风险判定矩阵法规范性附录

风险判定矩阵法规范性附录
风险判定矩阵法规范性附录

(规范性附录)

风险判定矩阵法

风险判定矩阵考虑事故发生的可能性和事故后果严重程度两个维度,其中:事故发生的可能性分为五个等级(见表E.1)。

表E.1 事故发生的可能性

事故后果严重程度分为四个等级(见表E.2)。

表E.2 事故后果严重程度

风险等级划分为四个等级(见表E.3)。

表E.3 风险判定矩阵

判定事故发生的可能性和事故后果严重程度,需要选择适用的定性或定量风险评估方法进行科学判定。如对事故发生的可能性,可采用事故统计分析方法、事件树分析等分析方法来判定;事故后果的严重程度,可采用事故统计分析和事故后果定量模拟计算等方法来判定。

鉴于企业类型千差万别,企业风险管理水平各不相同,特别是对于一些风险较低的企业,虽然按照统一标准没有构成重大风险,仍然要按照风险管理的原则,抓住影响本企业安全生产的突出问题和关键环节,研究确定本企业可接受风险程度。

矩阵的判定条件

关于矩阵正定的若干判别方法 数学学院数学与应用数学(师范)专业 2010级赵明尖 指导教师吴春 摘要:矩阵的正定性是矩阵论中的一个重要概念,研究矩阵的正定性一直都是矩阵分析领域中非常热门的课题。本文主要讨论了矩阵的定义、性质以及正定性。全文一共分为两章,第一章,主要阐述矩阵的正定性的定义以及性质;第二章,主要讨论了正定性矩阵的定义判别法和定理判别法。 关键词:正定矩阵;定义;性质;判定 Abstract: The positive definiteness of matrix is an important concept in theory of the matrix, Studying positive definiteness of the matrix is always a very popular topic in the area of analysis of the matrix. We mainly discuss the definition, property and positive definiteness of matrix in this paper .The text is divided into two chapters, and the first chapter, we mainly expound the definition and property of the positive definiteness of the matrix; the second chapter, we mainly discuss discriminating method of the definition and the theorem of the positive definiteness of matrix. Key words: positive definiteness of the matrix;definition;property;discrimination 1 引言 代数学是数学中的一个重要分支,矩阵是高等代数中的重要组成部分,而正定矩阵在矩阵论中占有十分重要的地位。而且正定矩阵部分的应用非常广泛,n阶实正定矩阵在正定理论中占有非常重要的地位。正定矩阵在物理学,概率论以及优化控制论中都得到了重要的应用,另外在数值计算科学中也经常用到正定矩阵的知识。比如线性方程组的高斯-塞德尔迭代法就是在方程组的系数是正定矩阵的情况下对任意初始向量是收敛的。但是随着数学本身及应用矩阵的其他学科或领域(数学规划,现代控制等)的发展,普通矩阵越来越不能满足其应用需要,于是正定矩阵引起了国内外学者的广泛关注并做出了许多重要的研究工作,本文在前人研究的基础上对正定矩阵的性质及判定做了进一步的讨论研究,获得了一些

一般矩阵可逆的判定电子教案

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:阶方阵;;;; 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际

2矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m×n 矩阵,记为n m ij a A ?=)( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; } (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )(== 若 ),,2,1;,,2,1(n j m i b a ij ij ===,则称A 与B 相等,记为A=B 。

2.1.2 矩阵的运算 1.加法 ~ (1)定义:设mn ij mn ij b B A A )(,)(==,则mn ij ij b a B A C )(+=+= (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A =k 为常数,则mn ij ka kA )(= (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A ==则 ,)(mp ij C C AB ==其中∑== n k kj ik ij b a C 1 . (2)运算规律 ①)()(BC A C AB =;②AC AB C B A +=+)( ③CA BA A C B +=+)( (3)方阵的幂 ①定义:A n ij a )(=,则K k A A A = ②运算规律:n m n m A A A +=?;mn n m A A =)( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ≠ ②;00,0===B A AB 或不能推出 ③k k k B A AB ?≠)( 4.矩阵的转置 ~ (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )(=, (2)运算规律 ①;)(A A T T = ②T T T B A B A +=+)(;

