; 7.工具球 图1 壁板类组件及装配卡板简图

飞行器大型薄壁件制造的柔性工装技术

飞行器大型薄壁件制造的柔性工装技术 我们针对飞机蒙皮数字化精确制造和绿色制造的需求,正在研究开发可替代传统化铣工艺的新一代高质高效绿色制造系统(已申请发明专利)。在新系统上,成形后的蒙皮经过一次装夹即可完成传统化铣工艺中的粗修、铣凹、切边、开孔等工序,消除了多次装夹带来的误差,既提高加工精度又提高生产效率。另一方面,新系统加工时无污染物排放,加工废屑可回收,电能消耗减少,环保节能效果显著,可实现绿色制造。 航空、航天工业涉及众多学科和专业的深入交叉,是高新技术最为富集的领域。目前,发达国家为提高先进航空航天产品的综合性能,广泛采用整体结构和大尺度的薄壁件,如飞机的骨架和蒙皮等。但整体结构和大尺度薄壁件不仅尺寸大,非常容易变形,而且结构复杂,形状精度要求很高,制造难度相当大。此外,大型薄壁件的外形多数与飞行器的气动性能有关,周边轮廓与其他零部件还有复杂的装配协调关系,装配难度也非常大。因此多年来,大型航空薄壁件制造技术作为飞机机体制造的六大关键技术之一,一直困扰着航空工业[1]。 另一方面,飞行器制造,特别是大型飞机的制造,属于典型的多品种小批量制造,因此对制造过程的柔性有特别突出的要求。传统和柔性制造系统(FMS)虽然可实现常规刚性零件的柔性制造,但却难以实现飞行器大型薄壁件的柔性制造。主要原因是,传统工艺装备无法实现易变形薄壁件的柔性定位、柔性装夹、柔性输送和柔性存储,因此仅靠数控机床本身的柔性和常规自动化物流系统无法实现对这类特殊零件实施高柔性制造,更无法实现系统化的柔性制造(从柔性成型、柔性加工到柔性装配的全过程柔性制造)。 以上两方面问题的叠加和交错影响,使得飞行器大型薄壁件的柔性制造变得非常复杂,已成为航空、航天制造中的重大难题。业界认为,解决此问题的关键是大型易变形薄壁件的柔性工艺装备技术。只有高柔性抗变形的新型工艺装备与先进数控机床相配合,才能真正有效解决这一难题。因此,对柔性工艺装备的理论、方法和实现技术进行深入系统研究,在此基础上加速发展柔性工装产品并加强在实际中推广应用,对解决飞行器制造中的上述关键问题,对促进我国航空、航天工业的发展,具有重要实际意义。 国外研究和应用现状 通过新的工艺技术和柔性工艺装备解决大型薄壁件加工中的变形问题,美、法、德、日等工业发达国家都非常重视,均投入相当人力物力进行研究[2-4]。但所取得的成果,均作为涉及国防的关键技术,对外秘而不宣[5]。目前,国外公开发表的文献多以常规零件为研究对象,主要进行切削力模型、变形分析、误差预测等方面的理论研究[6-12]。 在实际工装系统开发方面,企业进行了大量工作,推出许多实用产品,并在行业得到应用。

相关文档
最新文档