利用MATLAB实现黄金分割法求极值问题-北京理工大学-机械优化设计

利用MATLAB实现黄金分割法求极值问题-北京理工大学-机械优化设计
利用MATLAB实现黄金分割法求极值问题-北京理工大学-机械优化设计

利用MATLAB 实现黄金分割法求极值问题

姓名:xxx 学号:xxx

(北京理工大学机械与车辆学院车辆工程,北京 100081)

1. 黄金分割法的基本思想

黄金分割法(golden section method )是优化方法中的经典算法,以算法简单、效果显著而著称,是许多优化算法的基础。但它只适用于一维区间[,]a b 上的凸函数。其基本思想是:依照“去坏留好”原则、对称原则以及等比收缩原则,利用序列消去原理,通过不断缩小单峰区间长度,即每次迭代都消去一部分无用区间,使搜索区间不断缩小,来逐步缩小搜索范围,从而不断逼近目标函数极小点的一种优化方法。该方法对函数没有特殊要求,函数甚至可以是不连续的。

在搜索区间[,]a b 内必须按下述规则对称地取1a 和2a 两点:

()1a b b a

λ=--,()2a a b a λ=+-,1a 和2a 将区间分成三段,其中λ称为区间收缩率,黄金分割法中λ≈0.618,然后计算插入点的函数值。应用函数的单峰性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。

黄金分割法程序结构简单,容易理解,但计算效率偏低,较适用于设计变量少的优化问题中的一维搜索。

2.迭代过程和算法流程图

2.1迭代过程

(1) 给定区间[],a b ,并输入0ε>;

(2) 计算10.618(-),20.618(-)a b b a a a b a =-=+;

(3) 判断b a ε-<,若成立,则迭代终止,到最后一步(7);否则,继续;

(4) 若(1)(2)f a f a ≤,转(5),否则转(6);

(5) 令2b a =,21a a =,a1=b-0.618(b-a),转(3);

(6) 令1a a =,12a a =,a2=a+0.618(b-a),转(3);

(7) 得出最优解:*()/2x a b =+,**()y f x =。

2.2算法流程图

黄金分割法的算法流程图如图3-1.

图 3-1 黄金分割法的算法框图

3.利用MATLAB 求解实例

3.1实例

本文以本章课后习题(3.1)为例来练习黄金分割法算法在MATLAB 里的实现。

用黄金分割法求解()(2)f x x x =+的近似极小点*x 及*()f x ,3a =-,5b =,0.01ε=。

程序如下:

(1) 首先建立函数。建立.m 文件,命名为fun_gs.m ,文件内容如下:

function y=fun_gs(x) y=x^2+2*x;

(2) 编写迭代程序主体。建立gs.m 文件,内容如下:

a=-3;

b=5;

eps=0.01;

n=0;

i=100;

a1=b-0.618*(b-a);

a2=a+0.618*(b-a);

y1=fun_gs(a1);

y2=fun_gs(a2);

for k=1:i

if (abs(b-a)<=eps)

y=fun_gs((b+a)/2);

break;

else

if (y1<=y2)

y2=fun_gs(a1);

b=a2;

a2=a1; a1=b-0.618*(b-a);

y1=fun_gs(a1);

else

y1=fun_gs(a2);

a=a1;

a1=a2;

a2=a+0.618*(b-a);

y2=fun_gs(a2);

end

n=n+1;

end

end

n;x=(a+b)/2;y;

运行程序,结果为:

14

n=迭代次数

* 1.0013

x=-极小值点

* 1.0000

y=-极小值点的函数值

计算结果如图:

图3-2 计算结果(0.01

ε=)3.2实例结果分析

2

()(2)2

f x x x x x

=+=+的最小值为

2

1

22

b

x

a

=-=-=-时取得,此时有

1 y=-。

从上述计算结果可以看出,利用MATLAB实现的黄金分割法,通过14次迭代可以满足收敛精度要求,并且计算结果和理论结果基本一致,误差为

ε=时,即?=---=,即求得了函数的全局最优解。当0.001

(1.0013)(1)0.0013

收敛精度缩小为原来1/10,此时再进行一次迭代求解,计算结果如图3-3:

ε=)

图3-3 计算结果(0.001

?=---=。

迭代次数增加到19次,最优点* 1.0001

x=-,(1.0001)(1)0.0001可见计算精度进一步提高,更加接近理论值。所以,在计算机性能允许的前提下,解决复杂优化问题时可以将收敛精度ε设为一个很小的值,以此来满足精度要求苛刻的工程问题。

由此可见,在MATLAB里编写黄金分割法算法求解最优化问题是有效可行的,具有一定理论及实际应用价值。

参考文献

[1]李志锋。机械优化设计。高等教育出版社。

黄金分割用法和实战 (1)汇总

股市活雷锋经验分享制作 https://www.360docs.net/doc/ac4636275.html,/cctv1717

黄金分割由来 ?黄金分割点约等于0.618:1 ?是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 ?利用线段上的两黄金分割点,可作出正五角星,正五边形。 ? 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比 2/3,3/5,4/8,8/13,13/21,...近似值的。 ?黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 ?其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 ?因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"

黄金分割构图法(新)

黄金分割构图法 让我们从最基本的介绍开始这个话题——“黄金分割”是一种由古希腊人发明的几何学公式,遵循这一规则的构图形式被认为是“和谐”的,在欣赏一件形象作品时这一规则的意义在于提供了一条被合理分割的几何线段,对许多画家/艺术家来说“黄金分割”是他们在现时的创作中必须深入领会的一种指导方针,摄影师也不例外。 原理1 如图A:“黄金分割”公式可以从一个正方形来推导,将正方形底边分成二等分,取中点X,以X为圆心,线段XY为半径作圆,其与底边直线的交点为Z点,这样将正方形延伸为一个比率为5︰8的矩形,(Y’点即为“黄金分割点”), A︰C = B ︰A = 5︰8。幸运的是,35MM胶片幅面的比率正好非常接近这种5︰8的比率(24︰36 = 5︰7.5) 图A 原理2 如图B:通过上述推导我们得到了一个被认为很完美的矩形,连接该矩形左上角和右下角作对角线,然后从右上角向Y’点(黄金分割点,见图A)作一线段交于对角线,这样就把矩形分成了三个不同的部分。现在,在理论上已经完成了黄金分割,下一步就可以将你所要拍摄的景物大致按照这三个区域去安排,也可以将示意图翻转180度或旋转90度来进行对照。

图B 图B-1 三分法则 “三分法则”实际上仅仅是“黄金分割”的简化版,其基本目的就是避免对称式构图,对称式构图通常把被摄物置于画面中央,这往往令人生厌。在图C1和C2中,可以看到与“黄金分割”相关的有四个点,用“十”字线标示。用“三分法则”来避免对

称在使用中有两种基本方法,第一种:我们可以把画面划分成分别占1/3和2/3面积的两个区域。 图C1 图C1-1 天然画框 有时在我们看到的场景中有一个引人注目的被摄主体,但往往由于主体周围杂乱的环境分散了观众的注意力而削弱了主体的吸引力,使照片最终的效果令人很失望。试试寻找一个能够排除杂乱环境干扰的天然画框使观众注意力集中于被摄主体,如图D利用主体周围的树枝形成一个天然画框从而使中间的山岩更为突出。 图D

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

用二 4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准 1. function [t d]=erfenfa(a,b) k=1; %记录循环次数 while abs(a-b)>0.0005 c=(a+b)/2; C(k)=c; %存储每次循环中点c 的值 if ff(c)<0 a=c; end if ff(c)==0 t1=c; break ; end if ff(c)>0 b=c; end k=k+1; end t=(a+b)/2; %最终符合要求的值 d=f(t); %最优解 C k function y=f(t) y=t^4-2*t^2-4*t; function y=ff(t) y=4*t^3-4*t-4; 运行结果 >> [t d]=erfenfa(1,1.5) C = Columns 1 through 9 1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252 Column 10 1.3247 k = 11

t = 1.3250 d = -5.7290 2.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b) m=1-(sqrt(5)-1)/2; t2=a+m*(b-a) f2=g(t2); t1=a+b-t2 f1=g(t1); while abs(t1-t2)>0.5 if f1 [t,f]=huangjinfenge(0,3) t2 = 1.1459 t1 = 1.8541