因子分析出现非正定矩阵案例

某运营商无线增值业务全国各省某一个月内运营情况, 变量35个,样本31个(全国31个省), 希望通过因子分析对各省综合实力进行排序。 一、问题描述 通过SPSS的因子分析对原始变量进行降维处理时,SPSS提示相关系数矩阵为“非正定矩阵”, 无法给出KMO直,但是SPSS仍然给出了后续因子分析结果。 二、疑问 1)什么是正定矩阵? 2)因子分析是否一定要求变量的相关系数矩阵为正定矩阵? 3)非正定矩阵的存在对因子分析结果有何影响? 4)如何修正使得变成正定矩阵? 三、解决办法 通过在论坛上查阅人相关问题,发现其他网友总结出现这种情况的原因主要集中在两点: 1)样本量太少,而指标过多 2)某些变量间相关性太强 而解决方案分别要求增加样本,或者剔除某些显著强相关的变量,但是在我的这个例子里面无 法增加样本,因此只能从变量的相关性上考虑,看是不是存在一些和其他变量高度相关的变量。 通过查看因子分析结果中的相关系数矩阵,的确发现大部分变量之间都存在高度相关性,而且 相关系数在以上: 但是现在问题来了,那是不是应该直接删除高度相关的变量?该删除哪些变量?按照我的情况 估计很多变量都要剔除了,那对于分析结果就会产生很大的影响。为了找出具体是哪些变量导致问 题的出现,我用了一个比较笨的办法:逐一淘汰法。刚开始时不把所有变量都用来做因子分析,只 选取一小部分,例如我先选取了10个变量做分析,发现SPSS没有再提示“非正定矩阵”而是正常 的输出了KMO佥验值,而且顺利完成了因子分析结果;然后下一步我再逐个添加其他变量进行测试,

当发现添加某个变量SPSS提示“非正定矩阵”时,就记下这个变量,然后再换成下一个变量继续 SPSS认为“非正定矩阵”的原因: 测试,直到把所有变量测试完。通过这样的测试,我终于找到让 一共有5个变量,只要不纳入这5个变量进行分析,spss就能正常的进行因子分析。 找到原因后,我本来想直接删除掉这5个变量好了,但是我查看了一下spss因子分析的输出 结果,发现了为什么是这5个变量的原因,如下图: 上图的截图是“解释的总方差”显示所有变量的相关系数矩阵的所有特征值,大家可以看到在 用红色方框标注的5个特征值,他们的数值的数量级都是10的负16次方、17次方、18次方,甚 至出现了负值,几乎可以认为就是零了,远远小于其他特征值,根据之前的逐一测试法确认,这 5 个特征值是与之前发现的那5个变量是对应的,我想这就应该是为什么是这5个变量导致出现非正定矩阵的原因吧。 那进一步思考,特征值过小或者为负值说明了什么呢,根据正定矩阵的判定,正定矩阵的充分 必要条件是:特征值>0,所有出现负的特征值就肯定会出现“非正定矩阵”的原因,但就靠这点似 乎还不够,因为有些特征值是大于0的,只是非常非常小而已。我推测(仅仅是我推测),因为我 们在做主成分分析的时候,每个主成分的方差就等于对于特征值,特征值太小意味着主成分的方差 太小,方差太小意味着包含变量的信息量太少,而我们在做因子分析时往往也是用主成分法来抽取 公因子,所以特征值太小可能也无法满足正定矩阵的条件,当然这是我的推测。 四、总结 根据整个过程,我总结了一下几点: 1)出现非正定矩阵的情况,并不一定都是样本太少(本例中样本才31,变量有35个) 2)剔除变量的时候,可以利用逐一淘汰法来发现问题变量,再考虑是否要删除 3)非正定矩阵似乎对因子分析结果并无太多影响,因为我们往往只抽取了部分公因子(累计方差

