循环水排污量计算

循环水排污量计算
循环水排污量计算

循环水总排污量核算

一、已知条件

1、总循环量G=31000m3/h

2、新鲜水补水量P

二、计算

新鲜水补水量P= P1+ P2+ P3+ P4

式中P1 蒸发损失

P2 风吹损失

P3 泄漏损失

P4 排污量

1、蒸发损失P1

计算公式1 P1=K·Δt·G

K:系数在环境温度为30℃时,K=0.15

Δt:进出水温差取Δt=2℃

G:系统循环量31000 m3/h

P1=31000×0.15×2%=93 m3/h=2232 m3/d

2、风吹损失量P2

对于机械通风凉水塔,在有收水器的情况下,风吹损失率约为0.1-0.5% 取风吹损失率为0.1%

P2= 31000×0.2%=31 m3/h=756 m3/d

3、泄漏损失P3

由于系统式密闭循环,机泵的泄漏可忽略不计。

P3=0 m3/h

4、浓缩倍率K

循环水中的盐类浓度和补充水的盐类浓度之比称为浓缩倍率。一般来说,如果补充水CL-<1000mg/l的话,控制在2.0以下,如果<500的话,可控制在3.0以下。

由于本公司的补水Cl-<500g/l,循环水的浓缩倍率取2.5

5、补水量P,

系统蒸发量P1=93 m3/h,K=2.5

∵K= P/(P- P1)

∴P= K?P1/(K-1)=93*2.5/1.5=155m3/h

6、理论排污量P4

P4=155-93-31=31 m3/h=756 m3/d

目前本公司循环水的实际排放量为3055 m3/d,通过调节,日减少循环水排放1000m3是可行的。

空调循环水加药装置特点及加药量计算

精心整理空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 4 SO 等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥, 运营成本 杀菌

2、腐蚀指标 设备原材料、设备设计、制造、包装、运输等过程中执行以下标准: GB7190.2-1997 《大型玻璃纤维增强塑料冷却塔》 GB191-90 《包装储运图标记》 GB3538-83 《运输包装件各部件的标识方法》 GB6388-86 《运输包装收发货标志》 GB12348-90 《工业企业厂界噪声标准》 Q/LB08-95 《钢筋混凝土结构冷却塔安装》 药剂选用原则 循环水系统处理分成二大部分,第一部分:补充水处理,第二部分:循环水处理。循环水处理可以概括为去除悬浮物、控制泥垢及结垢、控制腐蚀及微生物杀菌等四个系统。泥垢及结垢、控制腐蚀及微生物等一般采用加药控制。 向循环水中投加阻垢、分散剂的方法来防止盐类垢。 加药剂为聚磷酸盐(三聚磷酸钠) 敞开式循环冷却水的加氯量处理宜采用定期投加,每天投加1~3次,余氯量控制在0.5~1.0mg/l之内。每

次加氯时间采用3~4h。加氯量按下式计算: G t =Q·g t /1000=4000立方米每小时*3mg/l=1.2Kg/h 式中G t——加氯量(Kg/h) Q——循环冷却水量(m3/h) g t——单位循环冷却水的加氯量,采用2~4mg/l 药剂的选用及投加量 缓蚀阻垢剂的复合配方为:铬酸盐+聚磷酸盐 投加量:投加量须根据循环水水质情况而确定,一般其投加量为40~60mg/l。 A、 G= 注: 2~5mg/l (1) (2) 1 次。每小 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:66/H 2、杀菌剂加药装置 根据前面计算可知,本系统杀菌剂加药量为192kg/天,(100%纯度按每天溶药一次,药剂配制浓芳按20%设计,则每天的溶药量为192÷0.2=960kg/d,每次的溶药量为960kg/次。每小时投加量为960÷24=4L/h。 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:40L/H

空调循环水加药装置特点及加药量计算

空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、 CL-、 2 4 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性 气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 去除的物质: 去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 循环水系统设计参数 循环水水量为4000m3/h,总水量500m3 ,补充水量200m3/h 工艺流程简介 设备清洗(根据设备管路结垢、腐蚀等情况选择物理或化学法)-预膜处理(溶液浓度,和处理时间的确定由经验确定)-药剂的选用及投加量-对设备进行选型-供货清单-设备投资概算-运营成本估算 1)、经过冷却塔的循环水,经过蒸发、风飘损失等,循环水量越来越少,水中的含盐量逐渐升高。向循环水中补充一定量的水量。根据贵方要求,贵方循环水为淮河水。 2)、循环水池为敝开式,有大量的泥沙及大量的飘浮物进入水池。为保持循环水质的清洁,对其循环水进行处理。按照循环水设计规范,浓缩倍数按4进行设计。 3)、由于蒸发、风吹损失等因素,经过一定时间的运行,循环的水质逐渐恶化。同时由于循环水的温度较高,比较适应于菌类的繁殖。因此在整个循环系统中,向循环水中投加水质稳定剂、杀菌剂及阻垢剂。以利于循环水系统的正常运行。 1、冷却水系统水质控制指标(国标)