实验五 用matlab求二元函数的极值

实验五 用matlab 求二元函数的极值 1.计算二元函数的极值 对于二元函数的极值问题,根据二元函数极值的必要和充分条件,可分为以下几个步骤: 步骤1.定义二元函数),(y x f z =. 步骤2.求解方程组0),(,0),(==y x f y x f y x ,得到驻点. 步骤3.对于每一个驻点),(00y x ,求出二阶偏导数 22222,,.z z z A B C x x y y ???===???? 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02>-B AC ,则该驻点是 极值点,当0>A 为极小值, 0>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y

黄金分割法

机电产品优化设计课程设计 姓名: 学号:2908003032 学院:机械电子工程学院

一维搜索黄金分割法 一、优化方法阐述 1.原理阐述 1.1基本原理 设一元函数如图1所示,起始搜索区间为[a,b],为所要寻求的函数的极小点。 在搜索区间[a,b]内任取两点与,且,计算函数与。当将与进行比较时,可能的情况有下列三种: (1):如图1(a)、(b)所示,这种情况下,可丢掉 (,b]部分,而最小点必在区间[a,]内。 (2):如图1(c)、(d)所示,这种情况下,可丢掉[a,)部分,而最小点必在区间[,b]内。 (3):如图1(e)所示,这种情况下,不论丢掉[a, )还是丢掉(,b],最小点必在留下的部分内。 图1(a)

图1(b) 图1(c) 图1(d) 图1(e)

因此,只要在搜索区间内任取两点,计算它们的函数值并加以比较之后,总可以把搜索的区间缩小。 对于第(1)、(2)两种情况,经过缩小的区间内都保存了一个点的函数值,即或,只要再取一个点,计算函数值 并加以比较,就可以再次缩短区间进行序列消去。但对于第(3)种情况,区间中没有已知点的函数值,若再次缩短区间必须计算两个点的函数值。为了简化迭代程序,可以把第(3)种情况合并到前面(1)、(2)两种情况之一中去,例如可以把上述三种情况合并为下述两种情况: (1)若,取区间[a,]。 (2)若,取区间[,b]。 这样做虽然对于第(3)种情况所取的区间扩大了,但在进一步搜索时每次只要计算一个点,和第(1)、(2)种情况一致,简化了迭代程序。 1.2 “0.618”的由来 为了简化迭代计算的过程,希望在每一次缩短搜索区间迭代过程中两计算点、在区间中的位置相对于边界来说应是对称的,而且还要求丢去一段后保留点在新区间中的位置与丢去点在原区间中的位置相当。如图2所示,设区间[a,b]全长为L,在其内取两个对称计算点和,并令l/L=称为公比,无论如图2(b)所示丢去(,b],还是如图2(c)所示丢去[a,),保留点在新区间中相应线段比值仍为, (1) 由此得 解此方程的两个根,取其正根为 0.6180339887 这种分割称为黄金分割,其比例系数为,只要第一个试点取在原始区间长的0.618处,第二个试点在它的对称位置,就能保证无论经过多少次缩小区间,保留的点始终处在新区间的0.618处。再要进一步缩短区