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:n阶方阵A;A≠0;r A=n;?λn≠0;AB=BA=I n 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际应用才存在实际意义。那么对于方阵来说,又需要满足什么样的条件,方阵才可逆呢?本文也就是从可逆矩阵的判定条件入手,着重分析可逆判定的充要条件。最后介绍几种常用的求解逆矩阵的方法。 1 矩阵的概念 1.0矩阵的定义 定义1:令F是一个数域,用F上的m×n个数a ij(i=1,2,?,m;j=1,2,?,n)排成m行n列的矩阵列,则称为m×n阵,也称为一个F上的矩阵,简记为A mn。 A=a11a12 a21a22 ?a1n ?a2n ?? a m1a m2 ?? ?a mn 1.1逆矩阵的定义 定义2:设A是数域F上的n阶方阵,若数域F上同时存在一个n阶方阵B,使得 AB=BA=I n 则称B是A的逆矩阵,记作:B=A?1。

正定矩阵的判定方法及正定矩阵在三个不等式证明中的应用汇编

正定矩阵的判定方法及正定矩阵 在三个不等式证明中的应用 作者:袁亮(西安财经大学) 摘要: 本文从正定矩阵的的定义出发,给出了正定矩阵的若干判定定理及推论,并给出了正定矩阵在柯西、Holder、Minkowski三个不等式证明中的应用. 关键词: 正定矩阵,判定,不等式,应用 Abstract: In this paper, we mainly introduce some decision theorem and inference based on the definition of positive definite matrices and give the application of positive definite matrices in the proving on Cauchy、Holder、and Minkowski inequality. Keywords: positive definite matrix,determine,inequality,application

目录 1 引言 (4) 2 正定矩阵的判定方法 (4) 2.1 定义判定 (5) 2.2 定理判定 (6) 2.3 正定矩阵的一些重要推论 (11) 3 正定矩阵在三个不等式证明中的应用 (15) 3.1 证明柯西不等式 (15) 3.2 证明Holder不等式 (16) 3.3 证明Minkowski不等式 (18) 结束语 (21) 参考文献 (22)

1 引言 代数学是数学中的一个重要的分支,而正定矩阵又是高等代数中的重要部分.特别是正定矩阵部分的应用很广泛, n阶实对称正定矩阵在矩阵理论中,占有十分重要的地位.它在物理学、概率论以及优化控制理论[]2中都得到了重要的应用,而本文只提供解决正定矩阵判定问题的方法,并阐明它在数学分析中三个重要不等式证明中的应用. 正定矩阵的一般形式是,设A是n阶实对称矩阵,若对任意n x∈,且0 R x, ≠ 都有0 Mx x T成立[]2.本文从正定矩阵的定义,给出正定矩阵的判定定理,并给> 出正定矩阵的重要推论,这些重要推论对计算数学中的优化问题有着重要的作用,并在矩阵对策,经济均衡,障碍问题[]3的研究中具有很实用的价值.同时还介绍正定矩阵在三个不等式证明中的应用,其一是用正定矩阵证明著名的柯西不等式,其二是用正定矩阵的性质给出Holder不等式的一个新的证明,其三是运用正定矩阵的两个引理证明Minkowski不等式,这三个应用说明正定矩阵运用的广泛性和有效性.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 2 正定矩阵的判定方法 2.1 定义判定 设A=()ij a,(其中ij a∈C,i,j=1,2,…,n),A的共轭转置记为*A=()ji a 定义1[]1对于实对称矩阵A=()ij a,(其中ij a∈R,i,j=1,2,…,n)若对于任意非零列向量X,都有T X A X>0,则称A是正定矩阵. 定义2[]1对于复对称矩阵A=()ij a,(其中ij a∈C,i,j=1,2,…,n)若对于任意非零列向量X,都有* X A X>0,则称A是正定矩阵. 例1设A为m阶实对称矩阵且正定,B为m×n实矩阵,T B为B的转置矩阵,试证AB B T为正定矩阵的充要条件是B的秩r(B)=n. 证 [必要性] 设AB B T为正定矩阵,则对任意的实n维列向量0 x, ≠

