高考导数题的解题技巧绝版

高考导数题的解题技巧绝版
高考导数题的解题技巧绝版

高考导数题的解题技巧

绝版

TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧

导数命题趋势:

(1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题.

(2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合.

【考点透视】

1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.

2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.

3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.

【例题解析】

考点1 导数的概念

对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.

例1.(2007年北京卷)()f x '是31

()213

f x x x =++的导函数,则(1)f '-的值是

[考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2

2()2,(1)12 3.f x x f ''=+∴-=-+=

故填3.

例2. ( 2006年湖南卷)设函数()1

x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若

M P,则实数a 的取值范围是 ( )

A.(-∞,1)

B.(0,1)

C.(1,+∞)

D. [1,+∞)

[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.

1

x a x a a x x -<∴<<<<-当a>1时当a<1时

综上可得M P 时,

1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线

求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线

若一直线同时与两曲线相切,则称该直线为两曲线的公切线.

典型例题

例3.(2007年湖南文)已知函数3211

()32

f x x ax bx =++在区间[11)-,,(13],内各

有一个极值点.

(I )求24a b -的最大值;

(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点

A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.

思路启迪:用求导来求得切线斜率.

解答过程:(I )因为函数3211

()32

f x x ax bx =++在区间[11)-,,(13],内分别有一

个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是

2044a b <-,20416a b <-≤,且当11x =-,

23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是

(1)(1)(1)y f f x '-=-,即21

(1)32

y a b x a =++--,

因为切线l 在点(1())A f x ,处空过()y f x =的图象,

所以21

()()[(1)]32

g x f x a b x a =-++--在1x =两边附近的函数值异号,则

1x =不是()g x 的极值点.

而()g x 321121

(1)3232

x ax bx a b x a =++-++++,且

22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.

若11a ≠--,则1x =和1x a =--都是()g x 的极值点.

所以11a =--,即2a =-,又由248a b -=,得1b =-,故321

()3

f x x x x =--.

解法二:同解法一得21

()()[(1)]32

g x f x a b x a =-++--

2133

(1)[(1)(2)]322

a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <.

设233()1222a a h x x x ???

?=++-+ ? ????

?,则

当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102

a

h =?++

=, 所以2a =-,又由248a b -=,得1b =-,故321

()3

f x x x x =--.

例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )

A .430x y --=

B .450x y +-=

C .430x y -+=

D .430x y ++=

[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力. [解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.

例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +2

5=0相切的直线的方程为

( )

A.y =-3x 或y =3

1x B. y =-3x 或y =-3

1x C.y =-3x 或y =-3

1x D. y =3x 或y =3

1x

[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.

[解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2

x y -++=∴-圆心为

故选A.

解法2:由解法1知切点坐标为1331(,),,,

2

222?

?- ???

由 故选A.

例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程.

思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.

解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ① 曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即

a x x x y ++-=2222 ②

若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得

1,12

22121+=--=+x x x x ,消去2x 得方程,012212

1=+++a x x

若△=0)1(244=+?-a ,即2

1-=a 时,解得2

11-=x ,此时点P 、Q 重合.

∴当时2

1-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14

y x =- .

考点3导数的应用

中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:

1.. 求函数的解析式;

2. 求函数的值域;

3.解决单调性问题;

4.求函数的极值(最值);

5.构造函数证明不等式. 典型例题

例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )

A .1个

B .2个

C .3个

D . 4个

[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力.

[解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.

例8 . (福建省2008年普通高中毕业班质量检查)已知函数f (x )=ln(x +a )-x 2-x 在x = 0处取得极值.

(I)求实数a 的值; (Ⅱ)若关于x 的方程,f (x )=b x +-

2

5

在区间[O ,2]上恰有两个不同的实数根,求实数b 的取值范围;

(Ⅲ)证明:对任意的正整数n ,不等式ln

21

1n

n n n +<+都成立. [考查目的]本小题主要考查函数的导数、单调性、极值和不等式等基础知识;考查化归及数形结合的思想方法;考查分析问题、解决问题的能力。 解答过程:解:(Ⅰ) ()f x ' =

1

21x x a

--+ ∵x =0时,f (x )取得极值,∴(0)f '=0,

故12010a

-?-+ =0,解得a =1.经检验a =1符合题意.

(Ⅱ)由a =1知f (x )=ln(x +1)-x 2 - x ,由f (x )= 5

2

x -+b ,

得ln(x +1)-x 2+ 3

2

x -b =0,

令φ(x )= ln(x +1)-x 2+ 3

2

x -b ,

则f (x )= 5

2

x -+b 在[0,2]上恰有两个不同的实数根等价于φ(x )=0在

[0,2]

恰有两个不同实数根.

