一阶电路分析

一阶电路分析

一阶电路分析

1、图示电路中,开关闭合之前电路已处于稳定状态,已知R 1=R 2=2Ω,请用三要素法求解开关闭合后电感电流i L 的全响应表达式。

2.、图示电路中,t=0时开关闭合,闭合之前电路已处于稳定状态,请用三要素法求解开关闭合后电容电压u c 的全响应表达式。

3、一阶电路如图,t = 0开关断开,断开前电路为稳态,求t ≥ 0电感电流

i L (t) ,并画出波形。

5、一阶电路如图,t = 0开关断开,断开前电路为稳态,求t ≥ 0电容电压u C (t) ,并画出波形。

6.电路如图所示,已知Ω==421R R ,

Ω=23R ,H L 1=,V U S 121=,V U S 62=。电路原来处于稳定状态,

0=t 时,开关S 闭合,试求)0(+L i 和

)0(+L u 。 (5分)

S U -

+2S L

《电路分析基础》作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。

题1-19图 补充题: 1. 如图1所示电路,已知 , ,求电阻R 。 图1 解:由题得 因为 所以 2. 如图2所示电路,求电路中的I 、R 和s U 。 图2 解:用KCL 标注各支路电流且标注回路绕行方向如图2所示。 由KVL 有 解得A I 5.0=,Ω=34R 。 故 第二章(P47-51) 2-4 求题2-4图所示各电路的等效电阻ab R ,其中Ω==121R R ,Ω==243R R ,Ω=45R ,S G G 121==, Ω=2R 。 解:如图(a )所示。显然,4R 被短路,1R 、2R 和3R 形成并联,再与5R 串联。 如图(c )所示。 将原电路改画成右边的电桥电路。由于Ω==23241R R R R ,所以该电路是一个平衡电桥,不管开关S 是否闭合,其所在支路均无电流流过,该支路既可开路也可短路。 故 或 如图(f )所示。 将原电路中上边和中间的两个Y 形电路变换为?形电路,其结果如下图所示。 由此可得 2-8 求题2-8图所示各电路中对角线电压U 及总电压ab U 。 题2-8图 解:方法1。将原电路中左边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 14 12441=+?=,A I I 314412=-=-= 故 方法2。将原电路中右边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 2.16 14461=+?=,A I I 8.22.14412=-=-= 故 2-11 利用电源的等效变换,求题2-11图所示各电路的电流i 。 题2-11图 解:电源等效变换的结果如上图所示。 由此可得 V U AB 16=A I 3 2=

电路分析基础作业参考解答

电路分析基础作业参考 解答 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。

(b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。 补充题: 1. 如图1所示电路,已知图1 解:由题得 I 3 2=0

天津理工电路习题及答案 第六章 一阶电路

第六章一阶电路 ——经典分析法(微分方程描述) ——运算分析法(代数方程描述)见第十三章 一、重点和难点 1. 动态电路方程的建立和动态电路初始值的确定; 2. 一阶电路时间常数、零输入响应、零状态响应、冲激响应、强制分量、自由分量、稳态分量和 暂态分量的概念及求解; 3. 求解一阶电路的三要素方法; 电路初始条件的概念和确定方法; 1.换路定理(换路规则) 仅对动态元件(又称储能元件)的部分参数有效。 ①电容元件:u C(0-) = u C(0+);(即:q C(0-) = q C(0+));i C(0-) ≠i C(0+)。 ②电感元件:i L(0-) = i L(0+);(即:ΨL(0-) = ΨL(0+));u C(0-) ≠u C(0+)。 ③电阻元件:u R(0-) ≠u R(0+);i R(0-) ≠i R(0+)。 因此,又称电容的电压、电感的电流为状态变量。电容的电流、电感的电压、电阻的电压和电流为非状态变量。如非状态变量的数值变化前后出现相等的情况则视为一种巧合,并非是一种规则。 2.画t=0+时刻的等效电路 画t=0+时刻等效电路的规则: ①对电容元件,如u C(0-) = 0,则把电容元件短路;如u C(0-) ≠ 0,则用理想电压源(其数值为u C(0-))替代电容元件。 ②对电感元件,如i L(0-) = 0,则把电感元件开路;如i L(0-) ≠ 0,则用理想电流源(其数值为 i L(0-))替代电感元件。 画t=0+时刻等效电路的应用: 一般情况下,求解电路换路后非状态变量的初始值,然后利用三要素法求解非状态变量的过渡过程。 3. 时间常数τ