蒸发计算方法综述

蒸发计算方法综述 摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。 关键词:蒸发计算方法 1 关于蒸发的几个概念 蒸发(Evaporation)是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。 发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。 蒸发蒸腾(Evaportranspiration,简称ET)包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。 ET):为一种假想参考作物的蒸发蒸腾速率。假想作物的参考作物蒸发蒸腾量( 高度为0.12m,固定的叶面阻力为70s/m,反射率为,非常类似于表面开阔、高度一致、 ET的计量单位以水深表示,生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 单位为mm;或用一定时段内的日平均值表示,单位为mm/d。 2 直接测定法 蒸发皿测定法 1687年英国天文学家Halley使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸

循环水系统加药系统方案要点

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (2) 二、循环冷却水处理设计的原则和要求 (2) 三、工艺流程的确定 (3) 四、循环水系统设计参数 (4) 五、设计规范标准 (6) 六、药剂选用原则 (7) 七、补充水及旁滤处理 (7) 八、循环水处理 (7) 九、清洗与预膜处理 (10) 十、药剂的选用及投药量 (13) 十一、投药设备的选型 (14) 十二、供货清单 (16) 十三、设备的投资概算 (16)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如 4 尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大气直接接触,二氧化碳逸散,溶解氧和浊度增加,水中溶解盐类浓度增加以及工艺介质泄漏等,使循环水水质恶化,给系统带来结垢、腐蚀、污泥和菌藻问题。

循环水药剂添加方案

冷却水处理药剂填加方案 一、性能与用途 循环水缓蚀阻垢剂AVISTA由有机膦酸、聚羧酸、含磺酸盐共聚物、唑类等组成,对水中的碳酸钙、磷酸钙等均有很好的螯合分散作用,并且对碳钢、铜具有良好的缓蚀效果,循环水阻垢剂AVISTA主要用于循环冷却水系统阻垢缓蚀,如电厂、化工厂、印染厂、中央空调等循环冷却水系统,其阻垢力强、缓蚀效果好,可实现高浓缩倍率下运行。 二、技术指标 三、使用方法 将每天所需的循环水缓蚀阻垢剂AVISTA加入塑料加药桶(或箱)内,为方便使用可加水稀释后用计量泵或通过调节阀门将药剂在循环泵入口处(即集水池出口处)连续加入。循环水缓蚀阻垢剂AVISTA加药浓度一般为5-20mg/L(以补充水量计)。 四、包装与贮存 循环水缓蚀阻垢剂AVISTA用塑料桶包装,25kg/桶或根据用户需要确定;贮存于阴凉干燥处,贮存期十二个月。 五、安全与防护 缓蚀阻垢剂AVISTA为弱酸性,操作时注意劳动保护,应避免与皮肤、眼睛等接触,接触

后用大量清水冲洗。 说明:实际加药量应依据现场运行情况及水质情况进行调整。在大量排污和补水后,应适当增加投药量以维持循环水中药剂的有效含量。 A)阻垢缓蚀剂A VISTA 的日常投加方案 加药方式:采用冲击式加入,春夏季每月2-3次;冬季每月1-2次,每次加药量60-100mg/L。 具体加药周期及加药量也可视循环水结垢情况而定,每次补水投加量100mg/L。 加药量:1) AVISTA 加药量(次/kg)=总储水量m3×要求剂量(mg/L)/1000 加药地点:吸水池内(远离排污口)C)控制指标超标处理方法当循环水各项指标超出规定时,应及时采取相应措施;首先应采取加大排污量,同时补充等量一次水的方式解决;或者补入适量的脱盐水。大量排补水后,应补入相应剂量的阻垢缓蚀剂。

蒸发量计算的基础知识

冷却塔蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。 凉水塔补水=蒸发量+排污量+飘散损失+泄漏一般凉水塔内水份的蒸发量不大,约为进水量的1~2.5%. 1、蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。

