matlab 黄金分割法

matlab 黄金分割法
matlab 黄金分割法

%黄金分割法。根据最优化方法(天津大学出版社)17页算法1.4.2编写。

%v1.0 author: liuxi BIT

%best_x为最优的x值,best_fx为最优的函数值,y为函数,x为函数y的变量,a,b为下单峰区间[a,b],epsilon为精确度

%当保留的区间长度|b-a|<=epsilon时停止迭代

function [best_x best_fx]=golddiv(y,x,a,b,epsilon)

if nargin==4

epsilon=0.0000001;%设置默认的epsilon

end

x2=a+0.618*(b-a);%step1

f2=subs(y,x,x2);

x1=a+0.382*(b-a);%step2

f1=subs(y,x,x1);

while(abs(b-a)>epsilon)

if f1

b=x2;x2=x1;f2=f1;

x1=a+0.382*(b-a);%转step2

f1=subs(y,x,x1);

elseif f1==f2

a=x1;b=x2;

x2=a+0.618*(b-a);f2=subs(y,x,x2);%转step1

x1=a+0.382*(b-a);f1=subs(y,x,x1);

else

a=x1;x1=x2;f1=f2;

x2=a+0.618*(b-a);%step5

f2=subs(y,x,x2);

end

end%while

best_x=(a+b)/2;%最优的x值

best_fx=subs(y,x,best_x);%最优的函数值

优化设计黄金分割发以及迭代法

机械优化设计课程论文 院系机械工程系 专业机械设计 班级一班 姓名 学号

一、优化题目 应用所学计算机语言编写一维搜索的优化计算程序,完成计算结果和输出。 二、建立优化数学模型 1、目标函数方程式: y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10 2、变量:x 3、初始值: 初始值x1=5初始步长tt=0.01 三、所选用的优化方法 1、采用外推法确定搜索区间 2、采用黄金分割法求函数最优 3、计算框图: (1)、外推法程序框图 (2)、黄金分割法程序框图

四、计算输出内容: 五、优化的源程序文件: #include #include #define e0.0001 #define tt0.01 float f(double x) { float y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10; return(y); } void finding(float*p1,float*p2) { float x1=10,x2,x3,t,f1,f2,f3,h=tt; int n=0; x2=x1+h;f1=f(x1);f2=f(x2); if(f2>f1) { h=-h;x3=x1;f3=f1; x1=x2;f1=f2; } x3=x2+h;f3=f(x3);

n=n+1; printf("n=%d,c1=%6.4lf,x2=%6.4lf,x3=%6.4lf,f1=%6.4lf,f2=^6.4lf,f3=%6.4lf\n",n, x1,x2,x3,f1,f2,f3); while(f3f2) {a=x1;x1=x2;f1=f2;x2=a+0.618*(b-a);f2=f(x2);} else {b=x2;x2=x1;f2=f1;x1=b-0.618*(b-a);f1=f(x1);} n=n+1; printf("n=%d,a=%6.4lf,b=%6.4lf,x1=%6.4lf,x2=%6.4lf,f1=%6.4lf,f2=%6.4lf\n",n,a,b ,x1,x2,f1,f2); c=fabs(b-a); } while(c>e); xmin=(x1+x2)/2; ymin=f(xmin); printf("The min is%6.4lf and the result is%6.4lf",xmin,ymin);

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

用二 4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准 1. function [t d]=erfenfa(a,b) k=1; %记录循环次数 while abs(a-b)>0.0005 c=(a+b)/2; C(k)=c; %存储每次循环中点c 的值 if ff(c)<0 a=c; end if ff(c)==0 t1=c; break ; end if ff(c)>0 b=c; end k=k+1; end t=(a+b)/2; %最终符合要求的值 d=f(t); %最优解 C k function y=f(t) y=t^4-2*t^2-4*t; function y=ff(t) y=4*t^3-4*t-4; 运行结果 >> [t d]=erfenfa(1,1.5) C = Columns 1 through 9 1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252 Column 10 1.3247 k = 11

t = 1.3250 d = -5.7290 2.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b) m=1-(sqrt(5)-1)/2; t2=a+m*(b-a) f2=g(t2); t1=a+b-t2 f1=g(t1); while abs(t1-t2)>0.5 if f1 [t,f]=huangjinfenge(0,3) t2 = 1.1459 t1 = 1.8541

