反比例函数学案
反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。
过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。
二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。
难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。
三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。
环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。
环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。
环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。
四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。
五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。
反比例函数教案及教学反思

一、教案设计1.1 教学目标:(1) 知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。
(2) 过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,提高学生解决问题的能力。
(3) 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学规律的欲望,培养学生的团队合作精神。
1.2 教学内容:(1) 反比例函数的概念:反比例函数是指形如y = k/x (k为常数,k≠0) 的函数。
(2) 反比例函数的性质:反比例函数的图像是一条通过原点的曲线,称为双曲线。
当k>0时,双曲线在第一、三象限;当k<0时,双曲线在第二、四象限。
(3) 反比例函数的应用:解决实际问题,如计算面积、速度、浓度等。
1.3 教学重点与难点:(1) 重点:反比例函数的概念和性质。
(2) 难点:反比例函数的应用。
1.4 教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生解决问题的能力。
1.5 教学过程:(1) 导入:通过生活中的实例,引导学生思考反比例关系,激发学生的学习兴趣。
(2) 讲解:讲解反比例函数的概念,引导学生观察、分析反比例函数的性质。
(3) 实践:让学生通过实际问题,运用反比例函数解决问题,巩固所学知识。
(5) 作业:布置相关练习题,巩固所学知识。
二、教学反思2.1 教学效果:通过本节课的教学,学生能够理解反比例函数的概念,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
2.2 教学亮点:(1) 采用问题驱动法,引导学生主动探究,提高学生解决问题的能力。
(2) 结合生活中的实例,让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣。
2.3 改进措施:(1) 在实践环节,可以增加一些具有挑战性的问题,让学生在解决问题的过程中,进一步提高反比例函数的应用能力。
(2) 在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。
反比例函数的图象和性质学案

汇报人:XXX
汇报时间:2024-01-22
目录
• 反比例函数基本概念 • 反比例函数图象绘制 • 反比例函数性质探讨 • 反比例函数在实际问题中应用举例
目录
• 典型例题解析与思路点拨 • 课堂小结与课后作业布置
01
反比例函数基本概念
定义与表达式
01
反比例函数定义
对称性及其证明过程
对称性
反比例函数的图象关于原点对称。即,如果点$(x, y)$在反比 例函数的图象上,那么点$(-x, -y)$也在图象上。
证明过程
设反比例函数为$y = frac{k}{x}$($k neq 0$),对于任意 点$(x, y)$,有$y = frac{k}{x}$。则对于点$(-x, -y)$,有$-y = -frac{k}{x} = frac{k}{-x}$,即点$(-x, -y)$也满足反比例函 数的定义,因此图象关于原点对称。
在某些工程问题中,力与距离之间可能存在反比关系。例如,在弹性力
学中,弹簧的伸长量与所受的力成反比。因此,可以利用反比例函数建
立力与距离之间的关系模型进行求解。
05
典型例题解析与思路点拨
典型例题选讲及思路分析
01
例题1
已知反比例函数 $y = frac{k}{x}$($k neq 0$),当 $x = 2$ 时,$y = 3$,求该反
图象关于原点对称。
03
反比例函数性质探讨
增减性与单调性判断
增减性
反比例函数在其定义域内不具备单调性。当$x$从负无穷大增加到0,函数值从负 无穷大增加到正无穷大;当$x$从0增加到正无穷大,函数值从正无穷大减小到0 。
单调性判断
第六章反比例函数(教案)

四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个变量的乘积保持不变的情况?”(如:在固定面积的土地上,种植的作物密度与每株作物的占地面积成反比。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
第六章反比例函数(教案)
一、教学内容
本节课选自《数学》八年级下册,对应章节为第六章“反比例函数”。教学内容主要包括以下三个方面:
1.反比例函数的定义:引导学生理解反比例函数的概念,掌握其一般形式y=k/x(k≠0)。
2.反比例函数的性质:探讨反比例函数的图像特点,如图像为双曲线,以及在不同象限内的增减性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x(k≠0)的函数,它描述了两个变量之间的反比关系。反比例函数在解决实际问题中具有重要作用,如物理中的电流、电压关系等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
-反比例函数在实际问题中的应用,如何从描述中抽象出反比例关系,并建立函数模型。
-对反比例函数增减性的理解,尤其是在不同象限内如何判断其变化趋势。
举例:
a.图像的双曲线特性:通过绘制图像和观察,帮助学生理解反比例函数图像为何是双曲线,并解释渐近线的含义。
b.实际问题中的应用:给出具体情境,如“某商品的价格与购买数量成反比”,指导学生如何将问题描述转化为数学表达式,即y=k/x的形式。
《反比例函数》复习学案