RC一阶电路(动态特性 频率响应)研究

9 RC 一阶电路(动态特性 频率响应) 一个电阻和一个电容串联起来的RC 电路看起来是很简单的电路。实际上其中的现象已经相当复杂,这些现象涉及到的概念和分析方法,是电子电路中随处要用到的,务必仔细领悟。 9.1 零输入响应 1.电容上电压的过渡过程 先从数学上最简单的情形来看RC 电路的特性。在图9.1 中,描述了问题的物理模型。假定RC 电路接在一个电压值为V 的直流电源上很长的时间了,电容上的电压已与电源相等(关于充电的过程在后面讲解),在某时刻t 0突然将电阻左端S 接地,此后电容上的电压会怎么变化呢?应该是进入了图中表示的放电状态。理论分析时,将时刻t 0取作时间的零点。数学上要解一个满足初值条件的微分方程。 看放电的电路图,设电容上的电压为v C ,则电路中电流 dt dv C i C =, 依据KVL 定律,建立电路方程: 0=+dt dv RC v C C 初值条件是 ()V v C =0 像上面电路方程这样右边等于零的微分方程称为齐次方程。 设其解是一个指数函数: ()t C e t v S K = K 和S 是待定常数。 代入齐次方程得 0=KS +K S S t t e RC e 约去相同部分得 0=S +1RC 于是 RC 1-=S 齐次方程通解 ()RC t C e t v -K = 还有一个待定常数K 要由初值条件来定: ()V K Ke v C ===00 最后得到: () t RC t C Ve Ve t v --==

在上式中,引入记号RC =τ,这是一个由电路元件参数决定的参数,称为时间常数。它有什么物理意义呢? 在时间t = τ 处, ()V V Ve v 0.368=e ==-1-C τττ 时间常数 τ是电容上电压下降到初始值的1/e =36.8% 经历的时间。 当t = 4 τ 时,()V v 0183.0=4C τ,已经很小,一般认为电路进入稳态。 数学上描述上述物理过程可用分段描述的方式,如图9.1 中表示的由V 到0的“阶跃波”的输入信号,取开始突变的时间作为时间的0点,可以描述为: ()()0=S ≤t V t v 对 ;()()00=S ≥t t v 对。 [练习.9.1]在仿真平台上打开本专题电路图,按图中提示作出“零输入响应”的波形图。观察电容、电阻上输出波形与输入波形的关系,由图上读出电路的时间常数值,与用电路元件值计算结果比较。 仿真分析本专题电路 得到波形图如图9.2 所示。 在0到1m 这时间内,电压源值为V ,在时刻1m 时电压源值突然变到0。仿真平台在对电路做瞬态分析之前,对电路作了直流分析,因此图中1m 以前一段波形只是表明电路已经接在电压源值为V “很长时间”后的持续状态。上面理论分析只适用于1m 以后的时间过程。时刻1m 是理论分析的时间“零”点。图上看到,电容上的电压随时间在下降,曲线的样子是指数下降曲线的典型模样。由v C 曲线找到电压值为0.368V 的地方,读出它的时刻值(=2m ),即可求到电路的时间常数是1m (1毫秒)。 图中也画出电阻上电压变化曲线。观察,发现在1m 以前,电阻电压为0,在时刻1m ,电阻电压突变到 -V ,然后逐渐升到0。怎样理解这个过程呢? 2.电阻上电压的过渡过程 虽然专题电路图中取电阻的电压时是由电阻直接落地的电路得到的,但电路元件参数是相同的,该电阻上的电压应和电容落地电路中的电阻是一样的。按照这种想法,看图9.1 ,注意电阻的电压的参考方向应是由S 点向右,即应是v(S 点)-v C ,在电源电压为V 的时间内,电容已被充电到v C =V ,那么v R = v(S 点)-v C =V -V =0。在理论分析时间0处,电压源的电压值突变到0,即v(S 点)=0,但电容上的电压不能突变(回顾电容的特性:电压有连续性)。为了区分突变时刻的前和后的状态,用0- 表示突变前,0+ 表示突变后。 即是说, v C (0+)= v C (0-)=V 那么, v R (0+)= 0-v C (0+)= -V 在随后的时间内,按KVL 定律, 电阻上的电压应为: ()()τt RC t C R Ve Ve t v t v ---=-=-=

电工技术(第三版席时达)教学指导、习题解答第五章.docx

第五章电路的瞬态分析【引言】①直流电路:电压、电流为某一稳定值 稳定状态(简称稳态)交流电路:电压、电流为某一稳定的时间函数 ○2当电路发生接通、断开、联接方式改变及电路参数突然变化时,电路将从一种稳态变换到另一种稳态,这一变换过程时间一般很短,称为瞬态过程或简称瞬态(也称暂态过程或过渡过程)。 防止出现过电压或过电流现象,确保电气设备安全运行。 ○3 瞬态分析的目的 掌握瞬态过程规律,获得各种波形的电压和电流。 学习目的和要求 1、了解产生瞬态过程的原因和研究瞬态过程的意义。 2、掌握分析一阶电路的三要素法。理解初始值、稳态值、时间常数的概念。 3、理解RC电路和RL电路瞬态过程的特点。 4、了解微分电路和积分电路 本章重点:分析一阶电路的三要素法,RC电路的充放电过程。 本章难点:初始值的确定。 5-1瞬态过程的基本知识 一、电路中的瞬态过程 【演示】用根据图5-1-1 制作的示教板。观察开关S 合上瞬间各灯泡点亮的情况。 S I C I L I R +C L R U S - HL 1HL2HL3 图 5-1-1 【讲授】开关 S HL 1突然闪亮了一HL 2由暗逐HL 3立刻变合上瞬间下,然后逐渐暗下渐变亮,最亮,亮度稳 去,直到完全熄灭后稳定发光定不变 有瞬态过程无瞬态过程

