烟气SO2分析方法
含SO2烟气净化技术探析

含SO2烟气净化技术探析摘要:当前,国家对环保的要求越来越严格,所以也提高了企业中含so2烟气的排放标准,因此,相关企业需要寻求可行的so2烟气净化技术降低烟气中so2的含量。
本文即从含so2烟气净化的意义出发,探析了烟气脱硫的相关技术,并详细分析了三种典型方法,希望对相关工作者能有所帮助。
关键词:烟气净化;烟气脱硫;环保;一、概述(一)企业进行so2烟气净化的意义煤炭燃烧是产生so2烟气的主要原因,并且,我国的能源结构长期以来都是以煤炭为主,所以,这就会在燃烧的时候产生大量的so2气体,严重的污染大气,对环境造成不利的影响。
近些年,国家对环境的要求越来越严格,制定了各项环保法规,对污染物的排放标准也做了明确的规定。
所以,针对这种趋势,发展so2烟气净化技术,降低so2污染源的浓度对于企业的发展具有十分重要的意义。
(二)企业选择烟气脱硫技术的基本要求针对企业的发展,选择的烟气脱硫技术必须满足下面四项基本要求:(1)使so2的排放浓度低于200mg/nm3,执行更加严格的环保标准;(2)实行工艺方案的过程中要避免“二次污染”、脱硫产品应具有一定的应用价值,符合节能减排的要求;(3)论证和考察当前已经付诸于实践的国内外先进so2烟气脱硫技术及设备情况,掌握相关投资、运行成本等方面;(4)确保生产的稳定性和安全性,减少事故的发生几率,尽量做到生产成本低、劳动强度小的要求。
二、so2烟气脱硫的原理so2烟气脱硫的基本原理是用碱性物质来吸收硫,进而达到脱硫的目的。
根据脱硫过程的不同可以分为下列三类:(1)通过吸收剂直接吸附废气中的so2;(2)先将so2氧化,再用吸收剂吸附氧化所得的so3;(3)先将so2还原,再用吸收剂吸附还原所得的单质硫。
所选用的具体方法,要根据企业的具体情况,最好能做到可循环利用,避免二次污染物的产生,降低脱硫成本,尽量实现资源、硫的综合回收利用。
三、烟气脱硫技术(一)烟气脱硫的种类根据脱硫过程中的干湿特性可以将烟气脱硫分为下列三类:湿式脱硫、半干式脱硫和干式脱硫。
烟气脱硫技术与方法

烟气脱硫技术与方法烟气脱硫技术是指通过一系列的工艺和方法将烟气中的二氧化硫(SO2)去除,以减少硫氧化物对环境的污染。
烟气脱硫技术主要应用于燃煤和油气燃烧产生的烟气处理中,以及一些工业过程中排放的含硫废气处理中。
一、烟气脱硫的主要方法1. 湿法烟气脱硫方法湿法烟气脱硫是目前应用较广泛的方法之一。
其主要原理是将烟气与一定量的脱硫剂(如石灰石、石膏等)接触,使SO2与脱硫剂发生反应生成硫酸盐,然后通过洗涤、过滤等工艺将硫酸盐分离,最终获得净化后的烟气。
湿法烟气脱硫方法包括石灰石石膏法、氧化钙吸收法、海藻泥吸附法等。
其中,石灰石石膏法是最常见的湿法脱硫技术之一,其操作简单、效果稳定,并能够同时去除烟气中的颗粒物。
2. 半干法烟气脱硫方法半干法烟气脱硫是介于湿法和干法之间的一种脱硫方法。
该技术主要是在煤粉燃烧过程中加入一定量的脱硫剂,使之与SO2发生反应生成硫酸盐,并通过一系列的设备和工艺将硫酸盐去除。
半干法烟气脱硫技术包括半干法石灰石法、半干法硬石膏法等。
相比于湿法和干法,半干法烟气脱硫技术具有较低的水耗、较高的脱硫效率和较高的SO2适应性。
3. 干法烟气脱硫方法干法烟气脱硫是将烟气与固体脱硫剂直接接触,使之发生反应,从而去除烟气中的SO2。
干法烟气脱硫技术主要适用于SO2浓度较低的烟气处理,如天然气燃烧排放的烟气脱硫。
干法烟气脱硫方法包括石灰吸收法、固定床吸附法、浮动床吸附法等。
这些方法利用固体吸附剂(如活性炭、沸石等)吸附烟气中的SO2,形成二硫化钙等化合物,并通过一系列的设备进行处理和回收。
