非线性动力学和混沌理论

非线性动力学和混沌理论
非线性动力学和混沌理论

非线性动力学和混沌理论

非线性动力学

随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。

非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。

经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。

混沌理论是谁提出的?

混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。

美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。

美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。

1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。

1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。

1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。

与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论

要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。

假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。

1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。

那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。

但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。

在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。

不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。

误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

了。精确的位数可能不同:它可能使每6滴水失去1位小数的精度,但只要取60滴,同样的问题又会出现。

这种误差放大是使拉普拉斯完全确定论破灭的逻辑缺陷。要完善整个测量根本做不到。

假如我们能测量滴落时刻到小数点后100位,我们的预言到将来100滴或用较为乐观的估计,600滴时将失败。这种现象叫“对初始条件的敏感性”,或更非正式地叫“蝴蝶效应”当东京的一只蝴蝶振翅时,可能导致一个月后佛罗里达的一场飓风。

它与行为的高度不规则性密切相关。任何真正规则的东西,据定义都是完全可预言的。但对初始条件的敏感性却使行为不可预言—从而不规则。因此,呈现对初始条件敏感性的系统被称为混沌系统。

混沌行为满足确定性的定律,但它又如此不规则,以至在未受过训练的眼睛看来显得杂乱无章。混沌不仅仅是复杂的、无模式的行为,它要微妙得多。混沌是貌似复杂的、貌似无模式的行为,它实际上具有简单的、确定性的解释。

混沌的发现是由许多人多得在此无法一一列举作出的。它的出现,是由3个相互独li的进展汇合而成的。第一个是科学注重点的变化,从简单模式如重复的循环趋向更复杂的模式。第二个是计算机,它使得我们能够容易和迅速地找到动力学方程的近似解。第三个是关于动力学的数学新观点——几何观点而非数值观点。第一个进展提供了动力,第二个进展提供了技术,第三个进展则提供了认识。

动力学的几何化发端于大约100年前。法国数学家昂利·庞加莱Henri Poincare是一个特立独行的人如果有的话,但他非常杰出,以致他的许多观点几乎一夜之间就成了正统的观点,当时他发明了相空间概念,这是一个虚构的数学空间,表示给定动力学系统所有可能的运动。

为了举一个非力学的例子,让我们来考虑猎食生态系统的群体动力学。此系统中捕食者是猪,被捕食者是块菌一种味道奇特、辛辣的真菌。我们关注的变量是两个群体的规模——猪的数目和块菌的数目两者都相对于某个参考值,如100万。这一选择实际上使得两个变量连续,即取带小数位的实数值,而不取整数值。例如,假如猪的参考数目是100万,则17439头猪相当于值0.017439。现在,块菌的自然增长依赖于有多少块菌以及猪吃块菌的速率:猪的增长依赖于猪的头数以及猪吃的块菌数目。

于是每个变量的变化率都依赖于这两个变量,我们可把注意力转向群体动力学的微分方程组。我不把方程列出来,因为在这里关键不是方程,而是你用方程干什么。

这些方程原则上确定任何初始群体值将如何随时间而变化。例如,假使我们从17439头猪和788444株块菌开始,则你对猪变量引入初始值0.017439,对块菌变量引入初始值0.788444,方程会含蓄地告诉你这些数将如何变化。

困难的是使这种含蓄变得清晰:求解方程。但在什么意义上求解方程呢? 经典数学家的自然反应是寻找一个公式,这个公式精确地告诉我们猪头数和块菌株数在任何时刻将是多少。

不幸的是,此种“显式解”太罕见,几乎不值得费力去寻找它们,除非方程具有很特殊的、受限制的形式。另一个办法是在计算机上求近似解,但那只能告诉我们这些特定韧始值将发生什么变化,以及我们最想知道的许多不同的初始值将发生什么变化。

庞加莱的思想是画一幅图,这幅图显示所有初始值所发生的情况。

系统的状态--在某一时刻两个群体的规模——可以表示成平面上的点,用坐标的方法即可表示。

例如,我们可能用横坐标代表猪头数,用纵坐标代表块菌株数。

上述初始状态对应于横坐标是0.017439、纵坐标是0.788444的点。

现在让时间流逝。坐标按照微分方程表达的规则从一个时刻变到下一个时刻,于是对应点运动。依动点划出一条曲线;那条曲线是整个系统未来状态的直观表述。事实上,通过观察这条曲线,不用搞清楚坐标的实际数值,你就可以“看出”重要的动力学特征。