外因——电路的状态发生变化(换路) 电路发生瞬态过程的原因 内因 —— 电路中含有储能元件(电容或电感) 二、换路定律 【讲授】①换路定律是表述换路时电容电压和电感电流的变化规律的,即换路瞬间电容上的电压和电 感中的电流不能突变。 ②设以换路瞬间作为计时起点,令此时 t =0,换路前终了瞬间以 t =0 —表示,换路后初始瞬间以 t =0 +表示。则换路定律可表示为: u C (0 +) = u C (0 — ) 换路瞬间电容上的电压不能突变 i L (0 +) = i L (0 — ) 换路瞬间电感中的电流不能突变 换路后 换路前 初始瞬间 终了瞬间 【说明】①换路定律实质上反映了储能元件所储存的能量不能突变。因为 W C = 1 Cu C 2、W L = 1 Li L 2, p= dw 趋于无穷大,这是不可能的。 2 2 u C 和 i L 的突变意味着能量发生突变,功率 dt ②当电路从一种稳定状态换路到另一种稳定状态的过程中, u C 和 i L 必然是连续变化的,不能突变。 这种电流和电压的连续变化过程就是电路的瞬态过程。 ③电阻是耗能元件,并不储存能量,它的电流、电压发生突变并不伴随着能量的突变。因此由纯电 阻构成的电路是没有瞬态过程的 。 ④虽然 u C 和 i L 不能突变,但电容电流和电感电压是可以突变的,电阻的电压和电流也是可以突变 的。这些变量是否突变,需视具体电路而定。 三、分析一阶电路瞬态过程的三要素法 【讲授】①一阶电路是指只包含一个储能元件,或用串、并联方法化简后只包含一个储能元件的电 路 经典法 (通过微分方程求解) ②分析一阶电路瞬态过程的方法 三要素法 (简便方法,本书只介绍此法的应用) ③在直流电源作用下的任何一阶电路中的电压和电流,只要求得初始值、稳态值和时间常数这三个 要素,就可完全确定其在瞬态过程中随时间变化的规律。——三要素法:

一阶动态响应(电路分析)

姓名:王硕

一、实验目的 1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。掌握测量一阶电路时间常数的方法。 2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。 3、用multisim仿真软件设计电路参数,并观察输入输出波形。 二、实验原理 1、零输入响应和零状态响应波形的观察及时间常数τ的测量。 当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。 以一阶RC动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a)所示。 ( u i ( u o (a)(b) 图1 一阶RC动态电路 方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ5 2/≥ T)。故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的) (t u i 和) (t u o 的波形如图1(b)所 示。在)2/ 0(T t, ∈的零状态响应过程中,由于T << τ,故在2/ T t=时,电路已经达到 稳定状态,即电容电压 S o U t u= )(。由零状态响应方程 ) 1( )(/τt S o e U t u- - = 可知,当2/ ) ( S o U t u=时,计算可得τ 69 .0 1 = t。如能读出 1 t的值,则能测出该电路的时间常数τ。 2、RC积分电路 由RC组成的积分电路如图2(a)所示,激励) (t u i 为方波信号如图2(b)所示,输出电压) (t u o 取自电容两端。该电路的时间常数 2 T RC>> = τ(工程上称10倍以上关系为远远大于或远远小于关系。),故电容的充放电速度缓慢,在方波的下一个下降沿(或上升沿)