13(45)(1)()2122(1)

x x x x x x ?-+-'=

-+=++, 当x ∈(O ,1)时,()x ?' >O ,于是φ(x )在(O ,1)上单调递增; 当x ∈(1,2)时,()x ?' <0,于是φ(x )在(1,2)上单调递减.

依题意有(0)0,3(1)ln(11)10,2(2)ln(12)430,

b b b ???=-≤???

=+-+->??

=+-+-≤??

∴ln3 -1≤b

1

2

.

(Ⅲ) f (x )=ln(x +1)-x 2 –x 的定义域为{x |x > -1}, 由(Ⅰ)知(23)

()(1)

x x f x x -+'=

+,

令()f x '=0得,x =0或x = -

3

2

(舍去), ∴当-10,f (x )单调递增; 当x >0时,()f x '<0,f (x )单调递减.

∴f (0)为f (x )在(-1,+∞)上的最大值.

∴f (x )≤ f (0),故ln(x +1)-x 2-x ≤0(当且仅当x =0时,等号成立). 对任意正整数n ,取x =

1n >0得,ln(1n +1)< 1n +21

n

,故ln(

1n n +)<21

n n

+. 例9.函数y x x =

+-+243的值域是_____________.

思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。

解答过程:由24030

x x +≥+≥??

?得,x ≥-2,即函数的定义域为[,)-+∞2. y x x x x x x '=

+-+=

+-++?+1241232324

2243

又232428

2324

x x x x x +-+=

++++,

∴当x ≥-2时,y '>0,

∴函数y x x =+-+243在(,)-+∞2上是增函数,而f ()-=-21,

∴=+-+y x x 243的值域是[,)-+∞1.

例10.(2006年天津卷)已知函数()θθcos 16

3

cos 3423+-=x x x f ,其中θ,R x ∈为参

数,且πθ20≤≤.

(1)当时0cos =θ,判断函数()x f 是否有极值;

(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;

(3)若对(2)中所求的取值范围内的任意参数θ,函数()x f 在区间()a a ,12-内都是增函数,求实数a 的取值范围.

[考查目的]本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.

[解答过程](Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.

(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2

x x θ==.

由(Ⅰ),只需分下面两种情况讨论.

①当cos 0θ>时,随x 的变化'()f x 的符号及()f x 的变化情况如下表:

因此,函数()f x 在cos 2

x =处取得极小值cos f()2

,且3cos 13()cos 2

4

16

f θθθ=-+.

要使cos ()02

f θ>,必有213cos (cos )04

4

θθ-->,可得0cos θ<<.

由于0cos θ≤≤

,故3116

2

2

6

ππππθθ<<<<或.

②当时cos 0θ<,随x 的变化,'()f x 的符号及()f x 的变化情况如下表:

因此,函数()0f x x =在处取得极小值(0)f ,且3(0)cos .16

f θ=

若(0)0f >,则cos 0θ>.矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零. 综上,要使函数()f x 在(,)-∞+∞内的极小值大于零,参数θ的取值范围为

311(,)(,)6226

ππππ?.

(III )解:由(II )知,函数()f x 在区间(,)-∞+∞与cos (,)2

θ+∞内都是增函数。

由题设,函数()(21,)f x a a -在内是增函数,则a 须满足不等式组

210

a a a -<≤ 或

综上,解得0a ≤1a ≤<. 所以a 的取值范围是(,0)-∞?.

例11.(2006年山东卷)设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间.

[考查目的]本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力

[解答过程]由已知得函数()f x 的定义域为(1,)-+∞,且'1()(1),1

ax f x a x -=≥-+

(1)当10a -≤≤时,'()0,f x <函数()f x 在(1,)-+∞上单调递减, (2)当0a >时,由'()0,f x =解得1.x a

=

'()f x 、()f x 随x 的变化情况如下表

从上表可知

当1(1,)x a

∈-时,'()0,f x <函数()f x 在1(1,)a

-上单调递减.

当1(,)x a

∈+∞时,'()0,f x >函数()f x 在1(,)a

+∞上单调递增.

综上所述:当10a -≤≤时,函数()f x 在(1,)-+∞上单调递减.

当0a >时,函数()f x 在1(1,)a

-上单调递减,函数()f x 在1(,)a

+∞上单调递增.