反比例函数复习学案(一)
一. 反比例函数的概念:
例1.下列函数中,哪些是y 关于x 的反比例函
数?
(填方号)
1
x ① y= 2y x =-②
③ xy=5 21y x =+④
13y x -=⑤ ⑥ y=6x-4
定义:形如 叫做反比例函数。
表现形式:①
② ③
练习1.
2
3
m
m +-已知y=x (m 为常数)是反比例函数,
求m 的值。
二.反比例函数的图象
总结: 练习2
44
x x
例3.作函数y=和y=-的大致图象
例4、焦老师家离学校的距离为5400米,每天上班时的速度为v (米/分),所需时间为t (分)
(1)则速度v 与时间t 之间有怎样的函数关系?
(2)若到达单位用了30分钟,那么焦老师的平均速度是多少? (3)如果焦老师的速度为270米/分,则需要几分钟到达学校?
应用变式:。
反比例函数教学设计(通用)五篇

反比例函数教学设计(通用)五篇第一篇:反比例函数教学设计(通用)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x 的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x 不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-1y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为y=.(1)当x=-1时,y=2;∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=-;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,-.Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
八上数学9.1反比例函数 学案

9.1反比例函数班级姓名学号学习目标1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别反比例函数.2.能根据已知条件确定反比例函数的表达式.学习重点:1.理解反比例函数的意义.2. 确定反比例函数的表达式学习难点:1.反比例函数表达式的确定.2. 根据已知条件确定反比例函数的表达式.教学过程一、自主探究:1.什么是函数?2.什么是一次函数?什么是正比例函数?它们的一般形式是怎样的?3.我们还记得,在小学里学过,什么叫成反比例关系吗?4.如果路程s一定,那么速度v和时间t成什么关系?二、自主合作:1.尝试:汽车从南京出发开往上海(全程约300km),全程所用时间t(h),随速度v(km/的变化而变化.(1)你能用含v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?(3)时间t是速度v的函数吗?为什么?(4)时间t是速度v的一次函数吗?是正比例函数吗?为什么?2.思考:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m 3,向池内注水,注满水所需时间t (h)随注水速度v (m 3/h)的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化. 3.讨论交流.函数关系式a = 6400b 、y = 20x 、t = 5000v 、m =-200n 具有什么共同特征?你还能举出类似的实例吗? 4.概括总结.一般地,形如y = kx (k 为常数,k ≠0)的函数叫做反比例函数.其中x 是自变量,y 是x 的函数,k 是比例系数.5.概念巩固:下列关系式中的y 是 x 的反比例函数吗?如果是,比例系数k 是多少? (1)y = 4x ; (2)y = -12x ; (3)y = 1-x;(4) xy = 1; (5)y = x2 ; (6)y = ( 2 -3)x -1反比例函数通常有三种表达式:y = kx ,y = kx -1 , xy = k (上述三个式子中k 均为常数且k ≠0). 三、自主展示:例1:判断下列函数表达式中,表示反比例函数的是哪几个?(1)y = x 4; (2)y =34x; (3)-xy = 3; (4)-3x y + 2 = 0 ; (5)y = 1x2; (6)y = 2x+ 1 .例2 (1)已知y 是x 的反比例函数,当 x = 3时,y = 2 ,求y 与x 的函数关系式.(2)y = (1+k)x ︱k ︱-2中,y 是x 的反比例函数,求k 的值.四、自主拓展:1.下列关系式中,是反比例函数的是 ( )A. y = kxB. y =2x+1C. y = -13xD. y =4x-32.下列各选项中所列举的两个变量之间的关系,是反比例函数关系的是()A. 斜边长为5的直角三角形中,两直角边之间的关系.B.等腰三角形中,顶角与底角之间的关系.C.圆的面积s与它的直径d之间的关系.D. 面积20cm2的菱形,其中一条对角线长y与另一条对角线长x的关系.3.已知y与x成反比例函数的关系,且当x = - 2时,y=3,(1)求该函数的解析式(2)当x = 4时,求y的值(3)当y = 2时,求x的值.归纳总结:反比例函数的五种不同的表现形式:形式1:y是x 反比例函数形式2:y = kx(k为常数,k≠0)形式3:y = kx-1(k为常数,k≠0)形式4:xy = k(k为常数,k≠0)形式5:变量y 与x 成反比例,比例系数为k(k≠0)【课后作业】班级 姓名 学号1.函数y = (k )叫做反比例函数,确定了 就可以确定一个反比例函数,自变量的取值范围是 . 2.反比例函数y =2 -12x中的k 值为 . 3.当m 时,y = m+3x 是反比例函数,任取一个m 值写出这个反比例函数4.近视眼镜的度数y 度与镜片焦距x 米成反比例,已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 度与镜片焦距x 之间的函数关系式是 .5. 下列各题中:(1)三角形的面积S 一定时,它的底a 与这个底边上的高h 的关系;(2)多边形的内角和与边数的关系;(3)正三角形的面积与边长之间的关系;是反比例函数关系的是: (只填序号)※6.y 与x 成反比例,x 与z 成正比例,则y 与z 成 比例. 7.下列函数中是反比例函数的是 ( ) A. x(y -1) = 1 B. y = x -1 C. y = -1x+1 D. y = 1x -38.甲地与乙地相距5千米,某人以平均速度v (km/h )从甲地向乙地行走,设他全程所需时间为t(h),则变量t 是v 的 ( ) A. 正比例函数 B.反比例函数 C.一次函数 D.以上都不对9.计划修建铁路s (km ),铺轨天数a(天),每日铺轨长度b(km/天),则下列三个结论正确的是 ( ) ①当s 一定时,a 是b 的反比例函数; ②当a 一定时,s 是b 的反比例函数; ③当b 一定时,a 是s 的反比例函数;A. ①B. ②C. ③D. ①②③ 10. 已知y 与x+2成反比例,且当x=2时,y=3, 求(1)y 关于x 的函数解析式;(2)当x=-2时的y 值.11. 一定质量的二氧化碳,当它的体积时,它的密度(1)求与V的函数关系式;(2)求当时二氧化碳的密度.※12.已知函数y = y1+y2,y1与x成正比例,y2与x成反比例,且当x =1时,y = 6,当x = 2时,y = 5,求y与x的函数关系式.【励志故事】愚钝的力量大科学家爱因斯坦曾做过一个实验:他从村子里找了两个人,一个愚钝且软弱,一个聪明且强壮。
反比例函数教案优秀7篇