(完整word版)动态电路分析专项练习题

图 1 S P L A 2 A 1 动态电路分析练习题 1.如图1所示,电源两端的电压保持不变。将滑动变阻器的滑片P 置于中点,闭合开关S 后,各电表有示数,灯泡的发光情况正常。现将滑动变阻器的滑片P 由中点向右移动,则 ( ) A .灯泡L 变暗 B .电压表V 示数变小 C .电流表A 1示数变小 D .电流表A 2示数变大 2.如图2所示电路,电源两端电压保持不变。闭合开关S ,当滑动变阻器的滑片P 向右滑动时,下列判断正确的是( ) A.电压表V 1示数变小,电压表V 2示数变大,电流表示数变小 B.电压表V 1示数变大,电压表V 2示数变大,电流表示数变大 C.电压表V 1示数变小,电压表V 2示数变小,电流表示数变小 D.电压表V 1示数变大,电压表V 2示数变小,电流表示数变小 3.如图3所示,将光敏电阻 R 、定值电阻 R 0、电流表、电压表、开关和电源连接成如图3所示电路.光敏电阻的阻值随光照强度的增大而减小.闭合开关,逐渐增大光敏电阻的光照强度,观察电表示数的变化情况应该是 ( ) A .电流表和电压表示数均变小 B .电流表示数变大,电压表示数变小 C .电流表示数变小,电压表示数变大 D .电流表和电压表示数均变大 4. 如图4所示,R 1、R 2是阻值相同的两个定值电阻,当闭合开关S 1后,两电流表示数相同;当再闭合开关S 2后( ) A .电路中总电阻变大 B .电流表A 1的示数为零,A 2的示数变大 C .电流表A 1的示数不变,A 2的示数变大 D .电流表A 2示数是A 1示数的2倍 5.图5所示电路中,电源两端电压保持不变。闭合开关S ,将滑动变阻器的滑片P 由b 端向a 端滑动一段距离,电压表V 1、V 2示数的变化量分别为ΔU 1、ΔU 2,电流表示数的变化量为ΔI 。不考虑温度对灯丝电阻的影响,下列判断中正确的是( ) A .电压表V 1示数变大,电压表V 2示数变大,电流表示数变大 B .电压表V 1示数变大,电压表V 2示数变小,电压表V 2与V 1的示数之差不变 C .定值电阻R 1的阻值为 I U ??2 D .小灯泡L 消耗的电功率增大了I U ???1 6.如图6所示,电源电压不变,闭合开关S 后,滑动变阻器滑片P 向b 端移动过程中,下列说法正确的是 ( ) A .电流表A 1示数变小,电路的总电阻变小 B .电流表A 2示数不变,电路消耗的总功率变小 C .电压表V 示数变小,R 1与R 2两端的电压之比变小 D .电压表V 示数不变,电压表V 的示数与电流表A 2的示数比值变大 7.图7所示的电路中,电源两端电压为6V 并保持不变,定值电阻R 1的阻值为10Ω,滑动变阻器R 2的最大阻值为50Ω。 当开关S 闭合,滑动变阻器的滑片P 由b 端移到a 端的过程中,下列说法中正确的是 ( ) A .电流表和电压表的示数都不变 B .电压表的示数变大,电流表的示数变小 C .电压表的示数变化范围为1V~6V D .电流表的示数变化范围为0.2A~0.6A 图2 A S V 2 P V 1 R 2 R 1 S O V A R 0 R A 1 A 2 R 1 R 2 S 1 S 2 图6 a V R 1 A 1 S P R 2 b A 2 图 S a b R 2 P 图5 S A V 2 V 1 R 1 R 2 L a b P

(电路分析)一阶电路的全响应

一阶电路的全响应 一阶电路的全响应 一、全响应 全响应 一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。 图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。时开关闭合,现讨论时电路响应的变化规律。 时,响应的初始值为 时,响应的稳态值为 用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应 和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。 图5.5-1(b)中,零输入响应为 图5.5-1(c)中,零状态响应为

根据叠加定理,图5.5-1(a)电路的全响应为 用表示全响应,表示响应的初始值,表示稳态值。 全响应的变化规律 1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。 2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。 3、当时,即初始值等于稳态值,则全响应。电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法 全响应的三要素 初始值 稳态值 时间常数 例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。 解:欲求电容电流,只要求出电容电压即可。 1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。由换路定则得初始状态 2、确定电容电压的稳态值。 作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压 则电容电压的稳态值为 3、求时间常数τ。 求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ 所以,时间常数为 4、求全响应。 电路换路后的电容电压为 电容电流为

电路故障和动态电路分析题目

电路故障和动态电路分析 题目 Prepared on 22 November 2020

电路故障分析: 在探究串并联电路电压的规律的实验中,会遇见多种实验故障,最典型的有如下两种,一是电路元件短路[用电压表测],二是电路断路[用电流表测] 1、如图所示,闭合开关S,电路正常工作。过了一段时间,灯泡L熄灭,两只 电表的示数都变大。则下列判断正确的是() A.电阻R断路 B.电阻R短路 C.灯泡L短路 D.灯泡L断路 2、某同学在探究串联电路电流规律的实验中,按图接好电路,闭合开关后,发现灯L 1 、L 2 都不发光,电流表示数为零。他用电压表分别接到电流表、灯L 1 、灯L 2 两端测量电压, 发现电流表、灯L 1 两端电压均为零,灯L 2 两端电压不为零。电路的故障可能是() A.电流表断路B.灯L1断路 C.灯L2断路D.灯L2短路 3、如图所示,电源电压不变,两只电表均完好。开关S闭合后,发现只有一只电表的指针发生偏转,若电路中只有一个灯泡出现了故障,则可能是() A.电压表指针发生偏转,灯泡L1短路 B.电压表指针发生偏转,灯泡L1断路 C.电流表指针发生偏转,灯泡L2短路 D.电流表指针发生偏转,灯泡L2断路 4、如图所示,电源电压不变,闭合开关,电路正常工作,一段时间后发现,其中一个电压 表的示数变大,故障原因可能是() A.电阻R可能发生短路 B.电灯L可能发生断路 C.电阻R可能发生断路 D.电压表V2损坏 5、如图所示的电路,闭合开关,观察发现灯泡L 1 亮、L 2 不亮。调节变阻器 滑片P,灯泡L 1 的亮度发生变化,但灯泡L 2 始终不亮。出现这一现象的原 因可能是()