二、烟气脱硫技术的选择与比较选择合适的烟气脱硫技术应综合考虑多种因素,包括烟气特性、脱硫效率、设备投资及运行成本等。
下面简要比较一下几种常见的烟气脱硫方法:1. 湿法烟气脱硫方法湿法烟气脱硫技术脱硫效率高,适用于高浓度、高湿度的烟气处理。
其设备体积较大,水耗较高,但可同时去除烟气中的颗粒物。
2. 半干法烟气脱硫方法半干法烟气脱硫技术在湿法和干法之间,具有较高的脱硫效率和较低的水耗。
固定污染源废气二氧化硫的测定作业指导书

HJ 57-2017固定污染源废气二氧化硫的测定定电位电解法Stationary source emission—Determination ofsulfur dioxide—Fixed potential by electrolysis method1 适用范围本标准规定了测定固定污染源废气中二氧化硫的定电位电解法。
本标准适用于固定污染源废气中二氧化硫的测定。
本标准的方法检出限为3 mg/m³,测定下限为12 mg/m³。
2 规范性引用文件本标准内容引用了下列文件或其中的条款。
凡是不注日期的引用文件,其有效版本适用于本标准。
GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法HJ 75 固定污染源烟气(SO 2 、NO X 、颗粒物)排放连续监测技术规范HJ 76 固定污染源烟气(SO 2 、NO X 、颗粒物)排放连续监测系统技术要求及检测方法HJ/T 46 定电位电解法二氧化硫测定仪技术条件HJ/T 373 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T 397 固定源废气监测技术规范3 术语和定义3. 1零气zero gas不存在测量组分或小于规定值、其它组分浓度不干扰测量组分结果或产生的测量组分干扰可忽略不计的气体。
3. 2校准量程cal i brati on span仪器的校准上限,为校准所用标准气体的浓度值(进行多点校准时,为校准所用标准气体的最高浓度值),校准量程(以下用 C.S.表示)应小于或等于仪器的满量程。
3. 3示值误差cal i brati on error标准气体直接导入分析仪的测量结果与标准气体浓度值之间的误差。
3. 4系统偏差system bi as标准气体直接导入分析仪与经采样管导入仪器的测量结果之间的差值,占校准量程的百分比。
3. 5零点漂移zero dri ft在测试前、后,测定仪对相同零气测量结果的差值,占校准量程的百分比。
烟气分析实验报告

烟气分析实验报告1. 引言本实验旨在通过对烟气进行分析,了解烟气中的成分及其对环境的影响。
通过本实验可以了解烟气中的主要成分和排放浓度,为环境保护提供科学依据。
2. 实验装置和方法2.1 实验装置本实验使用的装置主要包括以下几个部分:•烟气采样器:用于采集烟气样品。
•烟气分析仪:用于对采集的烟气样品进行分析。
•数据记录仪:用于记录实验数据。
2.2 实验方法本实验的具体步骤如下:1.打开烟气采样器,将其连接至烟气源头,确保采样器处于正常工作状态。
2.打开烟气分析仪,进行预热。
预热时间根据具体仪器的要求而定。
3.将烟气采样器的进样口置于烟气中,保持一定的采样时间,确保采集到足够的烟气样品。
4.将采集到的烟气样品送入烟气分析仪进行分析。
5.使用数据记录仪记录实验数据,包括烟气中各组分的浓度、温度、压力等。
3. 实验结果与分析3.1 烟气成分分析根据实验测得的数据,我们可以得到烟气中主要成分的浓度。
根据实验条件,我们测试了烟气中的二氧化硫(SO2)、氮氧化物(NOx)、颗粒物(PM)等成分的浓度。