(完整版)可逆矩阵教案

§1.4 可逆矩阵 ★教学内容: 1.可逆矩阵的概念; 2.可逆矩阵的判定; 3.利用转置伴随矩阵求矩阵的逆; 4.可逆矩阵的性质。 ★教学课时:100分钟/2课时。 ★教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵求逆的方法;难点在于转置伴随矩阵概念的理解。 ★教学设计: 一可逆矩阵的概念。 1.引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2.定义1.4.1(可逆矩阵)对于矩阵A,如果存在矩阵B,使得AB BA E ==则称A为可逆矩阵,简称A可逆,并称B为A的逆矩阵,或A的逆,记为1 A-。 3.可逆矩阵的例子: (1)例1 单位矩阵是可逆矩阵; (2)例2 10 11 A ?? = ? ?? , 10 11 B ?? = ? - ?? ,则A可逆; (3)例3 对角矩阵 100 020 003 A ?? ? = ? ? ?? 可逆; (4)例4 111 011 001 A ?? ? = ? ? ?? , 110 011 001 B - ?? ? =- ? ? ?? ,则A可逆。 4.可逆矩阵的特点: (1)可逆矩阵A都是方阵; (2)可逆矩阵A的逆唯一,且1 A-和A是同阶方阵;

(3)可逆矩阵A 的逆1A -也是可逆矩阵,并且A 和1A -互为逆矩阵; (4)若A 、B 为方阵,则1 AB E A B -=?=。 二 可逆矩阵的判定及转置伴随矩阵求逆 1.方阵不可逆的例子: 例5 1100A ?? = ??? 不可逆; 例6 1224A ?? = ??? 不可逆; 2.利用定义判定矩阵可逆及求逆的方法: (1)说明利用定义判定及求逆的方法, (2)说明这种方法的缺陷; 3.转置伴随矩阵求逆 (1)引入转置伴随矩阵 1)回顾行列式按一行一列展开公式及推论 1122,0,i s i s in sn D i s a A a A a A i s =?+++=?≠?L (1,2,,)i n =L , 1122,0,j t j t nj nt D j t a A a A a A j t =?+++=? ≠?L (1,2,,)j n =L ; 2)写成矩阵乘法的形式有: 111211121 1212221222212 120 00000n n n n n n nn n n nn a a a A A A A a a a A A A A A E a a a A A A A ?????? ? ?? ? ? ???== ? ??? ? ?? ? ?????? ? L L L L L L M M O M M M O M M M O M L L L 3)定义1.4.2(转置伴随矩阵)设ij A 式是()ij n n A a ?=的行列式中ij a 的代数余 子式,则 1121 112 22 2* 12n n n n nn A A A A A A A A A A ?? ? ? = ? ??? L L M M O M L 称为A 的转置伴随矩阵。 (2)转置伴随矩阵求逆: 1)* AA A E =; 2)定理1.4.1 A 可逆的充分必要条件是0A ≠(或A 非奇异),且