一阶RC电路分析

3.3 RC电路的响应 经典法分析电路的暂态过程,就是根据激励通过求解电路的微分方程以得出电路的响应。激励和响应都是时间的函数所以这种分析又叫时域分析。 3.3.1 RC电路的零输入响应 零输入响应------无电源激励,输入信号为零。在 此条件下,由电容元件的初始状态u C(0+)所产 生的电路的响应。 分析RC电路的零输入响应,实际上就是分析它 的放电过程。如图3.3.1(RC串联电路,电源电压 U0)。 换路前,开关S合在位置2上,电源对电容充电。 t=0时将开关从位置2合到位置1,使电路脱离电源,输入信号为零。此时,电容已储有能量,其上电压的初始值u C(0+)=U0;于是电容经过电阻R 开始放电。 根据基尔霍夫电压定律,列出t≥0时的电路微分方程 RCdu C/dt+u C=0 3.3.1 式中i=Cdu C/dt 令式 3.3.1的通解为u C=Ae pt代入3.3.1并消去公因子Ae pt得微分方程的特征方程RCp+1=0 其根为p=-1/RC 于是式3.3.1的通解为u C=Ae-1t/RC 定积分常数A。根据换路定则,在t=0+时,u C(0+)=U0,则A=U0。 所以u C= U0e-1t/RC= U0 e-1/τ------ 3.3.3 C 图3.3.1RC放电电路- + -U + u C - t=0+ u C S i R

其随时间变化的曲线如图3.3.2所示。它的初始值为U 0,按指数规律衰减而趋于零。 式3.3.3中,τ=RC 它具有时间的量纲, 所以称电路时间常数。决定u C 衰减的快慢。 当t=τ时, u C = U 0e -1=U 0/2.718=36.8%U 0 可见τ等于电压u C 衰减到初始值U 0的36.8%所需的时间。可以用数学证明,指数曲线上任意点的次切距的长度都等于τ。以初始点为例〖图3.3.2(a )〗 du C /dt=-U 0/τ 即过初始点的切线与横轴相交于τ。 从理论上讲,电路只有经过t=∞的时间才能达到稳定。但是,由于指数曲线开始变化较快,而后逐渐缓慢, 如下表所列 τ 2τ 3τ 4τ 5τ 6τ e -1 e -2 e -3 e -4 e -5 e -6 o.368 0.135 0.050 0.018 0.007 0.002 所以,实际上经过t=5τ的时间,就足以认为达到稳态了。这时 u C =U 0e -5=0.007 U 0=(0.7%)U 0 τ越大,u C 衰减的越慢(电容放电越慢)如图 36.8%U 0 图3.3.2u C 、u R 、i 的变化曲线 (a) O τ-U 0 (b) -U 0/R 0 t O u R i u C 、u R 、i U 0 u C u C U 0 t U 0 u C

两种方法解决动态电路分析问题

动态电路分析 第一种方法: 工具:1.闭合电路欧姆定律I=E R+r 及U =E -Ir 2.部分电路欧姆定律I =U R 步骤:1.由R 变化可知R 总的变化,从而判断U 路及I 总的变化。 如当R 增大时,根据I=E R+r 可知,I 总减小,再根据U 路=E -Ir 可知,U 路增大。 到此可以判断路端电压的变化,电路总电流的变化,及电源的总功率、电源内部功率等。 2.判断主干路上电阻的电压变化 如果主干路上有电阻,则先判断主干路上电阻两端的电压,再判断并联电路两端的电压。 3.判断并联支路中含固定电阻的分支中电流的变化 4.判断并联支路中含变阻器的分支中电流的变化。 例题1:S 闭合后,当R 2的滑动触头向左滑动时,判断各电 表的示数变化。 【解析】1.当R 2的滑动触头向左滑动时,R 2减小,R 总减小, I 总增大,U 路减小。电压表测量的是路端电压,故减小,A 电流表测量的总电流,故增大。 2.本电路图为R 1与R 2并联电路,故先判断R 1,由于R 1两端 电压减小,故R 1上的电流减小,则A1电流增大。 第二种判断方法:“串反并同” 电阻的变化趋势与电压、电流、功率的变化趋势符合“串”相反,“并”相同。 由电源的正极出发,经过变阻器所在的支路回到电源的负极。凡是在这条路上的元件,我们都称之为串联关系,其他的未涉及的元件,称为并联关系。图中从正极出发,经电流表A 至电流表A1,经变阻器到电源的负极。那么这三个元件我们称之为与变阻器“串联关系”,而R 1、电压表V 与变阻器“并联关系”,这里所谓的串并联不是严格意义的串并联。根据“串反并同”的原则,由于变阻器的电阻是减小的,故两个电流表的示数是增大的,而电压的示数是减小的,R 1上的电流也是减小的。这一结果与第一种方法判断结果是相同的。值得注意的是,无论用哪种方法,首先要根据闭合电路欧姆定律把路端电压及电路的总电流的变化判断出来,有很多题目需要判断电源的总功率或内部功率,或路端电压或电路的总电流,这都需要路端电压及总电流来判断。 利用第二种判断方法似乎简单一些,但有些情况需要我们能认识到。举例如下。 例题2:在如图所示的电路中,闭合电键S,将滑动变阻器的滑片P 向a 端移动一段距离后,下列结论正确的是(AD ) A. 灯泡L 变亮 B. 理想电流表读数变小 C. 理想电压表读数变小 D. 电容器C 上的电荷量增多 【解析】本题中经过变阻器的电流也经过电压表V 及灯泡L 及电 流表A ,因此我们把它们作为“串”的关系,“串反” ,因此L 变亮, V 、A 都变大,电容器与L 是并联的,它两端的电压也增大,故电 量增大。