例如,如果这曲线闭合成环,则两个群体遵从周期性循环,不断重复同样一些值就像跑道上的赛车每一圈都经过同一个旁观者那样。假如曲线趋近某个特定点并停在那,则群体稳定到一个定态,它们在此都不发生变化——就像耗尽了燃料的赛车。

由于幸运的巧合,循环和定态具有重要的生态意义—特别是,它们给群体规模设置了上限和下限。所以肉眼最易看出的这些特征确实是实际事物的特征。并且,许多不相关的细节可以被忽略——例如,不必描述其精确形状,我们就可以看出存在一种闭合环它代表两个群体循环的合成“波形”。

假如我们试一试一对不同的初始值,那将会发生什么情况? 我们得到第二条曲线。每一对初始值定义一条新曲线。

通过画出一整族的此种曲线,我们可以抓住所有初始值之下系统所有可能的行为。这族曲线类似于围绕平面盘旋的一种虚拟数学流体的流线。我们称此平面为系统的相空间,那族盘旋曲线是系统的相图。

取代具有各种初始条件的以符号为基础的微分方程概念,我们有了流经猪块菌空间的点的直观几何图象。这仅在其许多点是潜在点而非实际点而有别于普通平面:它们的坐标对应于在适当初始条件下可能出现,但在特定情况下可能不会出现的猪头数和块菌株数。所以,除了从符号到几何的心理转移,还存在从实际向潜在的哲理性的转移。

对于任何动力学系统,都可以设想同一种类型的几何图象。有相空间,其坐标是所有变量的值;有相图,即一族表示从所有可能的初始

条件出发的所有可能行为的盘旋曲线,这些曲线为微分方程所刻划。

这一思想是一大进展,因为我们无需关心微分方程解的精确数值,而可以把注意力集中于相图的宽广范围,使人发挥其最大优势即惊人的图象处理能力。作为把全部潜在行为编织起来的一种方式自然界从中选择实际观察到的行为的相空间图,在科学中已被广为应用。庞加莱这一大创新所带来的结果,是动力学可借助被称为吸引子attractor的几何形状来加以直观化。

假如你使一动力学系统从某个初始点出发,观察它长期运作的情况,你往往会发现,它最终围绕相空间中某个明确的形状游荡。例如,曲线可以向一个闭合环旋进,然后绕环永远兜圈子。

而且,初始条件的不同选择会导致相同的终末形状。倘若如此,那形状就叫做吸引子。系统长期的动力学特性受其吸引子支配,吸引子的形状决定产生何种类型的动力学特性。

例如,趋向于定态的系统,它具有的吸引子是一个点。趋向于周期性地重复同样行为的系统,它具有的吸引子是一个闭环。也就是说,闭环吸引子相当于振荡器。请忆一下第五章有关振动的小提琴弦的描述:小提琴弦经历一系列最终使它回归到出发点的运动,并将一遍又一遍重复那个系列。我的意思不是小提琴弦以物理环运动,但我对它的描述是隐喻意义上的闭环:运动经过相空间的动态地形而环游。沌有其自身颇为古怪的几何学意义,它与被称为奇异吸引子的离奇分形形状相联系。

蝴蝶效应表明,奇异吸引子上的详细运动不可预先确定,但这并末改变它是吸引子这个事实。

设想一下如果把一个古球抛进波汹涌的大海,无论你从空中向下丢球,还是从水下让球向上浮,球都会向海面运动。一旦到了海面之后,它就在起伏的波浪中经历一个很复杂的运动路径,但不管这路径多么复杂,球仍然留在海面上或至少很接近海面。

在这一图景里,海面是吸引子。因此,尽管有混沌,不论出发点可能是什么,系统最终将很接近它的吸引子。

混沌作为一种数学现象已得到充分证实,但在现实世界里我们如何检测它呢?

我们必须完成一些实验,但这存在一个问题。实验在科学中的传统作用是检验理论预言,但要是蝴蝶效应在起作用—正像它对任何混沌系统所做的那样——我们怎么能期望去检验一个预言?

莫非混沌天生不可检验,从而是不科学的?