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

正定矩阵的性质及其应用_____

如对您有帮助,请购买打赏,谢谢您! 正定矩阵的性质及其应用 姓名: 学号: 指导教师: 摘 要;矩阵是数学中的一个重要基本概念,是代数学中的一个主要研究对象,而正定矩阵作为一类特殊的矩阵,固然有它与其它矩阵不同的性质和应用。本文主要是给出了正定矩阵的若干等价条件,对正定矩阵的一些重要性质进行了归纳整合并给出部分性质的证明过程,最后给出了正定矩阵在不等式证明问题、多元函数极值问题、最优化的凸规划问题以及解线性方程组问题中的应用。 关键词:矩阵;正定矩阵;性质;应用 The Properties of Positive Definite Matrix and Its Applications Abstract: Matrix is one of the important basic concepts and it is one of the main research object in math . Positive definite matrix is a kind of special matrix, no doubt it has its properties and applications different from other matrix. This paper states some equivalent conditions on how to determine a positive definite matrix, integrates some important properties, then puts forward several applications of the positive definite matrices on inequation problems, multiple function extreme problems, the optimization of convex programming problem and solving linear equations. Key Words: matrix; positive definite matrix; property; application 1. 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具实用价值、应用广泛的数学理论。矩阵是矩阵理论中一个重要基本概念,是代数学的一个主要研究对象,而正定矩阵作为一类常用矩阵,其在计算数学、数学物理、运筹学、控制论、数值分析等领域中都具有着广泛的应用。本文主要介绍正定矩阵的等价定理及其一些重要的性质,最后给出正定矩阵在数学及其它学科中的若干应用。 2. 正定矩阵的等价定理 首先我们给出正定矩阵的定义。 定义1[1] 设()T f x X AX =为一个实二次型,若对任意一组不全为零的实数12,,,n c c c ,都有 12(,,,)0n f c c c >,

正定矩阵的性质和判定方法及应用

内蒙古财经大学本科毕业论文正定矩阵的性质及应用 作者郝芸芸 系别统计与数学学院 专业信息与计算科学 年级10级 学号102093113 指导教师高菲菲 导师职称讲师 答辩日期 成绩

内容提要 矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用. 关键词:二次型正定矩阵判定方法应用 Abstract Matrix is an important basic concepts in mathematics, but also a main research object, at the same time matrix theory is a powerful tool for the study of linear algebra. At the same time, the positive definiteness of matrix is an important concept in the matrix theory. The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly. And the positive definite matrix with special properties of general matrix does not have these properties, especially widely used in various fields. In the first part of this thesis introduces the related definition of positive definite real matrix and its equivalent conditions. In the second part are held a series of properties of positive definite matrix, mainly introduced the positive definiteness correlation matrix is positive definite matrix. This paper introduces the related theorem of positive definite matrix in the third part. This paper introduces the method to judge the positive definiteness matrix in fourth parts: the definition, the master method, the eigenvalue method. Determination and simply cited a number of examples of real positive definite matrices. Two aspects of extreme finally this paper from the proof of inequality and multiple function describes the practical application of positive definite matrices. Key words:Quadratic form Positive definite matrix Determination method Application

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

实正定矩阵的判定及其重要结论

摘要:本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论. 关键词:实对称正定矩阵;等价定理;充分条件 Decision of Real Positive Definite Matrix and Its Important Conclusion Abstract:This paper provide a series of matrix theory knowledge of higher algebra ,give some of the equivalence theorem of real symmetric matrix and its proof and obtain some of the important conclusions of real symmetry positive definite matrix . Keywords:real symmetry positive definite matrix, equivalence theorem , sufficient condition

禄 鹏 (天水师范学院数学与统计学院,甘肃天水,741000) 摘 要: 本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论. 关键词: 实对称正定矩阵; 等价定理; 充分条件 1 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具有使用价值、应用广泛的数学理论[]2,1,现已成为处理有限维空间形式和数量关系的强有力的工具. 正定矩阵作为一类常用矩阵,其在数学学科和其他学科技术领域的应用也非常广泛[]4,3,因此它的判断问题一直倍受关注.虽然个别判定条件已被人们所熟知,但缺少系统的总结,本文将尽可能给出多个实对称正定矩阵的判定定理和重要结论,从而使人们能够更好地使用正定矩阵这个工具. 2 实正定矩阵的等价定理 定义1[]5 实二次型()n x x x f ,,,21 称为正定的,如果对于任意一组不全为零的实数 n c c c ,,,21 都有()n c c c f ,,,21 0>. 定义2[]5 实对称矩阵A 称为正定的,如果二次型AX X T 正定. 引理1[]5 n 元实二次型()n x x x f ,,,21 是正定的充分必要条件是它的正惯性指数等于 n . 引理2[]5 任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的. 引理3[]6 设A 是n 阶实对称矩阵,则存在正交矩阵T 使得 ()n T diag AT T AT T λλλ,,,211 ==-, ()1 其中n λλλ,,,21 为A 的特征值. 引理4 [] 7 任何可逆实方阵都可以分解为正交矩阵Q 和上三角矩阵R 的乘积,其中R 的 主对角元均为正. 定理1 实对称矩阵n n R A ?∈为正定矩阵的充要条件是对于任意的n 维非零列向量X ,即10?∈≠n R X ,使0>AX X T .