电路分析基础[第五章动态电路的分析]课程复习

第五章动态电路的分析 5.2.1 动态电路初始条件的确立 一、初始条件 动态电路中,一般将换路时刻记为t=0,换路前的一瞬间记为t=0_,换路后的一瞬间记为t=0+,则电路变量在t=0+的值,称为初始值,也称初始条件。 二、换路定则 如果在换路前后,电容电流或电感电压为有限值,则换路时刻电容电压和电 感电流不跃变,即u C (0_)=u C (0+),i L (0_)=i L (0+)。 三、初始条件的计算 (1)由换路前最终时刻即t=0_时的电路,求出电路的独立状态变量u C (0_) 和i L (0_)。从而根据换路定则得到u C (0+)和i L (0+); (2)画出t=0+时的等效电路。在这一等效电路中,将电容用电压为u C (0+) 的直流电压源代替,将电感用电流为i L (0+)的直流电流源代替; (3)由上述等效电路,用直流电路分析方法,求其他非状态变量的各初始值。 5.2.2 动态电路的时域分析法 5.2.2.1一阶电路的响应 一阶电路是指只含有一个独立储能元件的动态电路。 一、一阶电路的零输入响应 零输入响应是指动态电路无输入激励情况下,仅由动态元件初始储能所产生的响应,它取决于电路的初始状态和电路的特性。因此在求解这一响应时,首先必须掌握电容电压或电感电流的初始值,至于电路的特性,对一阶电路来说,则是通过时间常数τ来体现的。零输入响应都是随时间按指数规律衰减的,这是因为在没有外施激励的条件下,原有的储能总是要衰减到零的。在RC电路中,电

容电压总是从u C (0+)单调地衰减到零的,其时间常数τ=RC,即u C (t)=u C (0+)e-t/ τ;在RL电路中电感电流总是从i L ,(0+)单调地衰减到零的,其时间常数τ=L /R,即i L (t)=i L (0+)e-t/τ,掌握了u C (t)和i L (t)后,就可以用置换定理将电 容用电压值为u C (t)的电压源置换,将电感用电流值为i L (t)的电流源置换,再 求电路中其他支路的电压或电流即可。 二、一阶电路的零状态响应 零状态响应是动态电路在动态元件初始储能的零为情况下,仅由输入激励所引起的响应。随着时间的增加,动态元件储能由零开始按指数规律上升至稳态值,即电容电压和电感电流都是从它的零值开始按指数规律上升到达它的稳态值的,时间常数r仍与零输入响应时相同。在直流电路中,当电路到达稳态时,电容相 当于开路,电感相当于短路,由此可以确定电容或电感的稳态值,则可得u C (t)=u C (∞)(1-e-t/τ),i L (t)=i L (∞)(1-e-t/τ),掌握了u C (t)和i L (t)后,就可以用置换 定理将电容用电压值为u C (t)的电压源置换,将电感用电流值为i L (t)的电流源 置换,再求电路中其他支路的电压或电流即可。 三、一阶电路的全响应 由储能元件的初始储能和独立电源共同引起的响应,称为全响应。 1.全响应及其分解 (1)全响应分解为强制响应和自由响应之和,或稳态响应和瞬态响应之和即 u C (t)=(U -U S )e -t/τ +U S (t≥0) =固有响应+强制响应 =瞬态响应+稳态响应 式中第一项是对应微分方程的通解,称为电路的自由响应或固有响应,其变化规律取决于电路结构和参数,与输入无关,其系数需由初始状态与输入共同确定。自由响应将随时间增长而按指数规律衰减到零,所以又称为瞬态响应。

一阶动态响应电路分析

一阶动态响应电路分析 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

一、实验目的 1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。掌握测量一阶电路时间常数的方法。 2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。 3、用multisim 仿真软件设计电路参数,并观察输入输出波形。 二、实验原理 1、零输入响应和零状态响应波形的观察及时间常数τ的测量。 当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。 以一阶RC 动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a )所示。 (a ) (b ) 图1 一阶RC 动态电路 方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ52/≥T )。故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的)(t u i 和)(t u o 的波形如图1(b )所示。在)2/0(T t ,∈的零状态响应过程中,由于T <<τ,故在2/T t =时,电路已经达到稳定状态,即电容电压S o U t u =)(。由零状态响应方程 可知,当2/)(S o U t u =时,计算可得τ69.01=t 。如能读出1t 的值,则能测出该电路的时间常数τ。 2、RC 积分电路