回答是,“不”!因为“预言”这个词有两个含义。一是指“预卜未来”。当混沌出现时,蝴蝶效应阻碍预卜未来。但另一个含义是“预先描述实验结果将是什么”。

让我们来考虑一下如果掷100次硬币的例子。为了预言——在算命先生的意义上预卜——会发生什么情况,你必须预先列出每一次抛掷的结果。但你可以作出科学的预言,如“大约一半硬币将正面朝上”,而不必具体地预卜未来——甚至预言时,这系统仍然是随机的。没有人会因为统计学处理不可预言的事件而认为它不科学,因此亦座以同样态度来对待混沌。你可以作出各种各样的关于混沌系统的预言。

事实上,你可以作出充足的预言把确定性混沌与真正的随机性区分开。你能常常预言的一件事是吸引子的形状,它不受蝴蝶效应的影响。蝴蝶效应所做的一切,是使系统遵从同一吸引子上的不同轨线。总之,吸引子的一般形状往往可从实验观测中得到。

沌的发现揭示了我们对规律与由此产生的行为之间——即原因与结果之间——关系的一个基本性的错误认识。我们过去认为,确定性的原因必定产生规则的结果,但现在我们知道了,它们可以产生易被误解为随机性的极不规则的结果。

我们过去认为,简单的原因必定产生简单的结果这意昧着复杂的结果必然有复杂的原因,但现在我们知道了,简单的原因可以产生复杂的结果。我们认识到,知道这些规律不等于能够预言未来的行为。

原因和结果之间的这种脱节是怎么出现的?

为什么相同的一些规律有时候产生明显的模式,有时候却产生混沌?

答案可以在家家户户的厨房里,就在打蛋器那样简单的机械装置中找到。两条打蛋臂的运动简单又可预言:每条打蛋臂都平稳地旋转。然而,装置里的糖和蛋白的运动则复杂得多。糖和蛋白在打蛋臂的作用下得到混合,那正是打蛋器要达到的目的,但那两条旋转的打蛋臂并未绞在一起。当你打完蛋后,不必把打蛋臂解开。

为什么调合蛋白的运动如此不同于打蛋臂的运动?

混合是一个远比我们想象的复杂得多的动态过程。设想一下,试图预言一颗特定的糖粒最终将在何处是何等艰难!当混合物在那对打蛋臂之间通过时,它被向左右两边扯开。两颗起初紧靠在一起的糖粒不久分得很开,各走各的道。事实上,这正是蝴蝶效应在起作用。初始条件中的微小变化有着巨大的影响。因此,混合是一个混沌过程。

反之,每一个混沌过程都包含一种在庞加莱虚拟相空间中的数学混合。这就是潮汐可预言、而天气不可预言的原因。两者包含同一种类型的数学,但潮汐的动力学不在相空间混合,而天气的动力学则在相空间混合。