例12.(2006年北京卷)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =

的图象经过点(1,0),

(2,0),如图所示.求:

(Ⅰ)0x 的值; (Ⅱ),,a b c 的值.

[考查目的]本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值, 函数与方程的转化等基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力

[解答过程]解法一:(Ⅰ)由图像可知,在(),1-∞上

()'0f x >,在()1,2上

()'0f x <,在()2,+∞上()'0f x >,

故()f x 在∞∞(-,1),(2,+)上递增,在(1,2)上递减, 因此()f x 在1x =处取得极大值,所以01x = (Ⅱ)'2()32,f x ax bx c =++

由'''f f f (1)=0,(2)=0,(1)=5,

得320,

1240,5,a b c a b c a b c ++=??++=?

?++=?

解得2,9,12.a b c ==-= 解法二:(Ⅰ)同解法一

(Ⅱ)设'2()(1)(2)32,f x m x x mx mx m =--=-+ 又'2()32,f x ax bx c =++ 所以3,,23

2

m a b m c m ==-=

由(1)5f =,即325,3

2

m m m -+=得6,m =

所以2,9,12a b c ==-=

例13.(2006年湖北卷)设3=x 是函数()()

()

R x e b ax x x f x ∈++=-32的一个极值点.

(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;

(Ⅱ)设0>a ,()x e a x g ??? ?

?

+=4252.若存在[]4,0,21∈εε使得

()()121<-εεg f 成立,求a 的取值范围.

[考查目的]本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.

[解答过程](Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-x ,

由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a , 则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3-x

=-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-x . 令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点, 所以x+a+1≠0,那么a ≠-4. 当a <-4时,x 2>3=x 1,则

在区间(-∞,3)上,f `(x)<0, f (x)为减函数; 在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数; 在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数. 当a >-4时,x 2<3=x 1,则

在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数; 在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数; 在区间(3,+∞)上,f `(x)<0,f (x)为减函数.

(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],

而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -1>0,f (3)=a +6, 那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6]. 又225()()4

x g x a e =+在区间[0,4]上是增函数,

且它在区间[0,4]上的值域是[a 2+4

25,(a 2+4

25)e 4],

由于(a 2+4

25)-(a +6)=a 2-a +41=(2

1-a )2≥0,所以只须仅须

(a 2+4

25)-(a +6)<1且a >0,解得0

3.

故a 的取值范围是(0,2

3).

例14 (2007年全国二)

已知函数321

()(2)13

f x ax bx b x =-+-+

在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;

(2)若z =a +2b ,求z 的取值范围。

[解答过程]求函数()f x 的导数2()22f x ax bx b '=-+-.

(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是

()0f x '=的两个根.

所以12()()()f x a x x x x '=--

当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.

(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>??'? 即202204420b a b b a b b ->??

-+-?.

化简得20

3204520b a b a b ->??

-+?

此不等式组表示的区域为平面aOb 上三条直线:

203204520b a b a b -=-+=-+=,,.

所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ??

???,,,,

,. z 在这三点的值依次为

16687

,,. 所以z 的取值范围为1687??

???

,. 考点4导数在不等式的证明及解决不等式中求参数的问题中的应用.

一、构造函数,利用函数的导数证明不等式

1.直接由所证不等式构造函数, 讨论构造函数单调性,达到证明不等式的目的

把要证明的不等式通过构造函数转化为)0(0)(<>x f 再通过求)(x f 的最值,从而实现对不等式的证明.

例1(2010年全国理科卷2)设函数()1x f x e -=-. ○1 证明:当x >-1时,()1

x

f x x ≥+, ○2 设当0x ≥时,()1

x

f x ax ≤+,求a 的取值范围. b a

2 1

2

4

O

证明:○1 当1->x 时,1

)(+≥x x

x f ,当且仅当.1x e x +≥ 构造函数:

()1--=x e x g x ,

则对)(x g 求导得:

()1'-=x e x g .

当0≥x 时,()0'≥x g ,()x g 在(]+∞,0上是增函数, 当0≤x 时,0)('≤x g ,

()x g 在(]0,∞-上是减函数.

于是()x g 在0=x 处达到最小值,因而当R x ∈时,)0()(g x g ≥,即

x e x +≥1,

所以当1->x 时,()1

x

f x x ≥

+ . ② 略. 2.常系数变易法

对形如(或可化为)A x x f ≥),(21的不等式,根据题意可适当选择1x (或2x )为主元,构造函数),(2x x f (或),(1x x f ).