可逆矩阵判定典型例题

典型例题(二)方阵可逆的判定 例1 设A 是n 阶方阵, 试证下列各式: (1)若0||≠A , 则T T A A )()(11--=; (2)若A 、B 都是n 阶可逆矩阵, 则* **)(A B AB =; (3)T T A A )()(**=; (4)若0||≠A , 则* 11*)()(--=A A ; (5) * 1*)1()(A A n --=-; (6)若0||≠A , 则l l A A )()(11--=(l 为自然数); (7) * 1*)(A k kA n -=. 证 (1)因为0||≠A , 故A 是可逆矩阵, 且 E AA =-1 两边同时取转置可得 E E A A AA T T T T ===--)()()(11 故由可逆矩阵的定义可知 T A )(1-是A T 的逆矩阵. 即 1 1)()(--=T T A A (2)利用方阵与其对应的伴随矩阵的关系有 E AB AB AB ||)()(*= (2-7) 另一方面 B I A B B A A B AB A B )|(|)())((*****== E AB E B A B B A |||| ||||*=== (2-8) 比较式(2-7)、(2-8)可知 ))(()()(***AB A B AB AB = 又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘1 )(-AB 可得 ***)(A B AB = (3)设n 阶方阵A 为 ?????????? ????=nn n n n n a a a a a a a a a A 2 1 2222111211 于是可得A 的伴随矩阵* A 为 ??????? ??? ????=nn n n n n A A A A A A A A A A 2122212 12111 * 注意到A 的转置矩阵为

可逆矩阵教案(可编辑修改word版)

? ? ? ? ? ? ? §1.4 可逆矩阵 ★ 教学内容: 1. 可逆矩阵的概念; 2. 可逆矩阵的判定; 3. 利用转置伴随矩阵求矩阵的逆; 4. 可逆矩阵的性质。 ★ 教学课时:100 分钟/2 课时。 ★ 教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★ 教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵 求逆的方法;难点在于转置伴随矩阵概念的理解。 ★ 教学设计: 一 可逆矩阵的概念。 1. 引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2. 定义 1.4.1(可逆矩阵)对于矩阵 A ,如果存在矩阵 B ,使得 AB = BA = E 则称 A 为可逆矩阵,简称 A 可逆,并称 B 为 A 的逆矩阵,或 A 的逆,记为 A -1 。 3. 可逆矩阵的例子: (1) 例 1 单位矩阵是可逆矩阵; ?1 0 ? ? 1 0 ? (2) 例 2 A = 1 1 ? , B = -1 1 ? ,则 A 可逆; ? ? ? ? ? 1 0 0 ? (3) 例 3 对角矩阵 A = 0 2 0 ? 可逆; 0 0 3 ? ? 1 1 1? ? 1 -1 0 ? (4)例 4 A = 0 1 1? , B = 0 1 -1? ,则 A 可逆。 ? 0 0 1? 4. 可逆矩阵的特点: (1) 可逆矩阵 A 都是方阵; ? 0 0 1 ? (2) 可逆矩阵 A 的逆唯一,且 A -1 和 A 是同阶方阵;

