模糊c均值聚类算法及应用

合集下载

模糊C—均值(FCM)聚类法与矢量量化法相结合用于说话人识别

模糊C—均值(FCM)聚类法与矢量量化法相结合用于说话人识别

得到 L C , L CCL P P (PC倒谱) 参数.它为语音谱的包络提供 了很好的近似 ,比直接 由 F T离 F (
散 傅 里 叶 变 换 ) 到 的语 音谱 平 稳 . 得 语 音的 L PC 参 数 分 析 即 是 用 语 音 信 号 对过 去 P 个 时刻 的采 样 值 的线 性 组 台 最 小 预 测 误 差 预 测 下一 时刻 的信 号采 样 值 ,其 时 域 模 型 表 示 式 为
维普资讯

笨2 第6 4 期。. .
电 子 与 信 息 学 报
鞋 鏊 瓣 髂
墼 飘曩辨 躲 罄
Vi4 n o2 N 6
Jn 02 u e2 0

J OURNAL OF E ECTRONI SAND NF L C I ORM A ON ECH TI T OL OGY
语音信号中 提取的 1 2阶 L C( P 拽性顶测编码) 倒谱系数作为待分类样本的 1 2十指标.先用矢量量化法求
出每 十说话 ^表征特征参数的码书,作为模糊聚类算法的聚类中心.景后将待识别的持征矢量以得 到的码书 为聚娄中心,进行聚类识 别.该算法所使用的特征参数较少,计赞 比较简单,但识别率较 矢量量化法高. 关 键 诃 模 糊 幕 粪 . 矢量 量 化 ,说 话 ^ 识 别 .语 音 特 征 中 图号 TP3 142 TN9 2 3 9 . 1
2语 音 特 征 参 数 l -
2i 音 信 号 预 处 理 首 先 根 据 语 音信 号 的 短 时 能 量 和 短 时平 均 过零 率 可 确 定 语 音 信 号 的 有 语 无 当短 时 能 量 和 过零 率 都 很 小 时 , 判 定 无语 音信 号 可 其次 瞄颓 对 语 音 信号 进 行 预 加 重 处理 . 本

粗糙模糊C-均值算法及其在图像聚类中的应用

粗糙模糊C-均值算法及其在图像聚类中的应用

p e i o he s n i vt o ii a e r e o mb rhp mar .T e b t re e t a el o y ma ye p r n . rcs n,t st i t nt d ge me e s t x h t f c l b t  ̄ d b n x i i e i y i l f i i e e c le s e me t s
Ke r s r u h s t ; zy C - a g r h ; u h fzy C - ei a r h y wo d :o g s f z - n ao i m r g z ・ e u me l t o u me t g i m sl o t
模糊 C一均 值 ຫໍສະໝຸດ uz - as算 法 是 由 Bze 出 的一 种 模糊 聚类 算 法 , Fz CMen) y edk提 该算 法 提 出后 在 图像
中图分类 号 : 19 0 5 文献标识码 : A
Ro g z y C— e n g rt m u h Fu z M a s Al o ih a d Is App i a i n t m a e Cl s e i g n t lc to o I g u t r n
Odrr zel-等学 者 改进 了 目标 函数 以获得更 好 的聚类 效 果 。对 于上 述 问题 , 质 上是 由 于迭 代过 程 中生 I 3 i 本 成 的隶属度 矩 阵分 布不 合理 所造 成 的 。本 文提 出 了一种 新 的模糊 C一均值 算法 —— 粗糙 模糊 C一均 值
算法( og u y — e s , RuhFz M a )基于粗糙集理论对 目 函数进行改进 , zC n 标 从而改变隶属度矩阵的分布。实验 表明 : 算法 的收敛 性较 好 , 初 始聚类 中心 和 初 始隶 属 度 矩 阵 的敏 感 度较 低 , 对 计算 量 较 F M算 法 小 , C 对 边界元素的分辨率较高 。

模糊 c 均值算法

模糊 c 均值算法

模糊c 均值算法
模糊c均值算法,也叫Fuzzy C Means算法,是一种无监督的聚类算法。

与传统的聚类算法不同的是,模糊C均值算法允许同一样本点被划分到不同的簇中,而且每个样本点到各个簇的距离(或者说相似度)用模糊数表示,因而能更好地处理样本不清晰或重叠的情况。