循环水加药方案注意事项

循环水加药方案注意事项 一、循环水药剂的作用: CLP-401C阻垢缓蚀剂的作用 可以阻止水垢的形成、沉积或增加碳酸钙的溶解度,同时可以抑制或降低金属和合金腐蚀速率,改变金属相合金腐蚀电极过程。为复合磷酸盐物质。 2)投加操作方法 ①将桶装CLP -401C缓蚀剂按照规定数量倒入加药桶内,用循环冷却水稀释至加药桶满。 ②调节加药装置计量泵流量至35%-40%左右。 ③启动加药泵,打开冷水泵入口管道上加药阀;观察药液注入情况是否正常。 ④每小时巡检一次加药装置运行情况。 ⑤流量调节以加药泵连续运行24小时一桶为宜,但不得抽空。桶底液位不应低于10cm,如果液位过低,可补充一定量循环冷却水维持至下一次加药时间。 ⑥每日定时加药,加药量可根据化验室对总磷(以PO43-计)分析结果4-6mg/l,在规定数量的基础上略有增减,以保证指标在范围之内。 ⑵CLP-401A缓蚀剂加药操作 1)CLP-401A缓蚀剂的作用 可以抑制或降低金属和合金腐蚀速率,改变金属相合金腐蚀电极过程。 2)投加操作方法 ①将桶装CLP -401A缓蚀剂按照规定数量不用稀释装入瓶子内,以水滴的形式滴入循环水池内,但要保证最长时间要在24小时以内。可以缩短时间但不可以直接全部加入。 ②每天投加一次,加药量可根据化验室对总锌(以Zn2+计)分析结果1.5-2.5mg/l,在规定数量的基础上略有增减,以保证指标在范围之内。 ⑵CLB-501氧化性杀菌剂加药操作 1)CLB-501氧化性杀菌剂的作用 固体活性溴是一种氧化性杀菌剂,具有较强的氧化性,能够使微生物体内一些和新陈代谢密切相关的酶发生氧化而杀灭微生物及藻类物质。 2)投加操作 ①将杀菌剂按照规定数量放入专用塑料框内。 ②调整专用塑料框的水平高度,确保杀菌剂被冷水池冷水液位浸没溶解,但框堰不应低于水位。 ③30-45分钟后测定余溴(氯),在0.3~0.8mg/l,每隔一小时测定一次,并连续测定3小时,记录所测定结果。若测定余溴(氯)不足时应进行补加,如果余溴(氯)结果稳定则视加药正常。 ④正常运行时,夏季每周投加2次,时间定为每周一、周五。其它季节每周投加1次,

蒸发量计算

玻璃钢冷却塔技术手册之二(玻璃钢冷却塔性能参数) 发布者:admin 发布时间:2010-10-31 10:30:26 二、 玻璃钢冷却塔性能参数 2.1 冷却效能 部分人有一个错误的概念,就是以冷幅作为玻璃钢冷却塔效能的标准,并以着来选择合适的散热量,其实冷幅是冷却水塔运作的反映与效能是没有直接之关系。 热量是循环系统内所产生的负荷,它的单位为千卡/小时(Kcal/HR)计算公式如下: 热量=循环水流量×冷幅×比热系数 热量负荷和玻璃钢冷却塔的效能是没有直接关系,所以无论玻璃钢冷却塔的体积大小,当热量负荷和循环水流量不变而运作下,在理论上冷幅都是固定的。 若一座玻璃钢冷却塔能适合以下之条件而运作: i)出水温度为32℃及37℃ ii)循环水流量为 200L/S iii)环境湿球温度为 27℃ iv)逼近=32-27=5℃ v)冷幅=37-32=5℃ 计算其热量应为3600000Kcal/HR 此玻璃钢冷却塔也能适合以下之条件有效地运作: i)出水温度为33℃及43℃ ii)循环水流量为 200L/S iii)环境湿球温度为 23℃ iv)逼近=33-23=10℃ v)冷幅=43-33=10℃ 计算其热量应为7200000Kcal/HR

从上述举例可显示出相同玻璃钢冷却塔可在不同热量下运作,而热量的差别示极大,所以不能单靠冷幅来衡量玻璃钢冷却塔的效能。 前文提及玻璃钢冷却塔的散热量直接受环境湿球温度影响,而以上两列因环境湿球温度有差别,导致逼近不同,所以同一冷却水塔能在以上两条件下运作如常,证明玻璃钢冷却塔的效能是直接与逼近有密切关系而不能单以冷幅计算。 2.2 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为 T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------ (2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃ ---------- (3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃)A<不是做不到,而是不合理和不经济。 2.3 漂水耗损量 漂水耗损量的大小是和玻璃钢冷却塔(是否取用隔水设施),风扇性能(包括风量、风机及风扇叶角度的调整以及它们之间的配合等),水泵的匹配以及水塔的安装质量等因素有关,通常它的耗损量是很少的,大约在冷却器水总流量的0.2%以下。 2.4 放空耗损量 由于冷却回水不断的蒸发而令其变化(使水质凝结)这凝结了的冷却回水能使整个循环系统内产生腐蚀作用及导致藻类生长,所以部分的冷却回水要定期排出,以便补充更新,而这

冷却塔水量损失计算(技术部)