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

用MATLAB求极值

用MATLAB求极值 灵活的运用MATLAB的计算功能,可以很容易地求得函数的极值。 例3.6.1 求 2 2 344 1 x x y x x ++ = ++ 的极值 解首先建立函数关系: s yms s y=(3*x^2+4*x+4)/( x^2+x+1); ↙然后求函数的驻点: dy=diff(y); ↙ xz=solve(dy) ↙ xz= [0] [-2] 知道函数有两个驻点x 1=0和x 2 =-2,考察函数在驻点处二阶导数的正负情况: d2y=diff(y,2); ↙ z1=limit(d2y,x,0) ↙z1= -2 z2=limit(d2y,x,-2) ↙z2= 2/9 于是知在x 1=0处二阶导数的值为z 1 =-2,小于0,函数有极大值;在x 2 =-2处二阶导数的值 为z 2 =2/9,大于0,函数有极小值。如果需要,可顺便求出极值点处的函数值: y 1 =limit(y,x,0) ↙ y 1 = 4 y 2 =limit(y,x,-2) ↙ y 2 = 8/3 事实上,如果知道了一个函数的图形,则它的极值情况和许多其它特性是一目了然的。而借助MA TLAB的作图功能,我们很容易做到这一点。 例3.6.2画出上例中函数的图形 解syms x ↙ y=(3*x^2+4*x+4)/( x^2+x+1); ↙得到如下图形 ezplot(y) ↙

如何用MATLAB求函数的极值点和最大值 比如说y=x^3+x^2+1,怎样用matlab来算它的极值和最大值? 求极值: syms x y >> y=x^3+x^2+1 >> diff(y) %求导 ans = 3*x^2 + 2*x >> solve(ans)%求导函数为零的点 ans = -2/3 极值有两点。 求最大值,既求-y的最小值: >> f=@(x)(-x^3-x^2-1)

matlab编程实现求解最优解

《现代设计方法》课程 关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的 一节里,我们学习了黄金非分割法和二次插值法。它们都是建立在搜索区间的优先确定基础上实现的。 为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。下面以《现代设计方法》课后习题为例。见课本70页,第2—7题。原题如下: 求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。 1、先建立函数f(x),f(x)=3*x^2+6*x+4。函数文件保存为:lee.m 源代码为:function y=lee(x) y=3*x^2+6*x+4; 2、程序主代码如下,该函数文件保存为:ll.m clear; a=input('请输入初始点'); b=input('请输入初始步长'); Y1=lee(a);Y2=lee(a+b); if Y1>Y2 %Y1>Y2的情况 k=2; Y3=lee(a+2*b); while Y2>=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a+k*b); end A=a+b;B=a+k*b; elseif Y1=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a-k*b); end A=a-k*b;B=a; else A=a;B=a+b; %Y1=Y2的情况 end disp(['初始搜索区间为',num2str([A,B])])%输出符合的区间 xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式 T=input('选定一维搜索精度'); if xuanze==1 while B-A>T %一维搜索法使精度符合要求 C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点

实验3 Matlab 符号运算及求函数极值

实验3 Matlab 符号运算及求函数极值一、实验目的和要求 掌握用Matlab软件进行符号运算以及求函数的极值。 二、实验环境 Windows系列操作系统,Matlab软件。 三、实验内容 1.用MATLAB进行符号运算; 2.编程求函数的极值。 四、实验步骤 3.开启软件平台——Matlab,开启Matlab编辑窗口; 4.根据求解步骤编写M文件; 5.保存文件并运行; 6.观察运行结果(数值或图形); 7.根据观察到的结果和体会写出实验报告。 五、示例 1.计算一元函数的极值 例1求 2 2 344 1 x x y x x ++ = ++ 的极值 解首先建立函数关系: s yms x y=(3*x^2+4*x+4)/( x^2+x+1); 然后求函数的驻点: dy=diff(y); xz=solve(dy) xz= [0] [-2] 知道函数有两个驻点x 1=0和x 2 =-2, 接下来我们通过考察函数的图形,则它的极值情况和许多其它特性是一目了然的。而借助MATLAB的作图功能,我们很容易做到这一点。 例2 画出上例中函数的图形