模糊c均值算法的步骤如下:
1. 初始化隶属度矩阵U,每个样本到每个簇的隶属度都为0-1之间的一个随机数。

2. 计算质心向量,其中每一项的值是所有样本的对应向量加权后的和,权重由隶属度矩阵决定。

3. 根据计算得到的质心向量计算新的隶属度矩阵,更新每个样本点到每个簇的隶属度。

4. 如果隶属度矩阵的变化小于一个预先设定的阈值或者达到了最大迭代次数,则停止;否则,回到步骤2。

模糊c均值算法是一种迭代算法,需要进行多次迭代,直到满足一定的停止条件。

同时,该算法对于隶属度矩阵的初始值敏感,不同的初始值可能会导致不
同的聚类结果。

关于模糊c均值聚类算法

关于模糊c均值聚类算法

FCM模糊c均值1、原理详解模糊c-均值聚类算法fuzzy c-means algorithm (FCMA)或称(FCM)。

在众多模糊聚类算法中,模糊C-均值(FCM)算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。

聚类的经典例子然后通过机器学习中提到的相关的距离开始进行相关的聚类操作经过一定的处理之后可以得到相关的cluster,而cluster之间的元素或者是矩阵之间的距离相对较小,从而可以知晓其相关性质与参数较为接近C-Means Clustering:固定数量的集群。

每个群集一个质心。

每个数据点属于最接近质心对应的簇。

1.1关于FCM的流程解说其经典状态下的流程图如下所示集群是模糊集合。

一个点的隶属度可以是0到1之间的任何数字。

一个点的所有度数之和必须加起来为1。

1.2关于k均值与模糊c均值的区别k均值聚类:一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则,进行相关的必要调整优先进行优化看是经典的欧拉距离,同样可以理解成通过对于cluster的类的内部的误差求解误差的平方和来决定是否完成相关的聚类操作;模糊的c均值聚类算法:一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何数,提出的基本根据是“类内加权误差平方和最小化”准则;这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。

两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。

1.2.1关于kmeans详解K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。

K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。

模糊C均值聚类算法实现与应用

模糊C均值聚类算法实现与应用

模糊C均值聚类算法实现与应用聚类算法是一种无监督学习方法,在数据挖掘、图像处理、自然语言处理等领域得到广泛应用。

C均值聚类算法是聚类算法中的一种经典方法,它将数据对象划分为若干个不相交的类,使得同一类中的对象相似度较高,不同类之间的对象相似度较低。

模糊C均值聚类算法是对C均值聚类的扩展,它不是将每个数据对象划分到唯一的类别中,而是给每个对象分配一个隶属度,表示该对象属于不同类的可能性大小。

本文主要介绍模糊C均值聚类算法的实现方法和应用。

一、模糊C均值聚类算法实现方法模糊C均值聚类算法可以分为以下几个步骤:1. 确定聚类数k与参数m聚类数k表示将数据分成的类别数目,参数m表示隶属度的度量。

一般地,k和m都需要手动设定。

2. 随机初始化隶属度矩阵U随机初始化一个k×n的隶属度矩阵U,其中n是数据对象数目,U[i][j]表示第j个对象隶属于第i个类别的程度。

3. 计算聚类中心计算每个类别的聚类中心,即u[i] = (Σ (u[i][j]^m)*x[j]) / Σ(u[i][j]^m),其中x[j]表示第j个对象的属性向量。

4. 更新隶属度对于每个对象,重新计算它对每个类别的隶属度,即u[i][j] = 1 / Σ (d(x[j],u[i])/d(x[j],u[k])^(2/(m-1))),其中d(x[j],u[i])表示第j个对象与第i个聚类中心的距离,k表示其他聚类中心。