例2(2004年全国理科卷2)已知函数x x x f -+=)1ln()(,x x x g ln )(= ○

1 求函数)(x f 的最大值; ○

2 设b a <<0,证明:2ln )()2

(2)()(0a b b

a g

b g a g -<+-+<. 解:○1 略

○2 由 x x x g ln )(=,则1ln )(+='x x g . 首先选择b 为主元,构造函数:

)2

(

2)()()(x

a g x g a g x F +-+=, 则对)(x F 求导得:

2ln

ln )2(2)()(x a x x a g x g x F +=='?????

?

+-'='. 当a x <<0时,0)(<'x F ,因此)(x F 在()a ,0内为减函数,当a x >时,

0)(>'x F ,因此)(x F '在()+∞,a 上为增函数.

从而,当a x =时,)(x F 有极小值)(a F ,因为0)(=a F ,由a b >, 所以

0)(>b F ,即

)2

(

2)()(0b

a g

b g a g +-+<, 其次构造函数:

2ln )()()(a x x F x G --=,

则对)(x G 求导得:

)ln(ln 2ln 2

ln

ln )(x a x x

a x x G +-=-+-='. 当0>x 时,0)(<'x G ,因此)(x G 在()+∞,0上为减函数,因为0)(=a G ,a

b >,所以 0)(

2ln )()2

(

2)()(a b b

a g

b g a g -<+-+, 综上所述,原不等式成立.

二、利用导数求出函数的极值、最值(或值域) 后,再证明不等式

最值证明在不等式中的应用,一般将不等式通过移项,构造一个函数,然后求这个函数的极(最)值,应用恒成立关系就可以证明.

例3(2009年全国理科卷2)设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x <,

1 求a 的取值范围,并讨论()f x 的单调性, ○

2 证明:()2

122

4

In f x -> .

解: ○1 对)(x f 求导得:

令2()22g x x x a =++,其对称轴为1

2

x =-.由题意知12x x 、是方程()0

g x =的两个均大于1-的不相等的实根,其充要条件为

480

(1)0a g a ?=->??

-=>?

, 得1

02

a <<

. 当1(1,)x x ∈-时,0)(>'x f ,所以)(x f 在1(1,)x -内为增函数;当12(,)x x x ∈时,0)(<'x f ,所以)(x f 在12(,)x x 内为减函数;当2,()x x ∈+∞时,0)(>'x f ,所以)(x f 在2,()x +∞内为增函数.

○2由○1可知0)0(>=a g ,有 02

1

2<<-x ,222(2)a x x =-+2 所以

)1ln()22()1ln()(222

2222222x x x x x a x x f ++-=++=.

()()221

(22)1()2

h x x x x ln x x =-++>-,

()()()22(21)122(21)1h x x x ln x x x ln x '=-++-=-++.

当1(,0)2

x ∈-时,0)(>'x h ,所以)(x h 在1

[,0)2-单调递增;当(0,)

x ∈+∞时,()0h x '<,()h x 在(0,)+∞单调递减.

所以,当)0,2

1

(-∈x 时,

4

2

ln 21)21()(-=->h x h ,

故()22122

()4

In f x h x -=>

.三、利用导数解决不等式中求参数的问题

不等式恒成立问题,一般都会涉及到求参数范围,有些往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.但是有些不能把变量分离或者分离之后求解非常麻烦的,要通过适当的变换来求解,在求解的过程中往往都要结合函数的性质通过分类讨论的思想进行求解.总之,利用导数求函数最值是解决不等式恒成立问题的一种重要方法. 1.变量分离后,不等式可以转化为)(x f m >(或)(x f m <)的恒成立问题 例4(2008年安徽理科卷20题)设函数1

()(01)ln f x x x x x

=>≠且 ○1 求函数()f x 的单调区间, ○

2 已知1

2a x

x >对任意(0,1)x ∈成立,求实数a 的取值范围.

解:○1 对)(x f 求导得: 若 '()0,f x = 则 1

x e

=

列表如下

+ 0

- -

单调增

极大值1

()f e

单调减

单调减

○2 在 12a

x

x > 两边取对数, 得 1ln 2ln a x x

>,由于01,x <<所以 1

ln 2ln a x x

>, 由○1 的结果可知,当(0,1)x ∈时,

1

()()f x f e e

≤=-,

为使1ln 2ln a x x >对所有(0,1)x ∈成立,当且仅当ln 2a e >-,即 ln 2a e >- .

2.通过适当的变换,构造函数解决不等式恒成立问题 例5(2008年全国理科卷2)设函数sin ()2cos x

f x x

=

+.