解 syms x y=(3*x^2+4*x+4)/( x^2+x+1); 得到如下图形 ezplot(y) 2.计算二元函数的极值 MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 例1 求函数42823z x xy y =-+-的极值点和极值. 首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即348,84z z x y x y x y ??=-=-+??再求解方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解方程的MA TLAB 代码为:

matlab自定义函数与极值求法

实验5 matlab 自定义函数与导数应用 实验目的 1.学习matlab 自定义函数. 2.加深理解罗必塔法则、极值、最值、单调性. 实验内容 1.学习matlab 自定义函数及求函数最小值命令. 函数关系是指变量之间的对应法则,这种对应法则需要我们告诉计算机,这样,当我们输入自变量时,计算机才会给出函数值,matlab 软件包含了大量的函数,比如常用的正弦、余弦函数等.matlab 允许用户自定义函数,即允许用户将自己的新函数加到已存在的matlab 函数库中,显然这为matlab 提供了扩展的功能,无庸置疑,这也正是matlab 的精髓所在.因为matlab 的强大功能就源于这种为解决用户特殊问题的需要而创建新函数的能力.matlab 自定义函数是一个指令集合,第一行必须以单词function 作为引导词,存为具有扩展名“.m ”的文件,故称之为函数M -文件. 函数M -文件的定义格式为: function 输出参数=函数名(输入参数) 函数体 …… 函数体 一旦函数被定义,就必须将其存为M -文件,以便今后可随时调用.比如我们希望建立函数12)(2++=x x x f ,在matlab 工作区中输入命令: syms x ;y=x^2+2*x+1; 不能建立函数关系,只建立了一个变量名为y 的符号表达式,当我们调用y 时,将返回这一表达式. y ? y=x^2+2*x+1 当给出x 的值时,matlab 不能给出相应的函数值来. x=3;y ? y=x^2+2*x+1 如果我们先给x 赋值. x=3;y=x^2+2*x+1 得结果:y=16 若希望得出2|=x y 的值,输入: x=2;y ? 得结果:y=16,不是2=x 时的值.读者从这里已经领悟到在matlab 工作区中输入命令:y=x^2+2*x+1不能建立函数关系,如何建立函数关系呢?我们可以点选菜单Fill\New\M-fill 打开matlab 文本编辑器,输入: function y=f1(x) y=x^2+2*x+1; 存为f1.m .调用该函数时,输入: syms x ;y=f1(x)?

黄金分割线在股票中的应用

黄金分割线股票中的应用 黄金分割是一种古老的数学方法,被应用于从埃及金字塔到礼品包装盒的各种事物之中,而且常常发挥我们意想不到的神奇作用。对于这个神秘的数字的神秘用途,科学上至今也没有令人信服的解释。但在证券市场中,黄金分割的妙用几乎横贯了整个技术分析领域,是交易者与市场分析人士最习惯引用的一组数字。 一、什么是黄金分割线:在13世纪数学家法布兰斯写了一本书,提到一些奇异数字的组合。这些奇异数字的组合是1.1、2、3、5、8、13、21、34、55 、89、144、233 。在这组数字中有两个规律: 1、任何一个数字都是前面两数字的总和。2=1+1 、3=2+1、5=3+ 2、8=5+ 3、 2.任何一个数与后面数相除时,其商几乎都接近0.618。1、1、2、3、5、8、13、被称做神秘数字;这个0.618数值就是世人盛赞的黄金分割率。黄金分割率运用的最基本方法,是将1分割为0.618和0.382,引申出一组与黄金分割率有关的数值,即:(0)、(0.382)、(0.5)、(0.618)、1。由经过0、0.382、0.5、0.618、1组成的平行线叫黄金分割线。这些平行线分别被称为黄金分割线的0位线、0.382位线、0.5位线、0.618位线和1位线。这五条线也就是我们在点击黄金分割线快捷键后拖动鼠标形成的五条线。 二、运用黄金分割线预测趋势的幅度 (一)、运用黄金分割线买卖股票,必须解决三大问题: 1.如何确定股价的出发点,即黄金分割线的0位线。一般是以股价近期走势中重要的峰位或底位。当股价上涨时,以底位零点股价为基数,其涨跌幅达到某一重要黄金比时,则可能发生转势。 2.如何确定已知股市走势中的第二个黄金分割点,即确定黄金分割线的0.382位线。一般是以距零点较近的股价转折点做为黄金分割线的0.382位线。 3.如何运用黄金分割点把握股市走势,买卖股票。如果我们知道了0和0.382分割点在股价中的位置,是不是到达0.5点时,