实验结果如下:•SO2浓度:XX mg/m³•NOx浓度:XX mg/m³•PM浓度:XX mg/m³3.2 烟气成分的环境影响根据实验结果分析,高浓度的SO2和NOx对环境具有一定的危害。
SO2是一种常见的酸性气体,会导致酸雨的产生,对植物和水体造成伤害。
NOx是大气中的臭氧生成的主要原因之一,臭氧对植物和人体健康都有一定的危害。
而颗粒物对空气质量也有一定的影响,会导致雾霾等问题。
4. 结论通过本次实验,我们了解到烟气中的主要成分及其对环境的影响。
高浓度的二氧化硫(SO2)、氮氧化物(NOx)和颗粒物(PM)对环境具有一定的危害。
因此,在工业生产和能源利用过程中,应该加强对烟气的处理和净化,减少其对环境的影响。
这对于保护环境、改善空气质量非常重要。
5. 参考文献[参考文献1] [参考文献2] [参考文献3]。
固定污染源排气中二氧化硫的测定

固定污染源排气中二氧化硫的测定碘量法1. 适用范围本方法规定了碘量法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放速率的方法。
2. 引用方法下列标准所包含的条文,在本方法中引用构成本方法的条文,与本方法同效。
3. 测定方法原理、测定范围及测定误差烟气中的二氧化硫被氨基磺酸铵混合溶液吸收,用碘标准溶液滴定。
按滴定量计算二氧化硫浓度。
反应式如下:SO2+H2O==H2SO4H2SO3+H2O+I2==H2SO4 + 2HI测定范围:100〜6000 mg/m3;在测定范围内,方法的批内误差不大于±6%。
4. 影响因素4.1 锅炉燃料在正常工况燃烧时,烟气中H2S等还原性物质含量极少,对测定的影响可忽略不计。
4.2 吸收液中氨基磺酸铵可消除二氧化氮的影响。
4.3 采样管应加热至120℃,以防止二氧化硫被冷凝水吸收,使测定结果偏低。
5. 仪器5.1 烟气采样器5.2 多孔玻板吸收瓶5.3 棕色酸式滴定管5.4 大气压力计5.5 烟尘测试仪或能测定管道气体参数的其他测试仪6. 试剂除特殊规定外,本标准采用试剂均为分析纯,水为去离子水或蒸馏水。
6.1吸收液称取11.0 g氨基磺酸铵,7.0 g硫酸铵,溶入少量水中,加水至1000ml,再加入5ml稳定剂(6.2),摇匀,贮存于玻璃瓶中,冰箱保存。
有效期三个月。
6.2稳定剂称取5.0 g乙二胺四乙酸二钠盐(EDTA-2Na),溶于热水,冷却后,加入50ml异丙醇,用水稀释至500ml,贮存于玻璃瓶或聚乙烯瓶中,冰箱保存。
有效期一年。
6.3淀粉指示剂称取0.20g可溶性淀粉,加少量水调成糊状,慢慢倒入100ml沸水中,继续煮沸至溶液澄清,冷却后贮于细口瓶中。
现配现用。
6.4 碘酸钾标准溶液称取约1.5g碘酸钾(KIO3,优级纯,110℃烘干2h),准确到0.0001 g,溶于水,移入500ml容量瓶中,用水稀释至标线。
冰箱保存,有效期半年。
6.5 盐酸溶液c(HCl)= 1.2 mol/L量取100 ml浓盐酸,用水稀释至1000ml。
影响烟气中SO2检测结果的主要因素及解决方案

影响烟气中二氧化硫检测结果的主要因素及解决方案目前主流的SO2浓度检测方法有电化学法和非分散红外吸收法等。
之所以测量固定污染源中SO2的含量,是为了确定污染源的污染程度。
但是由于SO2本身物质性质和化学性质,烟气中SO2的检测分析对于外界环境、取样装置、检测装置的要求较高。
常见的SO2检测方法中存在一定的问题,本文针影响SO2检测结果的主要因素:取样流量、样气湿度、干扰气体等问题进行了详细分析,并提出了相应解决方案。
1、取样流量影响烟气进入烟道后由于风机的作用,导致烟道内烟气压力发生变化:处于风机之前的烟道产生负压,当风机功率较高时,甚至产生高负压;处于风机之后的烟道则产生正压。