冷却塔水量损失计算 水的蒸发损失[()]* :水的定压比热,取.摄氏度,:水的蒸发潜热,:循环水流量,():温差。 例如你设计的温差是度,就是,每小时循环水量吨的话,每小时蒸发吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为℃,出水温度为℃,湿球温度为,则*:(℃)() 式中::冷却水的温度差,对单位水量即是冷却的热负荷或制冷量 对式()可推论出水蒸发量的估算公式 *:()×() 式中:当温度下降℃时的蒸发量,以总循环水量的百分比表示,考虑了各种散热因素之后确定之常数。 如:℃ 则{(×)}总水量 或℃,即温差为℃时的水蒸发量

*:℃() 式中:逼近度,即出水温度()逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取≥℃(推进≥即℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失。二、风吹损失。三、排污损失: 四、冷却池的附加蒸发损失水量 第2.2.5条冷却塔的蒸发损失水量可按下式计算: Δ 式中——蒸发损失水量,; Δ——冷却塔进水与出水温度差,℃。 ——循环水量,。 ——系数,℃1,可按表2.2.5采用。 系数 气温- 第2.2.6条冷却塔的风吹损失水量占进入冷却塔循环水量的百分数可采用下数值 机械通风冷却塔(有除水器) ~’$ ( $ ( {. ]* " ) 风筒式自然通风冷却塔(以下简称自然通风冷却塔) 当有除水器时

(完整版)循环水pH调节和加酸量问题

关于循环水pH调节和加酸量问题 加酸调pH是帮助循环水有效阻垢的辅助措施,当补充水为高硬、高碱水系(如北方地下水)和要求浓缩倍数高的循环水系统、药剂阻垢难以达到理想的效果时,目前普遍采用此处理方法,以保证水质的稳定。美国Nalco,Betz等世界知名水处理公司,过去和现在为中石化、化工部大化肥等厂提供的配方仍以加酸处理配方为主、其处理效果为各厂所认同。 贵厂加酸量可根据循环水每天碱度(CaCO3)测定值计算投加,方法有二,可任选其一。 循环冷却水调pH时加酸量的计算 循环冷却水用硫酸调pH时,其硫酸加入量有两种计算方法,可以选任一种方法计算投加。 (1)根据分析室测定循环水酚酞碱度时,盐酸标准溶液的耗量计算为系统硫酸投加量: 硫酸(98%)投加量=(V1C/2×100)×1000×98×(V/1000)×(100/98)=( V1CV/2) (kg)(6-2-1) 式中:V1—测定酚酞碱度时,盐酸标准溶液消耗的体积,ml; C—盐酸标准溶液的浓度,mol/L; V—冷却水系统容积,m3; 100—测定酚酞时取样体积,mL; 100/98—由100%换算为98%硫酸的系数;98-硫酸摩尔质量,g。 贵厂用30%盐酸时,则将公式 盐酸(30%)投加量

=(V1C/×100)×1000×36.5×(V/1000)×(100/30) =(1.22 V1CV)(kg) 贵厂保有水量按400 m3计,则加首次30%盐酸量为488V1C(kg) 例:系统容积V=8000 m3,测定酚酞碱度盐酸耗量V1=1.3 mL,盐酸标准溶液浓度C=0.05 mol/L,求硫酸(98%)加入量。 解:硫酸(98%)加入量(kg)=( V1CV/2)=1.3×0.05×8000/2=260 答:根据该系统酚酞碱度测定值,其硫酸(98%)加入量为260 kg。 说明: ⑴以酚酞碱度测定值作为加酸量的依据是较合理的。因此时酚酞由红色变无色,水的pH大约为8.3。当pH值﹤8.3时,水中只有HCO3-碱度存在,碳酸盐(如CaCO3)成垢趋势极微。 ⑵根据上述计算,现场实际加硫酸(98%)250 kg,pH值由8.65降至8.4,碱度由325 mg/L降至285 mg/L,硫酸实际加入量与计算量基本相符。但此硫酸加入量仅为系统首次加入量,未考虑飞溅、排污等损失的硫酸量。所以上述加酸量实际偏低,而排污等损失的酸量计算见本节第二例。 (2)循环冷却水系统的加酸量 循环冷却水加酸调pH值,是为提高浓缩倍数及阻垢的需要。根据酸碱中和原理,理论上加酸量等于碱度降低量。如果循环水加酸前后的碱度差△M,则: △M=M 前-M 后 M前为循环水调pH值前的碱度,M后为调pH值后的碱度,M前、M后可由现场实测或由“自然pH值与碱度计算”相关公式计算求得。如用98%硫酸调pH值,循环水单位用量为: A=49△M/(50×0.98×1000)=△M/1000 (6-2-2)