1 求()f x 的单调区间, ○

2 如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:○1对)(x f 求导得:

22

(2cos )cos sin (sin )2cos 1

()(2cos )(2cos )

x x x x x f x x x +--+'=

=++. 当2π2π

2π2π33

k x k -

<<+

(k ∈Z )时,1cos 2x >-,即()0f x '>, 当2π4π

2π2π33

k x k +<<+

(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ?

?-+ ???,(k ∈Z )是增函数,()f x 在

每一个区间2π4π2π2π33k k ?

?++ ???,(k ∈Z )是减函数.

2 构造函数,设()()g x ax f x =-,则 2

11132cos 33a x ??=-+- ?+??

从而,当1

3a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,

()(0)0g x g =≥,即

()f x ax ≤.

当1

03

a <<

时,令 ()sin 3h x x ax =-,

()cos 3h x x a '=-.

由()0h x '>,有[)0arccos3x a ∈,,因此()h x 在[)0arccos3a ,上单调增加,又

(0)0h =,即

sin 3x ax >.

于是,

sin sin ()2cos 3

x x

f x ax x =

>>+.

当0a ≤时,有

π1

π022

2f a ??=>? ???≥.

因此,a 的取值范围是13??

+∞????

,.

总之,导数是解决不等式问题的一个很有用的工具,利用导数解决不等式的问题其实就是要适当的构造函数,运用导数来研究所构造函数的单调性,进而解决不等式中的问题.

考点5 导数的实际应用

建立函数模型,利用导数研究最值 典型例题

例15. (2007年重庆文)

用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? [考查目的]本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.

[解答过程]设长方体的宽为x (m ),则长为2x (m),高为

??? ?

?

-=-=

230(m)35.44

1218<<x x x

h .

故长方体的体积为

从而).1(18)35.4(1818)(2x x x x x x V -=--='

令V ′(x )=0,解得x =0(舍去)或x =1,因此x =1.

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/=, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1

高考导数题型及解题方法总结

高考压轴题:导数题型及解题方法 一.切线问题 题型1求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例已知函数f(x)=x 3 ﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 题型3求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x ); 建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例求曲线2 x y =与曲线x e y ln 2=的公切线方程。(答案02=--e y x e )二.单调性问题 题型1求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。 例已知函数x a x x a x f )1(2 1ln )(2+-+=(1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)

(完整版)高考数学专题导数题的解题技巧

第十讲导数题的解题技巧 【命题趋向】导数命题趋势: 综观 2007 年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1 )多项式求导(结合不等式求参数取值范围) ,和求斜率(切线方程结合函数求最值)问 题. (2 )求极值 , 函数单调性 ,应用题 ,与三角函数或向量结合 . 分值在 12---17 分之间,一般为 1 个选择题或 1 个填空题, 1个解答题 . 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌 握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导 法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点 1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念 . 1 3 例 1.( 2007 年北京卷) f (x) 是f (x) x32x 1 的导函数,则f ( 1) 的值是. [ 考查目的 ] 本题主要考查函数的导数和计算等基础知识和能力 . 22 [ 解答过程 ] Q f (x) x22, f ( 1) 1 2 3. 故填 3. 例2. ( 2006 年湖南卷)设函数f(x) x a,集合 M={x|f(x) 0} ,P={ x| f '(x) 0},若 M P, 则实x1 数 a 的取值范围是 ( )

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型及特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,及三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性及其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的

值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()22()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P=' {|()0}x f x >, 若M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 ()()() / /22 11,0.11111. x x a x a x a a y y x x x x a ------??=∴===> ?--??--∴> 综上可得M P 时, 1. a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时及两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数321 1()32 f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l

高考数学导数题型解题方法

2019年高考数学导数题型解题方法 专题综述 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 知识整合 1.导数概念的理解。 2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值 与最小值。 课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学

生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 3.要能正确求导,必须做到以下两点: 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,

高中数学高考导数题型分析及解题方法

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。 --泰戈尔 导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/=, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分

高考高频考点导函数导数题的解题技巧

专题十 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x =++的导函数, 则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >, 若M P,则实数a 的取值范围是 ( )

高中数学导数经典题型解题技巧(运用方法)

高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几 年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高 中数学的必考内容之一。因此,针对这两各部分的内容和题型总结归 纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。好了,下面就来讲解常用 逻辑用语的经典解题技巧。 第一·认识导数概念和几何意义 1.导数概念及其几何意义 (1)了解导数概念的实际背景。 (2)理解导数的几何意义。 2.导数的运算