科学在传统上看重秩序,但我们正开始认识到混沌能给科学带来独特的好处。混沌更容易对外部刺激作出快速反应。

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

(完整word版)混沌理论要点

混沌理论要点: 1. 非线性系统的非因果性 当原因与结果间的关系并不确定时,便产生非线性现象。比如说利率提高1%(原因),市场反应(结果)就是不确定的——结果取决于人群对该消息的解释。 再如美国家森林公园,每年都由雷电引起数百起火灾(起因相同),仿佛老天爷每年都要向大地投放火星大小相同的成百上千个未熄的烟头,于是几百次火灾被引发,并蔓延、终止,有时烧毁数亩、有时蔓延数百亩,有时……1988年那次,使黄石公园全部150万亩森林片草无存(该公园去年已被世界自然遗产目录剔除)。以致其它森林公园为防止枯草积得太厚,还不得不让消防人员,每年人为制造些火灾。 量子世界、人类历史、地震、天气运行……莫不如此。远至恐龙时代的大小生态灭绝事件,近至非典、上月的北美大停电、各国证券市场,每年无数个烟头被仍向场内,引发或大或小的震动,并蔓延、终止……但到底哪个烟头,才是那颗重要的烟头? 相同的初始力,令人瞠目的结果,是所有混沌系统的基本特征。大家都不难理解,曾救了萨达姆命的藏身之所,这次偏就成了送命之处,但很多人却很难理解同样一个历史点位,并不代表同样的未来。许多历史学家在逐次的趋势和循环中,搜寻说得过去的理由与解释,显然是用错了工具。这些传统观念产生于匀衡物理和天文学中,而合适的工具,却在非线性的非匀衡物理中。新物理学家们则开始用模拟游戏代替方程式,去发现事态运行的规律。 2.对初始条件的极端敏感依赖性 伦敦气象局计算机系统每日处理覆盖全欧洲的数千个气象站的上亿条数据,一次洛伦兹将5.06127输入为5.06,万分之一的省略,提供了两份截然不同的天气预报。于是洛伦兹在美国科学促进会提出:“一只蝴蝶在巴西煽动翅膀可能会在美国德克萨斯引起一场龙卷风”,从此,令人着迷、发人深省的“蝴蝶效应”,就以其大胆的想象力与迷人美学色彩,更加之深刻科学内涵与内在哲学魅力,倾倒了不断在复杂系统中苦苦求索的芸芸众生。“蝴蝶效应”反映了混沌运动的一个基本特征:对初始条件的极端敏感依赖性。 经典动力学认为,初始条件的微小变化,对未来状态所造成的差别也微小。但混沌理论认为,初始条件的十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。 大家不妨想像一下台球桌面:撞击母球不到1度的微小偏差,会使台面出现纵线与横折两种极端迥异的走势。一个储蓄组合的未来资产变化模拟图,也仅因规则改为不计零数,模型便立即报废。导致蝗灾的因素有不下两百种,漏算或误算其中2%,不久20%的因素都会相应改换,一切也就大相径庭。西方流传的一首民谣更是对此作了形象的说明:“醉了一个农夫,丢了一颗铁钉;丢了一颗铁钉,少安一付马掌;少了一付马掌,跛了一匹战马;跛了一匹战马,摔坏一位将军;死了一个将军,输了一场战争;输了一场战争,亡了一个国家!” 系统对无数变化,何时极度敏感,何时能消化掉而不予理会,对此人类不是无能为力,而是丝毫都无能为力——地球上每天亿万只蝴蝶上下翻飞、百万只苍鹰鼓翼、千百只大鹏展翅……初始力或相同、或不同,初始因素本身虽不大,但经时间积累后的结果,已远非人们当初之想当然。 从前我们经常听到“明年将现暖冬”“下月平均气温将低于去年同期”等说法,但拥有超乎想像的完备数据的美国家气象局去年已宣布:“从此再不对超过10天的气象做任何预测。”这是人类科学认识的又一步飞跃。 3. 能量法则 完全不同于线性代数的产物——概率论。该法则是不同国度的学者们,耗时巨大的独立研究后,最终共同发现的一项新的重要自然法则,已被证实是一个适用于上千种的模板的、普遍

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

分数阶非线性系统动力学特性及其图像处理应用研究

分数阶非线性系统动力学特性及其图像处理应用研究 非线性动力学在自然学科、社会学科、工程技术等诸多领域有着广泛的应用。而将非线性动力学理论引入图像处理领域,是非线性动力学理论应用的新思路,也是图像处理的新手段。 本文以分数阶非线性动力学和同步控制为理论基础,研究分析了新的非线性动力学特性,探索其与图像处理领域的契合点,在此基础上构建基于非线性动力学特性的图像处理模型。新模型的构建拓宽了非线性理论的应用领域,可为人脑感知系统的内部机制提供新的解释和预测,在图像处理领域和神经动力学方面都具有较好的理论意义和应用前景。 本文的主要工作及创新点包括以下几个方面:(1)基于分数阶蔡氏系统和变形蔡氏系统,构建了复分数阶(时滞)蔡氏系统和分数阶复变形蔡氏系统,利用相图、分岔图、最大Lyapunov指数等定性和定量的手段对两类复系统的动力学行为进行了分析讨论。首先将分数阶微积分定义扩展到复数阶,得到复数阶微积分定义的计算方法,并将其用于复分数阶(时滞)蔡氏系统的仿真。 对于分数阶复变形蔡氏电路系统的研究是将复系统转化为6变量的实系统实现的。在对两类系统的动力学行为分析中,通过改变系统阶次,观察到不同周期窗口、分岔、单涡卷等丰富的动力学行为。 最后讨论了两类复系统动力学行为的异同点及分数阶系统的动力学行为与构建图像处理模型之间的关系。(2)基于分数阶系统稳定性分析理论,研究了分数阶Relaxation振子对于不同外部刺激的稳定域和振荡域,结合相图、分岔图分析得到其产生的振荡为节律振荡;利用节律振荡特性构建图像增强模型,并用实验验证了新模型在图像增强方面的有效性。