循环水加药规程

循环水加药规程 一:循环水运行要维持稳定的补、排水量,按水质标准控制投加药剂的品种和数量,控制好排污量,补充水量。排污要从集水井底阀排出,除特殊情况,严禁大补大排。水质稳定剂(杀菌灭藻剥离剂除外)必须连续稳定滴加人吸水池或集水池。 二:缓蚀阻垢剂DC-S216E的添加。 由于本地循环冷却水系统的水质含ca+,mg+的浓度偏高,循环水经系统换热后升温易发生结垢现象,严重影响换热效果,为了防止循环水的结垢和腐蚀,需向循环冷却水系统加入一种缓蚀阻垢剂DC-S216E。(循环冷却水浓缩倍数按2.5倍计算)首次添加量应按系统总容水量投加DC-S216E缓蚀阻垢剂30mg/L化验系统内总磷含量为1.3-2.3ppm转入正常运行。正常运行后按补水量投加药剂,(不补水不加药)投加剂量按30mg/L来执行。及实际投加量(kg)=补水流量(m3/h)×补水时间×(30mg/L)÷1000 (注:循环水系统缓蚀阻垢剂DC-S216E和杀菌灭藻剂不能同时投加,应间隔6-8小时。) 三:杀菌灭藻及生物粘泥剥离 循环冷却水系统中具有微生物生存和繁殖的良好条件,微生物分泌产生的粘液与水中各种悬浮物杂质粘合在一起形成 的粘泥是冷却水化学处理中的危害之一,会影响水冷设备传热效果并引起局部的腐蚀。为此应定期进行杀菌灭藻及生物粘泥剥离,因此对杀菌、灭藻及生物粘泥剥离投加杀菌剂作如下规定 1:循环水系统采用DC-S004型氧化性杀菌灭藻剂(与活化剂S004B配比使用,配比值:1桶DC-S004/1瓶活化剂S004B)与DC-S002型非氧化性杀菌灭藻剂(均不含泡沫)交替使用,两者不能同时投加。

2投加杀菌灭藻剂1,2,3,4,11,12月按每月(15日)定期加药一次,5,10月按每二十天定期加药一次,6,7,8,9月菌藻繁殖旺盛期可采取十五天加药一次,加药量按照规定用量结合实际情况的方式确定。投加量为150克/吨水,每次添加量kg=容水量(M3)×150(克/M3)÷1000 3 考虑到有关换热器问题,通过测定循环水生物粘泥量及异养菌,硫酸盐还原菌,铁细菌,COD 的含量来判别投加生物粘泥剥离剂进行粘泥剥离,粘泥剥离浓度为100 一20Om /L 。 4在使用含氯的氧化性杀菌剂进行灭藻处理时,药剂投加量根据游离性余氯量控制(22mg/L )。 5在进行大剂量投放杀菌剂剥离时,药剂一次性投人集水池后,24 小时后视浊度高低而排污。 6 辅助投加非氧化性杀菌灭藻剂,投加量约150克/吨水,。 四:运行管理 1 . 应严格执行规定的循环水正常加药量,超出正常加药量应有方案,报生产部审批,批准后才能实施。执行超正常加药量方案时,在执行前必须通知生产部循环水系统操作人员,实施过程中应加强联系、巡检、监视和监测。 2 . 水质稳定处理的循环冷却水系统,不论其生产装置开停与否都不得自行停运,以确保循环水的水质稳定效果和换热器正常的运行,延长使用寿命。 3 . 循环水系统每年应至少进行一次清洗预膜。 五:循环水现场监测 1 对循环冷却水系统实施有效的监测是保证系统良好运行必不可少的方法,能方便查找水质异常的原因并通过对药剂投加或水处理工艺参数的及时、适当调整有效地控制水质。 2 水质分析是保证水处理取得良好效果的重要保证,应严格按照《质量检验规程》操作,使其指标合格率达95 %以上。对循环冷却水与补充水进行分析,质监化验室每月对

冷却塔水量损失计算

冷却塔水量损失计算 水的蒸发损失WE=[(Tw1-TW2)Cp/R]*L CP:水的定压比热,取4.2KJ/KG.摄氏度,R:水的蒸发潜热2520KJ/KG ,L:循环水流量,(Tw1-TW2):温差。 例如你设计的温差是10度,就是10/600=1.67 %,每小时循环水量1000吨的话,每小时蒸发16.7吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明:令:进水温度为T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------(2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃----------(3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失;二、风吹损失;三、排污损失: 四、冷却池的附加蒸发损失水量