(1)能根据导数定义求函数 的导数。 (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 (3)能求简单的复合函数(仅限于形如的复合函数)的导数。 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。 (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。 4.生活中的优化问题 会利用导数解决某些实际问题 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。 (2)了解微积分基本定理的含义。 总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧! 231 (),,,,,y C C y x y x y x y y x ======为常数()f ax b +

第二·导数运用和解题方法 一、利用导数研究曲线的切线 考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。 2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。 解题技巧:1.导数的几何意义 函数在处的导数的几何意义是:曲线在点 处的切线的斜率(瞬时速度就是位移函数对时间的导 数)。 ()y f x =()y f x =0x ()f x '()y f x =00(,())P x f x ()s t t

高考导数题型分析及解题方法

高考导数题型分析及解题方法 本知识单元考查题型与方法: ※※与切线相关问题(一设切点,二求导数=斜率=21 21 y y x x --,三代切点入切线、曲线联立方程求解); ※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。结合以上所得解题。) 特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。 关注几点: 恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ; (2)定义域任意x 有()f x 恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】 能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在 2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x < (2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x > 一、考纲解读 考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3

高考压轴题:导数题型及解题方法总结很全

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执 高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3 ﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x ); 建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线2 x y =与曲线x e y ln 2=的公切线方程。(答案02=--e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。 例 已知函数x a x x a x f )1(2 1ln )(2 +-+ = (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类) (2)若[]e x ,2∈,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为0)(0)(' '≤≥x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想);首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子集。 注意:“函数)(x f 在()n m ,上是减函数”与“函数)(x f 的单调减区间是()b a ,”的区别是前者是后者的子集。 例 已知函数2 ()ln f x x a x =++ x 2 在[)+∞,1上是单调函数,求实数a 的取值范围. (答案[)+∞,0) 题型3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调 方法2:研究导函数是零点问题,再检验。 方法3:直接研究不单调,分情况讨论。 例 设函数1)(2 3 +++=x ax x x f ,R a ∈在区间?? ? ??1,21内不单调,求实数a 的取值范围。 (答案:() 3,2--∈a )) 三.极值、最值问题。 题型1 求函数极值、最值。 基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。 例 已知函数12 1)1()(2 ++- +-=kx x e k x e x f x x ,求在()2,1-∈x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。 方法2.转化为函数单调性问题。 例 函数1)1(2 1 )1(3141)(234+----+= x p p px x p x x f 。0是函数)(x f 的极值点。求实数p 值。 (答案:1) 题型3 已知最值,求系数值或范围。

高考数学专题复习导数题型解题方法总结梳理

高考数学专题复习导数题型解题方法总结梳理 一.导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()() 0000 3,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =--

函数与导数解题方法知识点技巧总结

《函数与导数解题方法知识点技巧总结》 1.高考试题中,关于函数与导数的解答题(从宏观上)有以下题型: (1)求曲线()y f x =在某点出的切线的方程 (2)求函数的解析式 (3)讨论函数的单调性,求单调区间 (4)求函数的极值点和极值 (5)求函数的最值或值域 (6)求参数的取值范围 (7)证明不等式 (8)函数应用问题 2.在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在 0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+。 (2)若可导函数()y f x =在 0x x =处取得极值,则0()0f x '=。反之不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解是函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立(()f x '不恒为0). (5)若函数()f x 在区间I 上有极值,则方程()0f x '=在区间I 上有实根且非二重根。 (若()f x '为二次函数且I=R , 则有0?>)。 (6)若函数f(x)在区间I 上不单调且不为常量函数,则()f x 在I 上有极值。 (7)若x I " ()f x 0>恒成立,则 min ()f x 0>; 若x I ?∈()f x 0<恒成立,则max ()f x 0< (8)若 0x I ?∈使得0()f x 0>,则max ()f x 0>.;若0x I ?∈使得 0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D ,若x ?∈D ()f x >()g x 恒成立,则有 []min ()()0f x g x ->. (10)若对11x I ?∈、22x I ∈ ,12()()f x g x >恒成立,则min max ()()f x g x >. 若对 11x I ?∈,22x I ?∈ , 使得12()()f x g x >, 则min min ()()f x g x >. 若对 11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11) 已知()f x 在区间1I 上的值域为A,()g x 在区间2I 上值域为B ,若对1 1x I ?∈,22x I ?∈使得1()f x =2()g x 成立, 则A B ?。

相关文档
最新文档