反比例函数教案优秀7篇《反比例函数》教学设计篇一一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。
情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式。
难点:反比例函数表达式的确立。
五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x (单位:m)的变化而变化。
请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx (1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。
此时y 就不是反比例函数了。
举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数导学案
学习目标:
1. 理解反比例函数的概念.
2.能根据实际问题中的条件确定反比例函数的表达式.
3.能判断一个给定的函数是否为反比例函数.
学习重点:经历建立反比例函数这一数学模型的过程,理解反比例函数的概念。
学习难点:结合实际问题对反比例函数意义的理解。
学习过程:
一、课前预习:
1.分别写出下列各问题中两个变量之间的关系式。
(1).一辆汽车从南京开往上海
①若速度是60(km/h),那么行驶的路程s(km)随时间t(h)变化而变化;
②若汽车已经行驶了50km,按照(1)中的速度,那么行驶的路程s(km)随时间t
(h)变化而变化;
③南京到上海的路程约300km,全程所用时间t(h)随速度v(km/h)的变化而变化。
(2).一个面积为6400 m2的长方形的长a(m)随宽b(m)的变化而变化;
(3).某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的年平均还款额y(万元)随还款年限x(年)的变化而变化;
(4) .游泳池的容积为5000 m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h) 的变化而变化;
(5).实数m与n的积为-200,m随n的变化而变化;
2、根据以上函数形式特点类比一次函数的定义给出反比例函数的概念.
二、合作探究
1.y 是否是x .
(1)y = (2) y = (4) y =2x )y = 3x
+1 2.写出下列问题中两个变量之间关系的函数表达式,并判断它们是否为反比例函数。
(1).面积是50cm 2的矩形,一边长y(cm)随另一边长x(cm)的变化而变化。
(2).体积是100cm 3的圆锥,高h(cm)随底面面积S(cm 2)的变化而变化。
3.当m = 时,关于x 的函数
是反比例函数?
4.已知y 是x 的反比例函数,当x=1时 y=▬3,求反比例函数的关系式
5.已知y=y 1+y 2,y 1与x+1成正比例,y 2与x 成反比例,且当x=1时,y=0;当x=4时,
y=9.求y 与x 的之间的函数表达式。
三、当堂检测
1.下列函数中,y是x的反比例函数的是()
2.函数的自变量的取值范围______
3.当m=______时,函数是反比例函数。
4.写出下列问题中两个变量之间的函数关系式,并判断系是否为反比例函数.如果是,指出比例系数k的值.
(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化.
(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x (人)的变化而变化.
(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化
而变化.
5.在如图所示的矩形ABCD中, AB=6,BC=8,P是BC边上的一动点,过点D作DE⊥AP于E,设AP=x,(x≤10)DE=y,则y与x成反比例函数.”你认为是这样吗?请给出证明。
四、小结与思考
1、通过本节课的学习你有哪些收获?
2、你还想知道反比例函数的哪些知识?。