5. 重复步骤3和4重复执行步骤3和4,直到满足停止条件,例如聚类中心不再变化或者隶属度矩阵的变化趋于稳定。

二、模糊C均值聚类算法应用模糊C均值聚类算法可以应用于多个领域,包括图像处理、文本挖掘、医学图像分析等。

下面以图像分割为例,介绍模糊C均值聚类算法的应用。

图像分割是图像处理中的一个重要应用,旨在将一幅图像分割成多个区域,使得同一区域内的像素具有相似度较高,不同区域之间的像素相似度较低。

常见的图像分割算法包括全局阈值法、区域生长法、边缘检测法等。

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。

通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。

本文将介绍在Matlab中使用FCM进行图像分析的技巧。

首先,让我们简要了解一下FCM算法。

FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。

与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。

在Matlab中使用FCM进行图像分析的第一步是加载图像。

可以使用imread函数将图像加载到Matlab的工作区中。

例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。

这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。

这是因为FCM算法通常用于灰度图像分析。

可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。

预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。

常用的图像预处理方法包括平滑、锐化和边缘检测等。

Matlab中提供了许多图像预处理函数。

例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。

常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法模糊C均值聚类算法是一种广泛应用于数据挖掘、图像分割等领域的聚类算法。

相比于传统的C均值聚类算法,模糊C均值聚类算法能够更好地处理噪声数据和模糊边界。

模糊C均值聚类算法的基本思想是将样本集合分为K个聚类集合,使得每个样本点属于某个聚类集合的概率最大。

同时,每个聚类集合的中心点被计算为该聚类集合中所有样本的均值。

具体实现中,模糊C均值聚类算法引入了模糊化权重向量来描述每个样本点属于各个聚类集合的程度。

这些权重值在每次迭代中被更新,直至达到预设的收敛精度为止。

模糊C均值聚类算法的目标函数可以表示为:J = ∑i∑j(wij)q||xi-cj||2其中,xi表示样本集合中的第i个样本,cj表示第j个聚类集合的中心点,wij表示第i个样本点属于第j个聚类集合的权重,q是模糊指数,通常取2。

不同于C均值聚类算法,模糊C均值聚类算法对每个样本点都考虑了其属于某个聚类集合的概率,因此能够更好地处理模糊边界和噪声数据。

同时,模糊C均值聚类算法可以自适应地确定聚类的数量,从而避免了事先设定聚类数量所带来的限制。

在MATLAB中,可以使用fcm函数实现模糊C均值聚类算法。

具体来说,fcm函数的使用方法如下:[idx,center] = fcm(data,k,[options]);其中,data表示样本矩阵,k表示聚类数量,options是一个包含算法参数的结构体。

fcm函数的输出包括聚类标签idx和聚类中心center。

MATLAB中的fcm函数还提供了其他参数和选项,例如模糊权重阈值、最大迭代次数和收敛精度等。

可以根据具体应用需求来设置这些参数和选项。

模糊 c 均值聚类算法

模糊 c 均值聚类算法

模糊 c 均值聚类算法模糊 c 均值聚类算法是一种常用的聚类算法,其特点是能够解决数据集中存在重叠现象的问题,适用于多类别分类和图像分割等领域。

本文将从算法原理、应用场景、优缺点等方面分析模糊c 均值聚类算法。

一、算法原理模糊 c 均值聚类算法与传统的聚类算法相似,都是通过对数据集进行聚类,使得同一类的数据样本具有相似的特征,不同类的数据样本具有不同的特征。

但是模糊c 均值聚类算法相对于传统的聚类算法而言,其对于数据集中存在重叠现象具有一定的优越性。

模糊 c 均值聚类算法的主要思想是:通过迭代计算,确定数据集的类别个数,并计算每个数据样本属于不同类别的概率值。

在此基础上,通过计算每个聚类中心的权值,并对每个数据样本属于不同类别的概率进行调整,以达到数据样本的合理分类。

二、应用场景模糊 c 均值聚类算法的应用范围较广,主要包括:1.多类别分类:在多类别分类中,不同的类别往往具有比较明显的特征区别,但是存在一些数据样本的特征存在重叠现象。

此时,模糊 c 均值聚类算法可以对这些数据样本进行合理分类。

2.图像分割:在图像分割过程中,一张图片包含了不同的对象,这些对象的特征往往具有一定的相似性。

模糊 c 均值聚类算法可以通过对这些相似的特征进行分类,实现对于图像的自动分割。

3.市场分析:在市场分析中,需要根据一定的统计规律,对市场中的产品进行分类。

模糊 c 均值聚类算法可以帮助市场研究人员实现对市场中产品的自动分析分类。

三、优缺点分析模糊 c 均值聚类算法相对于传统的聚类算法而言,其对于数据集中存在重叠现象具有一定的优越性,具体优缺点如下所示:1.优点:(1) 能够有效地解决重叠现象问题,在多类别数据分类和图像分割等领域具有比较好的应用前景。