首先利用分数阶稳定性理论分析分数阶Relaxation振子在不同外部刺激时其平衡点的稳定性,进而分析其对应的相图、分岔图,确定使分数阶Relaxation 振子产生节律振荡的外部刺激的范围。根据不同外部刺激使系统产生节律振荡的特性,构建了类Gamma曲线(QGC)。 将QGC和其相近模型进行比较,量化指标和直观效果均验证了我们所提模型在图像增强方面有较好的性能。另外,此模型模拟的增强机制也可能是人类视觉系统实现自动适应外界光线条件的机制。 (3)基于分数阶混沌系统的主动控制方法和分时同步策略,实现了单个分数 阶系统与多个分数阶复杂子网络的分时相同步。利用该方案构建了含中枢单元的两层图像目标选择模型,并用实验验证了该模型的可行性。 引入分数阶主动控制策略和分时同步思想,通过线性关系将子网络转化为混合系统,实现了单个混沌系统与子网络(混合系统)间的分时相同步。然后利用该方案构建包括中枢单元和分割单元两层的目标选择模型。 分割层是由相互耦合的分数阶神经元组成,通过相同步实现不同目标物的分割。中枢单元由一个振子构成,通过分时主动控制策略在不同时段与代表不同目标物的混合系统达到相同步,实现目标的选择与转移。 另外,此模型也是对人类视觉系统中目标物选择和转移机制一个很好的解释。 (4)基于分数阶系统的稳定性理论,实现了1+N分数阶复变量节点的复杂网络不 同系数的函数投影同步方案。 将此函数投影同步方案用于构建图像分形特征的识别模型,仿真结果验证了该模型的可行性。首先,构建了1+N节点(复混沌系统)驱动响应复杂网络模型。 根据分数阶系统稳定性理论,设计合理的控制器,实现了分数阶1+N节点复

分岔与混沌理论与应用作业

分岔与混沌理论与应用 学院: 专业: 姓名: 学号:

我对混沌理论的认识 1、混沌理论概述 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。混沌现象起因于物体不断以某种规则复制前一段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为简单,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。 混沌理论,是近三十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。混沌的发现揭示了我们对规律与由此产生的行为之间--即原因与结果之间--关系的一个基本性的错误认识。我们过去认为,确定性的原因必定产生规则的结果,但它们可以产生易被误解为随机性的极不规则的结果。我们过去认为,简单的原因必定产生简单的结果(这意昧着复杂的结果必然有复杂的原因),但简单的原因可以产生复杂的结果。我们认识到,知道这些规律不等于能够预言未来的行为。这一思想已被一群数学家和物理学家,其中包括威廉·迪托(William Ditto)、艾伦·加芬科(Alan Garfinkel)和吉姆·约克(Jim Yorke),变成了一项非常有用的实用技术,他们称之为混沌控制。实质上,这一思想就是蝴蝶效应。初始条件的小变化产生随后行为的大变化,这可以是一个优点;你必须做的一切,是确保得到你想要的大变化。对混沌动力学如何运作的认识,使我们有可能设计出能完全实现这一要求的控制方案。这个方法已取得若干成功。 2、分叉的概述 分叉理论研究动力系统由于参数的改变而引起解的拓扑结构和稳定性变化的过程。在科学技术领域中,许多系统往往都含有一个或多个参数。当参数连续改变时,系统解的拓扑结构或定性性质在参数取某值时发生突然变化,这时即产

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

混沌理论及其应用

混沌理论及其应用 摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。 关键词:混沌理论;混沌应用;电力系统 Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized. Keywords:Chaos theory;Application of ChaosElectric ;power systems