矩阵可逆的一个充分必要条件的几种讲法

矩阵可逆的一个充分必要条件的几种讲法 不论是在线性代数的教学中还是高等代数的教学中,矩阵的相关内容都是十分重要的。而其中矩阵可逆的部分又是要重点讲授的,因为逆矩阵在讨论研究矩阵问题时有重要作用。在矩阵可逆的这部分内容中,矩阵可逆及逆矩阵的定义是必然要介绍的,而矩阵可逆的条件中有一个充分必要条件即一个方阵可逆的充分必要条件是它的行列式不等于零是一定会讲授的,也是应用较多的,因此要求同学们一定理解掌握。 而就这一个充分必要条件不同的教师有不同的讲法,本文根据自己的体会,介绍了这一个充分必要条件的三种讲法并进行了一定的对比分析。 第一种讲法是非常常见的,很多教师都采用,特别是刚开始 教线性代数的新教师。我在第一次教这部分时也用的是这种讲法。首先介绍了矩阵可逆的定义[1],即设A为n阶方阵,如果存在n阶方阵B,使得AB=BA=E(E是n阶单位矩阵),则称方阵A是可逆的,而B称为A的逆矩阵。在同学们知道理解了矩阵可逆及逆矩阵概念后,就引入介绍矩阵可逆的条件,我们主要介绍矩阵可逆的一个常用的充分必要条件。而为了介绍这个充分必要条件,首先需要介绍一个相关的内容,那就是伴随矩阵的相关概念[2] 。对于伴随矩阵首先介绍伴随矩阵的定义: 设矩阵A,则称矩阵为A的伴随矩阵,其中Aij是矩阵A中元素

aij 的代数余子式。 接着介绍伴随矩阵的一个重要性质:同时给出其证明:事实 上,由代数余子式的性质同理可得,所以。 这样准备工作已做好,就来讲最重要的矩阵可逆的充分必要条件。 定理(矩阵可逆的充分必要条件)矩阵 A 可逆的充分必要条 件是,且。 证明:(必要性)若,且,则,故 A 可逆且。 (充分性)若 A 可逆,,那么,因此。 以上是第一种讲法的基本过程,当然这其中还有很多教师的引导讲解,这里未体现。但这种讲法的讲授思路和顺序基本按照教材中给出的顺序来讲,其实就是直接教授给学生们概念和结论,让学生们去理解应用,缺乏探究这些结论的过程。而第二种讲法恰恰是由矩阵可逆的定义出发按照正常的推理过程得到了矩阵可逆的充分必要条件。 第二种讲法首先仍是介绍矩阵可逆的定义,接着就探究矩阵可逆的充分必要条件。探究过程如下: 由矩阵可逆的定义,要想方阵 A 可逆,首先得找出同阶方阵B,使得AB=E再看BA是否也等于E。那么我们假设A=, B=, 那么由矩阵乘法,AB的第i行第j列(i , j=1 , 2,…,n)元素应该是(1) 此时引导学生从已有知识中寻找与该问题类似或相关的内容来

矩阵理论第一二章 典型例题

《矩阵理论》第一二章 典型例题 一、 判断题 1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |A x =定义, ||x ||x 则为向量 的范数. ( ) 2.设A n 为阶Hermite 矩阵,12,,,n λλλ 是矩阵A 的特征值,则22 2 1 ||||n m i i A λ==∑ . ( ) 3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||A A n - =. ( ) 4. 若设n x R ∈,则212||||||||||||x x x ≤≤. ( ) 5. 设m n A R ?∈的奇异值为12n σσσ≥≥≥ ,则222 1 ||||n i i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11||()||1|||| E A A --> -, 其中E 为n 阶单位矩阵. ( ) 7. 设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2 ||||m A = ( ) 8. 设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ) 9.设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1 ||||||||1A B -?<,则B A +可逆. ( ) 10. 设A 为m n ?矩阵,P 为m 阶酉矩阵, 则PA 与A 有相同的奇异值. ( ) 11. 设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞ =. ( ) 12. 如果12(,,,) T n n x x x x C =∈,则1||||m in i i n x x ≤≤=是向量范数. ( ) 13. 设,n n A C ?∈则矩阵范数 m A ∞ 与向量的1-范数相容. ( ) 14、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩 阵. ( )

相关文档
最新文档