循环水浓缩倍数的计算

1xx温度对冷水机组制冷量的影响 我们都知遭: 从运行费来讲,在蒸发温度和压缩机转数一定的情况下,冷凝温度越低,制冷系数越大,耗电量就越小。据测算,冷凝温度每增加1℃,单位制冷量的耗功率约增加3%-4%.所以,从这一角度来讲,保持冷凝温度稳定对提高冷水机组的制冷量是有益的。但为达到此目的,需采取以下措施: 增加冷凝器的换热面积和冷却水的水量;或提高冷凝器的传热系数,但是,对于一个空调冷却系统来说,增加冷凝器的面积几乎是不可能的。增加冷却水的水量势必增加水在冷凝器内的流速,这将影响制冷机的寿命,同时还增加了冷却水泵的耗电和管材浪费等一系列问题,而且效果也不尽理想。增大冷却塔的型号,考虑一定量的富余系数尚可,但如果盲目加大冷却塔的型号,以追求降低冷却水温也是得不偿失的,而且,冷却水温度还受当地气象参数的限制。提高冷凝器冷却水侧的放热系数,是实际和有效的,而提高放热系的有效途径是减小水侧的污垢热阻,对冷却水补水进行有效的处理. 2xx的补水问题 xx水量损失,包括三部分: 蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb 式中: Qm为冷却塔水量损失;Qe为燕发水量损失;Qw为风吹量损失;Qb为排污水量损失。 (1)蒸发损失 Qe= (0.001+0.002θ)Δt Q (1) 式中:

Qe为蒸发损失量;Δt为冷却塔进出水温度差;Q为循环水量;θ为空气的干球温度。 (2)风吹损失水量 对于有除水器的机械通风冷却塔,风吹损失量为 Qw=(0.2%~0.3%)Q (2) (3)排污和渗漏损失 该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关.浓缩倍数的计算公式: N =Cr/Cm 式中: N为浓缩倍数;Cr为循环冷却水的含盐量;Cm为补充水的含盐量.根据循环冷却水系统的含盐量平衡,补充水带进系统的含盐最应等于排污,风吹和渗偏水中所带走的含盐量. QmCm= (Qw+Qb)Cr N =Cr/Cm=Qm/(Qw+Qb)=( Qe+ Qw+Qb)/( Qw+Qb) =Qm/Qb(Q w可忽略)( (3)Qm= QeN/(N 一1) N=1+Q e/Q w+Q b(Q

循环水蒸发量计算

我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一,节约用水成了一个社会发展所必须面对的问题。火力发电厂是一个耗水大户,其中循环水冷却塔的耗水量约占整个电厂耗水量的60%以上。因此,冷却塔耗水量的变化对整个电厂耗水量有着较明显的影响。那么哪些因素影响冷却塔的耗水量,又是如何影响的呢?下面以一台300MW火电机组为实例具体分析一下其变化的内在规律,以期获得对火电厂节水工作有益的结论。 1.计算所需数据:(机组在300MW工况下) 冷却塔循环水量36000t/h? ?? ?? ?? ?? ?? ?? ?? ? 循环水温升9.51℃ 凝汽器循环水进水温度20℃? ?? ?? ?? ?? ?? ?? ? 空气湿度61% 循环冷却塔的端差5℃(端差为冷却塔循环水出水温度与大气湿球温度之差) 循环水浓缩倍率3.0 2.影响冷却塔耗水量因素分析: 火力发电厂循环水冷却系统运行中,维持系统正常稳定运行的关键是两个平衡,即:水量平衡和盐量平衡。二者相互联系,如果其中一个平衡变化,那么另一个平衡也会随之发生相应变化。 2.1循环水的水量平衡: 水量平衡过程是:机组运行过程中,对于敞开式循环冷却水系统来说,水的损失有蒸发损失、风吹损失、排污损失、漏泄损失(由于量较小,一般可略去不计)等,要维持水量平衡就需要同时对系统进行补水。 循环水系统的水量平衡数学表达式为:PBu =P1+ P2+ P3 [1]公式1 PBu:补充水量占循环水量的百分率,% P1:蒸发损失水量占循环水量的百分率,% P2:风吹损失占循环水量的百分率,% P3:排污损失占循环水量的百分率,% 在以上平衡中通常P1所占的份额较大,而它的大小主要取决于凝汽器的热负荷,以及气候条件(主要是温度因

循环冷却水系统的浓缩倍数与补充水量、排污水量的关系

循环冷却水系统的浓缩倍数与补充水量、排污水量的关系 太原钢铁(集团)公司陶其鸿 1、浓缩倍数的定义 在敞开式循环冷却水系统中,由于蒸发,系统中的水会越来越少,而水中各种矿物质和离子 含量就会越来越浓。为了使水中含盐量维持在一定的浓度,必须补充新鲜水,排出浓缩水。 通常在操作时用浓缩倍数来控制水中含盐的浓度。循环冷却水的浓缩倍数是该循环冷却水的 含盐量与其补充水的含盐量之比(用K表示),即: K=C R/C M 式中CR --- 循环水中某物质的浓度; C M——补充水中某物质的浓度。 2、浓缩倍数与补充水量、排污水量的关系 提高循环冷却水系统浓缩倍数可以降低补充水的用量,从而节约水资源;还可以降低排污水 量,从而减少对环境的污染和废水的处理量。 假设循环冷却水系统的循环水量R为10000m3/h,冷却塔进出口温差10C,则不同的浓缩 倍数K与补充水量M、排污水量B的关系如下表: 从上表可以看出,随着循环冷却水浓缩倍数K的增加,循环冷却水系统的补充水量M和排 污水量B都不断减少。但是,过多地提高浓缩倍数,会使循环水中的硬度、碱度和浊度升得太高,水的结垢倾向增大很多。还会使水的腐蚀性离子的含量增加,水的腐蚀性增强。因此,冷却水的浓缩倍数并不是越高越好,通常一般控制在?左右。