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

混沌理论概述

第一章混沌理论概述 引言 混沌是指确定动力系统长期行为的初始状态,或系统参数异常敏感, 却又不发散, 而且无法精确重复的现象, 它是非线性系统普遍具有的一种复杂的动力学行为。混沌变量看似杂乱的变化过程, 其实却含有内在的规律性。利用混沌变量的随机性、遍历性和规律性可以进行优化搜索, 其基本思想是把混沌变量线性映射到优化变量的取值区间, 然后利用混沌变量进行搜索。但是, 该算法在大空间、多变量的优化搜索上, 却存在着计算时间长、不能搜索到最优解的问题。因此, 可利用一类在有限区域内折叠次数无限的混沌自映射来产生混沌变量,并选取优化变量的搜索空间, 不断提高搜索精度等方法来解决此类难题。混沌是非线性科学的一个重要分支, 它是非线性动力系统的一种奇异稳态演化行为, 它表征了自然界和人类社会中普遍存在的一种复杂现象的本质特征。因此, 混沌科学倡导者Shlesinger和著名物理学家Ford 等一大批混沌学者认为混沌是20 世纪物理学第三次最大的革命, 前两次是量子力学和相对论, 混沌优化是混沌学科面对工程应用领域的一个重要的研究方向。它的应用特点在于利用混沌运动的特性, 克服传统优化方法的缺陷, 从而使优化结果达到更优。 1.混沌的特征从现象上看,混沌运动貌似随机过程,而实际上混沌运动与随机过程有着本质的区别。混沌运动是由确定性的物理规律这个内在特性引起的,是源于内在特性的外在表现,因此又称确定性混沌,而随机过程则是由外部特性的噪声引起的。混沌有着如下的特性: (1)内在随机性 混沌的定常状态不是通常概念下确定运动的三种状态:静止、周期运动和准周期运动,而是一种始终局限于有限区域且轨道永不重复的,形势复杂的运动。第一,混沌是固有的,系统所表现出来的复杂性是系统自身的,内在因素决定的,并不是在外界干扰下产生的,是系统的内在随机性的表现。第二,混沌的随机性是具有确定性的。混沌的确定性分为两个方面,首先,混沌系统是确定的系统;其次,混沌的表现是貌似随机,而并不是真正的随机,系统的每一时刻状态都受到前一状态的影响是确定出现的,而不是像随机系统那样随意出现,混沌系统的 状态是可以完全重现的,这和随机系统不同。第三,混沌系统的表现具有复杂性。混沌系统的表现是貌似随机的,它不是周期运动,也不是准周期运动,而是具有良好的自相关性和低频宽带的特点。 (2)长期不可预测性 由于初始条件仅限于某个有限精度,而初始条件的微小差异可能对以后的时间演化产生巨大的影响,因此不可长期预测将来某一时刻之外的动力学特性。即混沌系统的长期演化行为是不可预测的。在此以经典的logistic映射为例: x(n+1)=μx(n)(1-x(n)) n=0,1,2,3… 0<x0<1 0<μ≤4 (1-1)

单摆非线性动力学

单摆的非线性动力学分析 亚兵 (交通大学车辆工程专业,,730070) 摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力 Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement. Key words: simple pendulum; vibration; damp; drive force 1 引言 单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。 θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0 加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t θθθ --的关系。