在现场监测中,由于受到各种条件的限制,我们常常不得不将采样位置选在风机前这些产生负压的烟道处。
这时,用标定合格的电化学类烟气分析仪器抽取烟道内烟气进行浓度测定的过程中,会遇到烟道内负压对仪器形成的“反抽力”,造成进入仪器的烟气流量变少,从而导致烟气的监测浓度值比烟气实际浓度值偏低,烟道负压很高时甚至完全抽不出气,使监测浓度值接近为0。
其次,国家环境监测总站《火力发电建设项目竣工环境保护验收监测技术规范》中也特别指出:定位电解法监测仪器对采样流量要求甚严,监测数据的显示与采样流量的变化成正比,当仪器采样流量减小时(如烟道负压大于仪器抗负压能力),监测数据会明显变小,在使用时为了减少测定误差,仪器的工作流量应与标定(校准)时的流量相等。
因此,采样流量的变化会严重影响烟气分析仪器准确性,在监测过程中,应时刻注意采样流量的变化,确保仪器的采样流量与标定流量一致。
为解决高负压的影响,可通过提高采样泵的负载能力,增大采气量,进而保证进入传感器前的烟气流量和压力,提高烟气预处理系统的抗负压能力。
若负压过大,烟气分析仪器无法提供足够的采气量,也可更换监测点位,选择在增压风机后端进行取样检测。
2、样气湿度影响一般在不采用湿法脱硫的烟道气含湿量不超过3%,而采用湿法脱硫后的烟气含湿量往往大于5%,如果脱硫设备脱水不好,烟气含湿量可高达12%。
烟气在线监测中的测定方法

固定污染源烟气CEMS主要技术指标调试检测1 适用范围本方法适用于固定污染源烟气CEMS主要技术指标调试检测。
2 一般事项依照国家环境保护局HJ/T 75-2007“固定污染源烟气排放连续监测技术规范”中有关规定。
3 方法要点固定污染源烟气CEMS在现场安装运行以后,在接受验收前,应进行技术性能指标的调试。
4 标准气体与装置4.1 TH-880IV型烟尘平行采样仪4.2 Horiba PG-2504.3 CO、NO、SO2标准气体5.颗粒物CEMS相关校准技术指标的调试检测5.1 检测期间,通过调节颗粒物控制装置,使颗粒物CEMS在高、中、低不同排放浓度条件下进行测试。
每个排放浓度至少有5个参比数据。
5.2 参比方法与颗粒物CEMS监测同时段进行,颗粒物CEMS 每分钟记录一次仪表显示值,取与参比方法同时段显示值的平均值与参比方法测定的断面浓度平均值组成一个数据对,至少获得15个有效数据对。
但应报告所有的数据,包括舍去的数据对。
5.3 将由参比方法测定的标准状态下颗粒物断面浓度平均值转换为实际烟气状况下颗粒物断面浓度平均值。
5.4 以颗粒物CEMS显示值为很坐标(X),参比方法测定的已转换为实际烟气状况下的颗粒物断面浓度为纵坐标(Y),由最小二乘法建立两变量之间的关系。
5.5 校验颗粒物CEMS将建立的手工采样参比方法测定结果与颗粒物CEMS测定的专一经验式的斜率和截距输入到烟气CEMS的数据采集处理系统,将颗粒物CEMS的测定显示值校验到与手工采样参比方法一致的颗粒物浓度(mg/m3)。
手工采样断面排气流速应≥5m/s,当不能满足要求时:5.5.1 在2.5-5m/s之间时,取实测平均流速计算采样流量进行恒流采样,校验方法仍采用一元线性回归方程;5.5.2 低于2.5m/s时,取2.5m/s流速计算采样流量进行恒流采样。
至少取9个有效数据对计算k系数,即手工方法平均值/CEMS显示值平均值,然后将k系数输入到CEMS的数据采集处理系统,校验后的颗粒物浓度=k·CEMS颗粒物显示值5.5.3 当无法调节颗粒物控制装置或燃烧清洁能源时,也可采用K系数的方法。
烟气中SO3及SO2氧化率的测定方法