国家发改委组织编写的“中国节水技术大纲”提出:“在敞开式循环冷却水系统,推广浓缩倍数大于的水处理运行技术;2006年淘汰浓缩倍数小于的水处理运行技术。” 3、青岛钢铁有限公司部分工序净环水系统现状耗新水量、排污水量、蒸发水量和浓缩倍数 K=4时净环水系统现状耗新水量、排污水量、蒸发水量( m3/h) 4、综述 对敞开式循环冷却水系统蒸发水量约占循环水量的;在浓缩倍数K=4时,排污水量约占循环水量的%,新水补充量约占循环水量的。 循环冷却水系统蒸发水量和空气的干球温度( T)与进出口温差(△ t)的关系 按经验公式E= ( +)?△ t % ? R计算 E为蒸发水量(m3/h), R为循环水量(m3/h) %

冷却塔损失量计算

冷却塔的工作原理: 冷却塔是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的废热的一种设备。基本原理是:干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒入塔内。当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。 冷却塔的工作过程: 圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降。从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。 冷却塔的分类: 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按形状分有圆形冷却塔、方形冷却塔、矩形冷却塔。 五、按冷却温度分有标准型冷却塔、中温型冷却塔、高温型冷却塔。 六、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 七、按用途分有塑机专用冷却塔、发电机专用冷却塔、中频炉专用冷却塔、中央空调冷却塔、电厂冷却塔。 八、其他有喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 冷却水的补水问题 冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb

循环水蒸发量计算

循环水蒸发量计算 我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一,节约用水成了一个社会发展所必须面对的问题。火力发电厂是一个耗水大户,其中循环水冷却塔的耗水量约占整个电厂耗水量的60%以上。因此,冷却塔耗水量的变化对整个电厂耗水量有着较明显的影响。那么哪些因素影响冷却塔的耗水量,又是如何影响的呢?下面以一台300MW火电机组为实例具体分析一下其变化的内在规律,以期获得对火电厂节水工作有益的结论。 1.计算所需数据:(机组在300MW工况下) 冷却塔循环水量36000t/h 循环水温升 9.51℃ 凝汽器循环水进水温度20℃空气湿度61% 循环冷却塔的端差5℃(端差为冷却塔循环水出水温度与大气湿球温度之差)循环水浓缩倍率3.0 2.影响冷却塔耗水量因素分析: 火力发电厂循环水冷却系统运行中,维持系统正常稳定运行的关键是两个平衡,即:水量平衡和盐量平衡。二者相互联系,如果其中一个平衡变化,那么另一个平衡也会随之发生相应变化。 2.1循环水的水量平衡: 水量平衡过程是:机组运行过程中,对于敞开式循环冷却水系统来说,水的损失有蒸发损失、风吹损失、排污损失、漏泄损失(由于量较小,一般可略去不计)等,要维持水量平衡就需要同时对系统进行补水。 循环水系统的水量平衡数学表达式为:PBu =P1+ P2+ P3 [1]公式1 PBu:补充水量占循环水量的百分率,% P1:蒸发损失水量占循环水量的百分率,% P2:风吹损失占循环水量的百分率,% P3:排污损失占循环水量的百分率,% 在以上平衡中通常P1所占的份额较大,而它的大小主要取决于凝汽器的热负荷,以及气候条件(主要是温度因素);P2的大小取0.1%(机组冷却塔中装有除水器时);P3的大小主要取决于循环水系统所能达到的浓缩倍率。 水量平衡的另一种数学表达式为: M=E+B+D [2]公式2 M:补充水量,t/h; E:蒸发损失量,t/h; B:风吹损失量,t/h;的D:排污损失量,t/h 其中:自然通风冷却塔的蒸发损失计算公式为: E=k×△t×Qm [2]公式3 k:与环境大气温度有关的系数,%;△t:循环冷却水温升,℃;Qm:循环水量,T。若其它条件不变,仅冷却水量发生变化时,同一机组△t成反比变化,因而蒸发损失水量则保持不变的。 由公式1和公式2可以推出:B=Qm×P2 公式4) D=Qm×P3 公式5 2.2循环水的盐量平衡: 循环水系统的盐量平衡过程是:机组在运行过程中,由于循环冷却系统中水的蒸发作用,循环水中的溶解盐类不断浓缩,因此就需要通过排污等方式降低溶解盐类。当循环冷却水系统中进入和失去的盐类达到平衡后可得: K=(P1+ P2+ P3)/( P2+ P3)[1]公式6 由以上两个平衡过程的分析可以得出,影响循环水冷却塔耗水量的主要因素为:环境温度,空气湿度,机组出力,浓缩倍率。 3.影响耗水量因素的定量分析:

循环水系统水处理加药细则完整版

循环水系统水处理加药 细则 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

循环水系统?| 水处理加药人员日常工作细则 1、加药原则 (1)必须准确、按时、按量进行加药; (2)采用间断排污时,应在排污之后加药; (3)每次在配药前,均需将配药桶冲洗干净后,才能将药剂倒入配药桶中,且将药剂加完后均需对配药桶冲洗2~3次; (4)如采用两种杀菌灭藻剂应交替投加,且加入时间间隔均匀分布; (5)加入杀菌灭藻剂的当天不投加阻垢缓蚀剂; (6)详细记录日常加药情况及排污置换情况。 2、加药方式 根据系统现状和药剂特性,可将杀菌灭藻剂直接加入集水池中。阻垢缓蚀剂的加药方式为:在循环冷却水集水池旁配置一配药槽,配药槽上部有补水管,下部有排污口,药剂加入配药槽中用补充水稀释后,用计量泵连续均匀地逐渐加入集水池中. 3、加药位置 药剂加入集水池中不要靠近排水口,以免药剂不进入循环水系统就被直接排走;药剂在池中要有一个混合的时间,使其混合均匀;不要靠近某一台泵的入口加药,这样会造成药剂浓度分布不均匀。 4、加药方法 (1)阻垢缓蚀剂的加入方法:按量将药剂加入已洗净的配药桶中,在不断搅拌下加入补充水将药剂稀释3~5倍左右(稀释的目的是为了平衡加药时间,根据需要也可以不稀释),搅拌混匀后,开启加药泵调节加药阀,使药剂连续均匀地加入集水池中,并控制在20~24小时以内加完。 (2)杀菌灭藻剂的加入方法:采用冲击间歇式投加方式进行操作,按量将药剂直接加入集水池中,使循环水在一段时间里保持相当的药剂浓度,从而获得最有效的杀生和剥离效果。 5、注意事项 (1)将水处理药剂按牌号整齐堆放于库房中,以免混淆、错用。 (2)需根据水质化验结果(浓缩倍数、浊度、总磷)与循环水控制指标及加药表进行对照,按要求进行排污、置换或加药操作。 (3)加药人员在进行操作时,应穿戴好防护用品,避免药剂与皮肤和眼睛直接接触。如果不慎将药剂与皮肤接触,应立即用大量清水进行冲洗干净。 (4)投加水处理药剂的方法,需严格按有关要求执行,并做好安全生产工作。 1、根据每天水质分析化验结果,对排污水量、补充水量及加药量进行必要的控制,使之达到要求指标。

循环水自然降温计算

循环水池散热计算 (1 )水面蒸发和传导损失的热量: Qx = a y( 0.0174vf + 0.0229 ) (Pb —Pq) A(760/B) 式中Qx――水池表面蒸发损失的热量(kJ/h ); a ――热量换算系数, a = 4.1868 kJ /kcal ; y——与水池水温相等的饱和蒸汽的蒸发汽化潜热 (kcal/kg ); vf ――水池水面上的风速(m/s ), —般按下列规定采用: 室内水池vf = 0.2~0.5 m/s ;露天水池vf = 2~3 m/s ; Pb――与水池水温相等的饱和空气的水蒸汽分压力 (mmHg ); 3.782 KPa Pq --- 水池的环境(23C)空气的水蒸汽压力( mmHg ); A --- 水池的水表面面积(m2 ); B --- 当地的大气压力(mmHg )。 (2)加上水池的水表面、池底、池壁、管道和设备等传导所损失的热量: 而水池的水表面、池底、池壁、管道和设备等传导所损失的热

量,占水池水表面蒸发损失热量的20%。

(3)水池补水加热所需的热量: Qb = a qb y (tr- tb )/t 式中Qb——水池补充水加热所需的热量(kJ/h); a 量换算系数,a= 4.1868(kJ /kcal); qb --- 水池每日的补充水量(L);按水池水量的5 y ――的密度(kg/L ); tr――水池水的温度(C)。 tb ——水池补充水水温「C); t——加热时间(h)。 (4)水池表面蒸发量的计算: Ws = ?x(Pq.b -Pa )F>B/B、式中 W——水池散湿量(kg/h ); 9 ——系数,0.00557 X10-5 kg/N.s ; Pq.b --- 与水池水温相等的饱和空气的水蒸汽分压力(Pq——水池的环境空气的水蒸汽压力(Pa ); F——水池的水表面面积(m2 ); B―― 标准的大气压力(Pa ); B、当地的大气压力(Pa ); 10%确定; Pa);

相关文档
最新文档