电路分析基础难点一阶动态电路分析

第三一阶动态电路分析 电容元件和电感元件 ?3.2换路定律及初始值的确定 零输入响应 ?:?3.6求解一阶电路三要素法 学习目标 理解动态元件「C的挣也并能熟练应用于电路分析。 漆刻理解零输入响应、零状态响应、暂态响应、稳态响应的含义,井掌握它们的分析计算方法。 弄懂动态电路方程的建立及解法° 熟练学握输入为H流信号激励卜?的-阶电路的三耍索分析法。

>3.1.1 电客元件 电容器是一种能储存电荷的器件,电容 元件是电容器的理想化模型。 当电容上电压与电荷为关 联参考方向时, 电荷g 与u 关系为;q(t)=Cu(t) C 是电容的电容量,亦即转 性曲线的斜率。当"i 为 关联方向时,据电流强度定 义冇: Z=C dq/dt II -关联时:/= -C dq/dt ="(0) +丄(帖)砖 C 式中,u(0)是在t=0时刻电容已积累的电压, 称为初始电压:而后?项是在匕()以兀电容上形 成的电压,它体现了在07的时间内电流对电压 的贡献" 由此可知:左某一时刻I,电容电压"不仅与 该时刻的电流i 有关,而且与t 以前电流的全部历 史状况冇关。因此,我们说电容是?种记忆元 件,,有“记忆”电流的作用。 3.1电容元件和电感元件 电容的伏安还可鸳成: 阳41电柞的符弓.线件非时 变电特的待性曲线

当电容电压和电流为关联方向时,电容吸收的瞬时功率为: du {/) p(F) = //(/)/(/) = C H(t) ---- d! 瞬时功率町正町负,当別">0时,说明电容是在吸收能量,处F充电状态:当皿)<0 时,说明电容是在供出能量,处于放电状态。 对上式从g到『进行积分,即得门甘刻电容上的储能为:,… %("=( p(^)rf^ = f Cu )du ) =丄6治)_丄Cif* 2(- x ) 2 2

电路动态分析专题 答案

动态电路分析 1.(嘉定区)在图所示的电路中,电源电压保持不变。闭合电键S ,当滑动变阻器的滑片 P 向左移动时,电流表 A 的示数将 ,电压表V 与电压表 V2 示数的差值跟电流表 A 示数的比值 ( 选填“变小”、“不变”或“变大”)。 2.(金山区)在图所示的电路中,电源电压保持不变。闭合电键S 后,当滑动变阻器滑片P 自b 向a 移动的过程 中,电压表V2的示数将_____________,电压表V1与电流表A 的示数的比值将______________。(均选填“变大”、“不变”或“变小”) 3.(静安区)在图所示的电路中,电源电压保持不变。闭合电键S ,当滑动变阻器R1的滑片P 向右移动时,电流 表A2的示数I2将________(选填“变大”、“不变”或“变小”);若电流表A1示数的变化量为ΔI1,电流表A2示数的变化量为ΔI2,则ΔI1________ΔI2(选填“大于”、“等于”或“小于”)。 4.(卢湾区)在图所示的电路中,电源电压保持不变。当电键S 由断开到闭合时,电压表V 示数将 _____________。闭合电键后,当滑动变阻器滑片P 向右移动时,电流表A1与电流表A 示数变化量的比值将_____________。(均选填“变小”、“不变”或“变大”) 5.(普陀区)在图所示的电路中,电源电压保持不变。闭合电键S ,当滑动变阻器的滑片P 向右移动时,电压表V 的示数将___________(选填“变小”、“不变”或“变大”),电流表A1的变化值___________电流表A 的变化值。(选填“大于”、“等于”或“小于”) 6.(松江区)在图所示的电路中,电源电压不变,闭合电键S ,当滑片P 向右移时,电压表V 的示数将 ______________(选填“变大”、“不变”或“变小”),电流表A1示数的变化量△I1和电流表A 示数的变化量△I 之比值________________(选填“大于1”、“等于1”或“小于1”)。 第1题 第2题 A 1 A 2 R 1 R 2 S 第3题 R 2 P A A 1 S R 1 V 第4题 V S A A 1 P 图3 第5题 P A 1 A V 1 R 2 R S 图7 第6题

专题 闭合电路欧姆定律(电路的动态分析问题)