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

matlab编程实现求解最优解

《现代设计方法》课程 关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的 一节里,我们学习了黄金非分割法和二次插值法。它们都是建立在搜索区间的优先确定基础上实现的。 为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。下面以《现代设计方法》课后习题为例。见课本70页,第2—7题。原题如下: 求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。 1、先建立函数f(x),f(x)=3*x^2+6*x+4。函数文件保存为:lee.m 源代码为:function y=lee(x) y=3*x^2+6*x+4; 2、程序主代码如下,该函数文件保存为:ll.m clear; a=input('请输入初始点'); b=input('请输入初始步长'); Y1=lee(a);Y2=lee(a+b); if Y1>Y2 %Y1>Y2的情况 k=2; Y3=lee(a+2*b); while Y2>=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a+k*b); end A=a+b;B=a+k*b; elseif Y1=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a-k*b); end A=a-k*b;B=a; else A=a;B=a+b; %Y1=Y2的情况 end disp(['初始搜索区间为',num2str([A,B])])%输出符合的区间 xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式 T=input('选定一维搜索精度'); if xuanze==1 while B-A>T %一维搜索法使精度符合要求 C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点

机械优化设计黄金分割法 外推法

郑州大学 机械优化设计部分程序

1.外推法 2.黄金分割法 3.二次插值法 4.坐标轮换法 5.随机方向法 6.四杆机构优化设计 1.外推法源程序: #include #include #define R 0.01 double fun(double x)

{ double m; m=x*x-10*x+36; return m; } void main() { double h0=R,y1,y2,y3,x1,x2,x3,h; x1=0;h=h0;x2=h; y1=fun(x1);y2=fun(x2); if(y2>y1) {h=-h; x3=x1; y3=y1; x1=x2; y1=y2; x2=x3; y2=y3; } x3=x2+h;y3=fun(x3); while(y3 #include #define f(x) x*x*x*x-5*x*x*x+4*x*x-6*x+60 double hj(double *a,double *b,double e,int *n) { double x1,x2,s; if(fabs((*b-*a)/(*b))<=e) s=f((*b+*a)/2); else { x1=*b-0.618*(*b-*a); x2=*a+0.618*(*b-*a); if(f(x1)>f(x2)) *a=x1; else *b=x2; *n=*n+1; s=hj(a,b,e,n); } return s; } void main() { double s,a,b,e,m; int n=0; printf("输入a,b值和精度e值\n"); scanf("%lf %lf %lf",&a,&b,&e); s=hj(&a,&b,e,&n); m=(a+b)/2; printf("a=%lf,b=%lf,s=%lf,m=%lf,n=%d\n",a,b ,s,m,n); } 运行过程及结果: 输入a,b值和精度e值 -3 5 0.0001 a=3.279466,b=3.279793,s=22.659008,m=3.279 629,n=21 3.二次插值法 源程序: #include #include

黄金分割法

机电产品优化设计课程设计 姓名: 学号:2908003032 学院:机械电子工程学院

一维搜索黄金分割法 一、优化方法阐述 1.原理阐述 1.1基本原理 设一元函数如图1所示,起始搜索区间为[a,b],为所要寻求的函数的极小点。 在搜索区间[a,b]内任取两点与,且,计算函数与。当将与进行比较时,可能的情况有下列三种: (1):如图1(a)、(b)所示,这种情况下,可丢掉 (,b]部分,而最小点必在区间[a,]内。 (2):如图1(c)、(d)所示,这种情况下,可丢掉[a,)部分,而最小点必在区间[,b]内。 (3):如图1(e)所示,这种情况下,不论丢掉[a, )还是丢掉(,b],最小点必在留下的部分内。 图1(a)

图1(b) 图1(c) 图1(d) 图1(e)