(2) 通过迭代计算,能够实现对数据集的自动分类,自动化程度高。

2.缺点:(1) 算法的时间复杂度比较高,需要进行多次迭代计算,因此在数据量较大时,运算时间比较长。

(2) 模糊 c 均值聚类算法对于初始聚类中心的选择较为敏感,不同的聚类中心初始化可能会导致最终分类效果的不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊c均值聚类算法及应用
随着数字化时代的到来,数据量的增加让人们变得更加注重数据分析与聚类。

相比较传统的聚类算法,模糊c 均值聚类算法在实际应用中的效果更加出色。

本文将对模糊c均值算法进行详细介绍,并且剖析其在实际应用中的优势。

一、什么是模糊c均值聚类算法
模糊c均值聚类算法是一种基于物理学中的隶属度理论,来对不同种类数据进行分类的一种算法。

其基本原理是通过计算不同数据在所属类别中的隶属程度,并根据不同的权重来计算数据的均值和方差,从而实现对数据进行分类的目的。

在传统的c均值聚类算法中,所有的数据点都必须完全属于某一个类别中,而在模糊c均值聚类算法中,一个数据点可以属于多个不同的类别,且归属于每个类别的隶属度都是按照百分比计算的。

换句话说,每个数据点都有可能属于多个不同的类别,且在不同类别中的权重不同。

二、模糊c均值聚类算法的优势
模糊c均值聚类算法在大量实验中都取得了理想的效果。

其优势主要有以下几个方面:
1.能够适应不同数据的分布情况
在聚类分析中,很多数据不是严格遵循正态分布等统计规律的,这就使得传统的c均值聚类算法很难准确分类。

然而,采用模糊c均值算法处理这些数据时,可以很好地适应多样性的数据分布。

2. 更准确地表达数据之间的联系
在实际应用中,很多数据点不仅需要分类,还要进行关联性分析。

在传统的c均值聚类算法中,只能体现点与点之间的距离远近,很难准确刻画数据之间的关联关系。

而在模糊c均值聚类算法中,可以很好地给每个点进行加权处理,使得每个点被分类后能更加准确地表达和传达其所代表的信息。

3. 更加灵活的聚类动态
传统的c均值聚类所表现出来的聚类动态,很难被实时地调整。

而模糊c均值聚类算法中,每个数据点都有一定的隶属度,可以更加灵活地调整聚类动态。

使用模糊c 均值求解,总是能得到的比传统c均值聚类更加的平滑,不容易受到某些噪音的干扰,更能够优化每个点的分类。

三、模糊c均值聚类算法的应用
1. 人脸识别
在人脸识别领域,模糊c均值算法可以有效地应用于人脸的分类和特征提取。

将不同的人脸图像输入模糊c均
值聚类算法中,可以得到更高的分类准确度和对人脸图像特征的识别。

2. 基于质心的摄像头自适应跟踪算法
该算法可以通过摄像头的捕捉画面,利用模糊c均值算法快速地对目标进行定位,并且在运动中动态跟踪。

该算法能够有效地应用于车载摄像头监控系统中。

3. 图像分割
图像分割是数字图像处理中的一项基础工作,通常涉及到对图像中的各种物体进行分割和分类。

在分割中,使用模糊c均值算法可以很好地表现物体的形状、边缘和位置,从而获得更好的分割效果。

四、总结
模糊c均值聚类算法是一种非常实用的聚类算法,其不仅能够应对不同的数据分布情况,同时也可以更加准确地表达数据之间的联系和关联关系。

虽然这种算法在调参过程中相对繁琐,但相对于其优点而言,这些操作并不构成太大的困扰。

在实际应用中,模糊c均值聚类算法可以应用于不同场景,例如人脸识别、图像分割等领域,其表现都非常出色。

随着数字化方式在日常生活中的普及,这种算法的应用将变得更加普遍和广泛。

相关文档
最新文档