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

海洋生态系统非线性动力学研究

海洋技术 第28卷 1引言 自从上世纪90年代以来,海洋生态方面的研究日趋活跃,海洋生态系统动力学模型的研究成为本领域内的一个重要方向。本文通过参阅国内外大量相关学术资料,建立了新的海洋生态经济系统动力学模型,并运用非线性动力学理论分析了此模型。 2主要内容 2.1 模型介绍 考虑营养盐、自养浮游植物和食植鱼类相互作用关系,并添加人为经济因素对该体系的影响,建立了三者的新模型。 参考NPZ 模型[1],将浮游动物换为食植鱼类;在营养盐方程中,忽略浮游植物和食植鱼类的死亡以及食植鱼类取食浮游植物过程中非同化的浮游植物部分向营养盐的转化,加入外界污染对其的影响;在食植鱼类方程中加入捕捞项,建立模型如下: (1 )式中:N 为营养盐浓度;P 为浮游植物浓度;Z 为食植鱼类浓度;a 为浮游植物生长率;k N 为吸收营养盐的半饱和参 数;e 为污染强度;R m 为食植鱼类的最大摄食率;λZ 为食植鱼类摄食半饱和系数;εP 为浮游植物死亡率;εZ 为食植鱼类死亡率;γ为食植鱼类的营养转化率;h 为人类对食植鱼类的捕捞率。 模型中浮游动物对浮游植物的摄食采用Ivlev 公式[2]:参数 h 是本文着重讨论的分岔参数。并且其它各参数的默认取值如表1所示: 表1 参数意义及其取值范围[3~4] 2.2系统稳定性及分岔分析 根据模型方程的基本特征,注意到食物链模型中各元素的物理意义及在实际发生过程中相互影响、耦合。我们考虑运用Lyapunov 运动稳定性理论[5]来判断变量各状态的稳定 性。 首先求所建模型方程的平衡点,令方程(1)的左端为零,即: (2) 海洋生态系统非线性动力学研究 王洪礼,董占琢 (天津大学机械工程学院,天津300072) 摘 要:海洋生态经济系统非线性动力学模型的建立及分析,对我国海洋生态经济发展乃至社会经济的发展都具 有重要意义。建立了新的海洋生态经济系统动力学模型,研究了模型的稳定性和分岔现象,揭示了该系统的非线性动力学特性。 关键词:海洋生态经济系统;非线性;稳定性;分岔中图分类号:X82 文献标识码:A 文章编号:1003-2029(2009)01-0050-05 第28卷第1期2009年3月海洋技术OCEAN TECHNOLOGY Vol.28,No.1Mar ,2009收稿日期:2008-09-22 基金项目:国家自然科学基金资助项目(10772132);博士点基金资 助项目(20070056063) 作者简介:王洪礼(1945-),女,河北沧县人,天津大学教授,博生导 师。 符号 意义 默认取值 a 浮游植物的生长率 0.2k N 吸收营养盐的半饱和参数0.05Rm 食植鱼类的最大摄食率0.6γ 食植鱼类的营养转化率0.9λZ 食植鱼类摄食的半饱和系数 0.035εP 藻类的死亡率0.005εZ 食植鱼类死亡率 0.005

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

浅谈混沌理论的意义

浅谈混沌理论的哲学意义 姓名:文小刀

浅谈混沌理论的哲学意义 文小刀 摘要:本文首先介绍了混沌理论的内含和产生,在此基础上介绍了它对自然科学和哲学思维的影响,最后提出了混沌理论的几种应用,以期探寻混沌理论的哲学意义。 关键字:混沌理论影响应用哲学意义 混沌理论被认为是与相对论和量子力学齐名的震惊世界的第三大理论,是系统科学的重要组成部分。混沌理论这个迷人的“奇异吸引子”,吸引着人们去探索混沌奥秘的科学前沿,而且像极具生命力的种子,撒遍自然科学和社会科学各个领域的沃土。它将简单与复杂、有序与无序、确定与随机、必然与偶然的矛盾统一在一幅美丽的自然图景之中,推动了人类自然观与科学观的发展;也通过一系列崭新的范畴、语言和思维方式,充实了科学方法内容并促进了方法论的进步,对科学的发展和人类社会的发展必将产生深远的影响。 一、混沌理论的含义及其产生 混沌学是当代系统科学的重要组成部分,与相对论和量子力学的产生一样,混沌理论的出现对现代科学产生了深远的影响。混沌运动的本质特征是系统长期行为对初值的敏感依赖性,所谓混沌的内在随机性就是系统行为敏感地依赖于初始条件所必然导致的结果。我们可把混沌理解为:在一个非线性动力学系统中,随着非线性的增强,系统所出现的不规则的有序现象。这些现象可以通过对初值的敏感依赖性、奇异吸引子、费根鲍姆常数、分数维、遍历性等来表征。 混沌有如下的本质特征: 1.混沌产生于非线性系统的时间演化,作为系统基础的动力学是决定论的,无须引进任何外加噪声。因而混沌是非线性确定系统的内禀行为。 2.混沌行为对初始条件极具敏感,导致长期行为具有不可预测性,也即我们所说的确定系统产生的不确定性或随机性。这一特征不同于概率论中的随机过程,随机过程中的随机性是指演化的下一次结果无法准确预知,短期内无法预测,但长期演化的总体行为却呈确定的统计规律,混沌行为刚好相反,短期行为可确知,长期行为不确定。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

相关文档
最新文档