因此,只要在搜索区间内任取两点,计算它们的函数值并加以比较之后,总可以把搜索的区间缩小。 对于第(1)、(2)两种情况,经过缩小的区间内都保存了一个点的函数值,即或,只要再取一个点,计算函数值 并加以比较,就可以再次缩短区间进行序列消去。但对于第(3)种情况,区间中没有已知点的函数值,若再次缩短区间必须计算两个点的函数值。为了简化迭代程序,可以把第(3)种情况合并到前面(1)、(2)两种情况之一中去,例如可以把上述三种情况合并为下述两种情况: (1)若,取区间[a,]。 (2)若,取区间[,b]。 这样做虽然对于第(3)种情况所取的区间扩大了,但在进一步搜索时每次只要计算一个点,和第(1)、(2)种情况一致,简化了迭代程序。 1.2 “0.618”的由来 为了简化迭代计算的过程,希望在每一次缩短搜索区间迭代过程中两计算点、在区间中的位置相对于边界来说应是对称的,而且还要求丢去一段后保留点在新区间中的位置与丢去点在原区间中的位置相当。如图2所示,设区间[a,b]全长为L,在其内取两个对称计算点和,并令l/L=称为公比,无论如图2(b)所示丢去(,b],还是如图2(c)所示丢去[a,),保留点在新区间中相应线段比值仍为, (1) 由此得 解此方程的两个根,取其正根为 0.6180339887 这种分割称为黄金分割,其比例系数为,只要第一个试点取在原始区间长的0.618处,第二个试点在它的对称位置,就能保证无论经过多少次缩小区间,保留的点始终处在新区间的0.618处。再要进一步缩短区

用MATLAB实现最速下降法-牛顿法和共轭梯度法求解实例

题目和要求 最速下降法是以负梯度方向最为下降方向的极小化算法,相邻 两次的搜索方向是互相直交的。牛顿法是利用目标函数)(x f 在迭代点k x 处的Taylor 展开式作为模型函数,并利用这个二次模型函数的极小 点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接待 的搜索方向1-k d 的组合。 运行及结果如下: 最速下降法: 题目:f=(x-2)^2+(y-4)^2 M 文件: function [R,n]=steel(x0,y0,eps) syms x ; syms y ; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jacobian(f,v); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=0; syms kk ; while (temp>eps) d=-T; f1=x1+kk*d(1);f2=y1+kk*d(2); fT=[subs(j(1),x,f1),subs(j(2),y,f2)]; fun=sqrt((fT(1))^2+(fT(2))^2); Mini=Gold(fun,0,1,0.00001); x0=x1+Mini*d(1);y0=y1+Mini*d(2); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=n+1;

end R=[x0,y0] 调用黄金分割法: M文件: function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk; u=a0+0.382*(b0-a0); v=a0+0.618*(b0-a0); k=0; a=a0;b=b0; array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u); Fv=subs(f,kk,v); if(Fu<=Fv) b=v; v=u; u=a+0.382*(b-a); k=k+1; elseif(Fu>Fv) a=u; u=v; v=a+0.618*(b-a); k=k+1; end array(k+1,1)=a;array(k+1,2)=b; end Mini=(a+b)/2; 输入: [R,n]=steel(0,1,0.0001) R = 1.99999413667642 3.99999120501463 R = 1.99999413667642 3.99999120501463 n = 1 牛顿法: 题目:f=(x-2)^2+(y-4)^2 M文件:

优化设计黄金分割法实验报告

机械优化设计黄金分割法实验报告 1、黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 2 黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

用MATLAB实现最速下降法

实验的题目和要求 一、所属课程名称: 最优化方法 二、实验日期: 2010年5月10日~2010年5月15日 三、实验目的 掌握最速下降法,牛顿法和共轭梯度法的算法思想,并能上机编程实现相应的算法。 二、实验要求 用MA TLA B实现最速下降法,牛顿法和共轭梯度法求解实例。 四、实验原理 最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。牛顿法是利用目标函数)(x f 在迭代点k x 处的T aylor 展开式作为模型函数,并利用这个二次模型函数的极 小点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接 待的搜索方向1-k d 的组合。 五.运行及结果如下: 最速下降法: 题目:f=(x-2)^2+(y-4)^2 M文件: fu ncti on [R,n]=stee l(x0,y0,e ps) syms x; syms y ; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jac obi an(f ,v); T=[s ubs(j(1),x,x0),subs (j (2),y,y0)]; temp=s qrt((T(1))^2+(T (2))^2); x 1=x0;y 1=y 0; n=0; sym s k k; w hi le (temp>eps ) d=-T; f1=x 1+kk*d(1);f2=y1+k k*d(2); fT=[su bs(j (1),x,f1),sub s(j(2),y,f2)]; fu n=sqrt((fT(1))^2+(fT(2))^2);