专题:闭合欧姆定律(电路的动态分析问题) 知识回顾: 直流电路的有关规律 (1)欧姆定律I =U R (2)闭合电路欧姆定律E I R r E U Ir E U U =+=+=+外内 (3)电阻定律R =ρl S (4)电功率:P =UI P =I 2R =U 2R (5)焦耳定律:Q =I 2Rt (6)串并联电路规律: 11 2221 12 U R U R I R I R ==串联分压:并联分流: 1.闭合电路动态变化的原因 (1)当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小). (2)若电键的通断使串联的用电器增多,总电阻增大;若电键的通断使并联的支路增多,总电阻减小. (3)两个电阻并联,总电阻12 12 R R R R R = +.如果12R R C +=(恒量) ,则当12=R R 时,并联电阻最大;两电阻差值越大,总电阻越小. 2.闭合电路动态分析的方法 基本思路是“局部→整体→局部” 流程图: 3.电路动态分析的一般步骤 (1)明确局部电路变化时所引起的局部电路电阻的变化. (2)根据局部电路电阻的变化,确定电路的外电阻R 外总如何变化. (3)根据闭合电路欧姆定律I 总= E R 外总+r ,确定电路的总电流如何变化. (4)由U 内=I 总r 确定电源的内电压如何变化. (5)由U =E -U 内确定路端电压如何变化. (6)确定支路两端的电压及通过各支路的电流如何变化. 经典例题: 1.如图所示的电路,L 是小灯泡,C 是极板水平放置的平行板电容器.有一带电油滴悬浮在两极板间静止不动.若滑动变阻器的滑片向下滑动,则( ) A .L 变暗 B .L 变亮 C .油滴向上运动 D .油滴不动

2014初中物理电路故障与动态电路分析附答案

初中物理电路故障分析 1、电压表示数为零的情况 A 电压表并联的用电器发生短路 (一灯亮一灯不亮,电流表有示数) B 电压表串联的用电器发生断路 (两灯都不亮,电流表无示数) C 电压表故障或与电压表连线发生断路 (两灯都亮,电流表有示数) 2、电压表示数等于电源电压的情况 A 电压表测量的用电器发生断路 (两灯都不亮,电流表无示数) 注:此时不能把电压表看成断路,而把它看成是一个阻值很大的电阻同时会显示电压示数的用电器,由于电压表阻值太大,根据串联电路分压作用,电压表两端几乎分到电源的全部电压,电路中虽有电流但是很微弱,不足以使电流表指针发生偏转,也不足以使灯泡发光。如果题目中出现“约”、“几乎”的字眼时,我们就锁定这种情况。 B 电路中旁边用电器发生短路 (一灯亮一灯不亮,电流表有示数) 总结:如图,两灯泡串联的电路中,一般出现的故障问题都是发生在用电器上,所以通常都有这样一个前提条件已知电路中只有一处故障,且只发生在灯泡L1或L2上。 1.若两灯泡都不亮,则一定是某个灯泡发生了断路,如果电压表此时有示数,则一定是和电压表并联的灯泡发生了断路,如果电压表无示数,则一定是和电压表串联的灯泡发生了断路。此两种情况电流表均无示数。 2.若一个灯泡亮另一个灯泡不亮,则一定是某个灯泡发生了短路,如果电压表此时有示数,则一定是和电压表串联的灯泡发生了短路,如果电压表此时无示数,则一定是和电压表并联的灯

泡发生了短路。此两种情况电流表均有示数 3、用电压表电流表排查电路故障 A、用电压表判断电路故障,重要结论:电压表有示数说明和电压表串联的线路正常,和电压表并联的线路有故障。若电路中只有一处故障则电压表无示数时,和电压表并联的线路一定正常。 电源电压为6V,用电压表测得:Uab=0;Ued=6v;Ucd=0;Uac=6v,灯泡不亮,哪里出现故障? 解题思路:先找有示数的,Ued=6v说明从e点到电源正极线路完好,从d点到电源负极线路完好;Uac=6v说明从a点到电源正极线路完好,从c点到电源负极线路完好,这样将故障锁定在ac之间了,由Uab=0,说明bc之间出现故障,故电阻出现断路。 B、用电流表测电路的通断,有示数说明和电流表串联的电路是通路;电流表没有示数则有两种情况:1断路 2 电路中电流太小,不足以使电流表指针发生偏转(例如:电压表与电流表串联,见上面2A) 互动训练 1、如图1是测定小灯泡两端的电压和通过小灯泡的电流的电路图。如果某同学在 操作的过程中对两只电表的量程选择是正确的,但不慎将两电表的位置对调了,则 闭合开关S后() A、电流表、电压表均损坏; B、电流表损坏,电压表示数为零; C、电流表有示数,电压表示数为零; D、电流表示数为零,电压表有示数。 2、如图2所示,下列说法正确的是() A、电流表的连接是正确的; B、电压表的连接是正确的; C、两表的连接都是错误的; D、电流表将会被烧坏。 3、如图3所示,两只电灯L1和L2并联在电路中,当S1和S2都闭合时,电路中可 能出现() A、电流表被烧坏; B、电压表被烧坏; C、两只灯会被烧坏; D、两只灯都能发光。 4、如图4所示,当开关闭合后两灯均不亮,电流表无示数,电压表示数等于电源 电压,则电路发生的故障是() A、电源接线接触不良; B、电流表损坏,断路,其他元件完好; C、灯L1发生灯丝烧断; D、灯L2发生短路,其他元件完好。 5、如图5所示为某同学做实验时的错误电路图,当闭合开关后将()

相关文档
最新文档