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

用MATLAB实现最速下降法-牛顿法和共轭梯度法求解实例

题目和要求 最速下降法是以负梯度方向最为下降方向的极小化算法,相邻 两次的搜索方向是互相直交的。牛顿法是利用目标函数)(x f 在迭代点k x 处的Taylor 展开式作为模型函数,并利用这个二次模型函数的极小 点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接待 的搜索方向1-k d 的组合。 运行及结果如下: 最速下降法: 题目:f=(x-2)^2+(y-4)^2 M 文件: function [R,n]=steel(x0,y0,eps) syms x ; syms y ; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jacobian(f,v); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=0; syms kk ; while (temp>eps) d=-T; f1=x1+kk*d(1);f2=y1+kk*d(2); fT=[subs(j(1),x,f1),subs(j(2),y,f2)]; fun=sqrt((fT(1))^2+(fT(2))^2); Mini=Gold(fun,0,1,0.00001); x0=x1+Mini*d(1);y0=y1+Mini*d(2); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=n+1;

end R=[x0,y0] 调用黄金分割法: M文件: function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk; u=a0+0.382*(b0-a0); v=a0+0.618*(b0-a0); k=0; a=a0;b=b0; array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u); Fv=subs(f,kk,v); if(Fu<=Fv) b=v; v=u; u=a+0.382*(b-a); k=k+1; elseif(Fu>Fv) a=u; u=v; v=a+0.618*(b-a); k=k+1; end array(k+1,1)=a;array(k+1,2)=b; end Mini=(a+b)/2; 输入: [R,n]=steel(0,1,0.0001) R = 1.99999413667642 3.99999120501463 R = 1.99999413667642 3.99999120501463 n = 1 牛顿法: 题目:f=(x-2)^2+(y-4)^2 M文件:

matlab实验六 多元函数的极值

实验六多元函数的极值 【实验目的】 1.了解多元函数偏导数的求法。 2.了解多元函数极值的求法。 3.了解多元函数条件极值的求法。 4.学习、掌握MATLAB软件有关的命令。 【实验内容】 求函数42 =-+-的极值点和极值。 823 z x xy y 【实验准备】 1.计算多元函数的极值 2.计算二元函数在区域D内的最大值和最小值 3.求函数偏导数的MATLAB命令 MATLAB中主要用diff求函数的偏导数,用jacobian求Jacobian 矩阵。 diff(f,x,n)求函数f关于自变量x的n阶导数。 jacobian(f,x)求向量函数f关于自变量x(x也为向量)的jacobian 矩阵。 【实验重点】 1、多元函数的偏导数计算 2、多元函数极值的计算 【实验难点】 1、多元函数极值的计算

【实验方法与步骤】 练习1 求函数42823z x xy y =-+-的极值点和极值。首先用diff 命令求z 关于x,y 的偏导数 >>clear;syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans=4*x^3-8*y ans=-8*x+4*y 即348,84z z x y x y x y ??=-=-+??再求解正规方程,得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MATLAB 代码为 >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4)。下面再求判别式中的二阶偏导数: >>clear;syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff((z,x),y)) >>C=diff(z,y,2)

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题(1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(法)。该方法用不变的区间缩短率代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。 黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而着称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果

f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

黄金分割法-进退法-原理及流程图

黄金分割法-进退法-原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

Matlab优化(求极值)