MATLAB黄金分割法课程论文--分析

中南林业科技大学 本科课程论文 学院:理学院 专业年级:14级信息与计算科学2班 学生姓名:邱文林学号:20144349 课程:MATLAB程序设计教程 设计题目:基于MATLAB的黄金分割法与抛物线插值法指导教师:龚志伟

2016年4月

中文摘要 为了求解最优化模型的最优解,可使用基于MATLAB算法编程的黄金分割法与抛物线插值法,来实现求解的过程。黄金分割法是通过所选试点的函数值而逐步缩短单谷区间来搜索最优点,利用迭代进而得出结论。抛物线插值法亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。通过将MATLAB与最优化问题相结合,不仅可以加深对黄金分割法、抛物线插值法的基本理解和算法框图及其步骤的全面理解,也有利于帮助我们掌握MATLAB的使用方法。 关键词:MATLAB,黄金分割法,抛物线插值法,最优解,迭代

英文摘要 In order to solve the optimization model of the optimal solution, using MATLAB algorithm based on the golden section method and the parabola interpolation method, to realize the process of solving. The golden section method is used to search the most advantage through the function value of the selected pilot, which can be used to search for the most advantage. Parabolic interpolation method, also known as the two interpolation method, is a polynomial interpolation method, successive to fit the two curve of the minimum point, the original search function to find a very small point of the method. By combining MATLAB and optimization problems can not only deepen the comprehensive understanding of the golden section method, the parabola interpolation basic understanding and block diagram of the algorithm and steps, but also conducive to help us to grasp the method of using MATLAB. Key words: MATLAB, golden section method, parabolic interpolation method, optimal solution, iteration

黄金分割法-进退法-原理及流程图

黄金分割法-进退法-原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

最优化牛顿法最速下降法共轭梯度法matlab代码

牛顿法 迭代公式:(1)2()1()[()]()k k k k x x f x f x +-=-?? Matlab 代码: function [x1,k] =newton(x1,eps) hs=inline('(x-1)^4+y^2'); 写入函数 ezcontour(hs,[-10 10 -10 10]); 建立坐标系 hold on; 显示图像 syms x y 定义变量 f=(x-1)^4+y^2; 定义函数 grad1=jacobian(f,[x,y]); 求f 的一阶梯度 grad2=jacobian(grad1,[x,y]); 求f 的二阶梯度 k=0; 迭代初始值 while 1 循环 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2)); 给f 一阶梯度赋初值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2)); 给f 二阶梯度赋初值 x2=x1-inv(grad2z)*(grad1z)'; 核心迭代公式 if norm(x1-x2)

end end end 优点:在极小点附近收敛快 缺点:但是要计算目标函数的hesse 矩阵 最速下降法 1. :选取初始点xo ,给定误差 2. 计算一阶梯度。若一阶梯度小于误差,停止迭代,输出 3. 取()()()k k p f x =? 4. 10 t ()(), 1.min k k k k k k k k k k t f x t p f x tp x x t p k k +≥+=+=+=+进行一维搜索,求,使得令转第二步 例题: 求min (x-2)^4+(x-2*y)^2.初始值(0,3)误差为0.1 (1)编写一个目标函数,存为f.m function z = f( x,y ) z=(x-2.0)^4+(x-2.0*y)^2; end (2)分别关于x 和y 求出一阶梯度,分别存为fx.m 和fy.m function z = fx( x,y ) z=2.0*x-4.0*y+4.0*(x-2.0)^3; end 和 function z = fy( x,y )

黄金分割法及其代码

线性搜索之黄金分割法及其应用 摘要 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通讯和政府机关等领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB 软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 在最优化计算中一维最优化方法是优化设计中最简单、最基本的方法。一维搜索,又称为线性搜索,一维问题是多维问题的基础,在数值方法迭代计算过程中,都要进行一维搜索,也可以把多维问题化为一些一维问题来处理。一维问题的算法好坏,直接影响到最优化问题的求解速度。而黄金分割法是一维搜索方法中重要的方法之一,它适用于任何单峰函数求最小值的问题,甚至于对函数可以不要求连续,是一种基于区间收缩的极小点搜索算法。 关键词:最优化、黄金分割法、MATLAB软件、一维搜索 引言 数学科学不仅是自然科学的基础,也是一切重要技术发展的基础。最优化方法更是数学科学里面的一个巨大的篇幅,在这个信息化的时代,最优化方法广泛应用于工业、农业、国防、建筑、通信与政府机关、管理等各领域;它主要解决最优计划、最优分配、最优决策、最佳设计、最佳管理等最优化问题。而最优解问题是这些所有问题的中心,是最优化方法的重中之重,在求最优解问题中,有多种方法解决,我们在这里着重讨论无约束一维极值问题,即非线性规划的一维搜索方法之黄金分割法。黄金分割法也叫0.618法,属于区间收缩法,首先找出包含极小点的初始搜索区间,然后按黄金分割点通过对函数值的比较不断缩小搜索区间。当然要保证极小点始终在搜索区间内,当区间长度小到精度范围之内时,可以粗略地认为区间端点的平均值即为极小值的近似值。所以用0.618法得出的

黄金分割法用于参数优化整定技术的研究

西安工程科技学院学报 Jo urnal of Xi’an University of Engineering Science and Technology  第21卷第2期(总84期)2007年4月Vol.21,No.2(Sum.No.84) 文章编号:16712850X(2007)022******* 黄金分割法用于PID参数优化整定技术的研究 宋永东1,张玉强1,张建华2 (1.延安大学信息学院,陕西延安716000;2.西安石油大学电子工程学院,陕西西安710065) 摘要:在原有的用一维黄金分割法进行单变量参数寻优的基础上,结合优化理论中的分形法思想,提出将二维和三维黄金分割法应用于PID控制器多个参数的同步优化整定的新方法.介绍了PID控制参数整定问题和黄金分割法基本思想,重点对二维黄金分割法基本思想和寻优原理进行分析,并给出了二维黄金分割参数寻优算法.通过实例验证,该方法寻优过程完善、收敛速度快,能够快速、准确地找出最佳整定参数. 关键词:黄金分割法;PID调节器;参数整定;优化 中图分类号:TP214.8;TP273.1;O221 文献标识码:A 0 前 言 PID控制是工业过程控制中应用最为广泛的一种控制规律,尽管各种新型控制器不断涌现,但PID 控制器仍以其结构简单、容易实现、鲁棒性好等优点,处于主导地位[1].对PID控制器的设计和应用,核心问题之一是参数的整定,准确有效地选定PID的最佳整定参数是PID控制器是否有效的关键. 参数优化方法应用于控制器参数整定始终是一个研究的热点问题.在人工PID参数整定的过程中,最初人们把黄金分割法应用于现场经验整定法,现场工程师根据对象特性和工作经验,可以快速准确地找出最佳PID整定参数,在这种人工试凑搜索的过程中,显示出了该法独特的优选功能.在控制器参数寻优自整定过程中,文献[2]采用爬山法中的单纯形法或者改进的单纯形法,或有的结合了模糊控制规则表,利用单纯形法寻优PID参数,不断修正知识库,用于离线、在线参数自整定.这些方法都是相当有效的,但还存在着一些缺陷:寻优目标函数、初值和步长选择不当时,经常会陷入寻优失败的状态,还有许多问题需要解决.本文在一维黄金分割寻优法的基础上,结合分形法的思想,将该法推广到二维平面和三维空间,以时间乘误差绝对积分指标(ITA E)最优为目标进行寻优搜索,来实现PID控制器参数的优化整定.该方法充分发挥了黄金分割法寻优过程完善、收敛速度快的特点,快速、准确地找出最佳整定参数,使控制效果达到最优. 1 PID调节器参数优化整定问题 1.1 PID调节器参数整定 将偏差e(t)的比例(Proportion)、积分(Integral)和微分(Derivative)通过线性组合构成控制量u(t),对被控对象进行控制,简称PID控制.其控制规律可表示为 收稿日期:2007201204 基金项目:陕西省教育厅专项科研计划项目(06J K158) 通讯作者:宋永东(19572),男,陕西省西安市人,延安大学信息学院副教授.E2mail:yandasyd@https://www.360docs.net/doc/2117796105.html,

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题(1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(法)。该方法用不变的区间缩短率代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。 黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而着称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果

f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

相关文档
最新文档