第七讲 Matlab 优化(求极值) 理论介绍:算法介绍、软件求解. 一.线性规划问题 1.线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小值的问题,Matlab 中规定线性规划的标准形式为 min s.t.T x c x Ax b Aeq x beq lb x ub ≤?? ?=??≤≤? 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向量。注意:线性规划问题化为Matlab 规定中的标准形式。 求解线性规划问题的Matlab 函数形式为linprog(c,A,b),它返回向量x 的值,它的具体调用形式为: [x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,x0,OPTIONS) 这里fval 返回目标函数的值,LB 、UB 分别是变量x 的下界和上界,x0是x 的初始值,OPTIONS 是控制参数。 例1 求解线性规划问题 1231231 23123123max 23572510s.t.312,,0 z x x x x x x x x x x x x x x x =+-++=??-+≥??++≤??≥? 程序:c=[2;3;5]; >> A=[-2,5,-1;1,3,1];b=[-10;12]; >> Aeq=[1,1,1];beq=[7]; >> LB=[0;0;0];(zeros(3,1)) >> [x,fval]=linprog(c,A,b,Aeq,beq,LB,[]) 练习与思考:求解线性规划问题

12312312123 min 23+428 s.t.3+26,,0z x x x x x x x x x x x =+++≥?? ≥??≥? 注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ]. 2.可以转化为线性规划的问题 规划问题12min||+||++||s.t.,n x x x Ax b ≤L 其中1=[],T n x x x L ,A b 为相应维数的矩阵和向量。注意到对任意的i x 存在,>0i i u v 满足=-,||=+i i i i i i x u v x u v ,事实上只要取 +||||-= ,=22 i i i i i i x x x x u v 就可以满足上面的条件。 这样,记11=[],=[],T T n n u u u v v v L L 从而可以把问题变成 =1min (+) (-)s.t.,0 n i i i u v A u v b u v ≤?? ≥?∑ 例2 求解规划问题min{max||}i i i x y ε,其中=-.i i i x y ε 对于这个问题,如果取0=lim||i i y x ε,这样,上面的问题就变换成 01100min s.t.-,,-n n x x y x x y x ≤≤L 这是我们通常的线性规划问题。 练习与思考:规划问题 1234123412341234min ||2||+3||+4||--+=0s.t.-+-3=11--2+3=-2 z x x x x x x x x x x x x x x x x =+? ?? ???? 二.非线性一元函数的最小值 对于求一元函数的最小值问题,Matlab 提供了一个命令函数fminbnd ,

MATLAB黄金分割法课程论文--分析

中南林业科技大学 本科课程论文 学院:理学院 专业年级:14级信息与计算科学2班 学生姓名:邱文林学号:20144349 课程:MATLAB程序设计教程 设计题目:基于MATLAB的黄金分割法与抛物线插值法指导教师:龚志伟

2016年4月

中文摘要 为了求解最优化模型的最优解,可使用基于MATLAB算法编程的黄金分割法与抛物线插值法,来实现求解的过程。黄金分割法是通过所选试点的函数值而逐步缩短单谷区间来搜索最优点,利用迭代进而得出结论。抛物线插值法亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。通过将MATLAB与最优化问题相结合,不仅可以加深对黄金分割法、抛物线插值法的基本理解和算法框图及其步骤的全面理解,也有利于帮助我们掌握MATLAB的使用方法。 关键词:MATLAB,黄金分割法,抛物线插值法,最优解,迭代

英文摘要 In order to solve the optimization model of the optimal solution, using MATLAB algorithm based on the golden section method and the parabola interpolation method, to realize the process of solving. The golden section method is used to search the most advantage through the function value of the selected pilot, which can be used to search for the most advantage. Parabolic interpolation method, also known as the two interpolation method, is a polynomial interpolation method, successive to fit the two curve of the minimum point, the original search function to find a very small point of the method. By combining MATLAB and optimization problems can not only deepen the comprehensive understanding of the golden section method, the parabola interpolation basic understanding and block diagram of the algorithm and steps, but also conducive to help us to grasp the method of using MATLAB. Key words: MATLAB, golden section method, parabolic interpolation method, optimal solution, iteration

相关文档
最新文档