烟气中SO3及SO2氧化率的测定方法仪器:孟氏洗气瓶,湿式流量计,酸式滴定管,锥形瓶药品:异丙醇(AR),高氯酸钡(AR),钍试剂,双氧水,碘化钾(AR)实验步骤:1、配制80%异丙醇水溶液取分析纯异丙醇(≥99.7%)200ml加入250mL容量瓶,加纯水配成80%体积比水溶液备用。
2、配制3%H2O2溶液取30%(w.t.)H2O2溶液28.45g加入250ml容量瓶中,加纯水配成3%体积比水溶液备用。
3、采样过程如下图组装仪器,加入吸收剂,调节气体流量,按照不低于100L气体吸收量采样大于40min。
图1,SO2、SO3收集装置示意图1:100ml80%异丙醇水溶液;2:50ml80%异丙醇水溶液;3:100ml3%H2O2水溶液;4:冰水浴槽;5:湿式流量计4、分析采样结束后,分别用相应的吸收液淋洗吸收瓶并定容,以高氯酸钡[Ba(ClO4)2]异丙醇溶液为标准溶液,用钍作指示剂,利用沉淀滴定法分别测定烟气中SO3的含量。
由于异丙醇溶剂易于挥发,所以标准溶液要随配随用,滴定时要加入少量冰醋酸调节溶液为酸性,避免CO2的干扰。
5、采用铬酸钡光度法测试打开UV-1600型紫外可见分光光度计预热。
配制SO42-标准溶液,称取0.4535g K2SO4晶体,溶于少量水,置250mL容量瓶中,定容。
此溶液中即含有1.00mg/mL硫酸根离子。
取5个150mL锥形瓶,分别加入0,2.00,4.00,6.00,8.00,10.00ml上述硫酸根标准溶液,另取1个150mL的锥形瓶,加入2.00mL上述标准溶液后再加入15mL异丙醇。
向上述6瓶溶液分别加入适量蒸馏水,使溶液体积至50mL左右,向各瓶分别加入2.0mL (1:9)盐酸溶液,放在加热板上煮沸5min,再向各瓶加入2.5mLBaCrO4悬浊液,继续煮沸5min,取下稍冷。
向各瓶逐滴加入1:1氨水,摇匀至溶液呈柠檬黄色,再多加2滴。
取6支漏斗加慢速定性滤纸,用水润湿,分别置于6支50mL比色管上,分别将锥形瓶中的液体倒入漏斗过滤,锥形瓶和滤纸需要反复冲洗几次(注意每次只需少许水,防止溶液总量超过50mL刻度线),滤液须澄清透明,否则必须二次过滤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1烟气中二氧化硫含量的测定及吸收率计算
1目的
测定进出口气中二氧化硫含量,可计算吸收率,调节吸收塔操作,使出口气中的二氧化硫含量控制在要求的范围内。
1.1.2原理
气体中所含的二氧化硫在通过一定量的碘溶液时被氧化成硫酸。
其余气体收集在量气管中,待淀粉指示剂的兰色刚刚消失,表示反应完毕,根据碘和余气的数量可计算出二氧化硫的含量。
反应按下式进行:
SO2 + I2 + H2O H2SO4 + 2HI
1.1.3仪器和试剂
A仪器
(1)反应管;
(2)气体定量管(400毫升);
(3)水准瓶(500毫升);
(4)温度计(0--100℃);
(5)采样管;
(6)气体冷凝管;
(7)移液管(10毫升)。
B试剂
(1)0.01N碘溶液;
(2)0.001N碘溶液;
(3)0.5%淀粉溶液;
(4)蒸馏水。
1.1.4测定
A测定的准备工作
(1)检查量气管,水准瓶以及仪器装置是否漏气;
(2)用移液管移取0.01N或0.001N (看气相中二氧化硫含量而定) 碘溶液10毫升注入反应管,加水至反应管的3/4处,加0.5%淀粉溶液2毫升,塞紧橡皮塞备用。
(3)检查采样管是否畅通。
在负压下采样时,取样管与水准瓶连接,抬高水准瓶利用排水吸气法将样气抽处,充分置换进入反应管前管道中的余气,然后才进行测定。
B 测定方法
(1) 将仪器按图(1)连接好,旋转塞2,提高水准瓶,使气流由反应管的毛
细管中呈“豌豆;大小的气泡,由明显间隔的连续冒出,直到溶液兰色刚刚消失时,停止进气,将水准瓶中水位与量气管中的水位对平,读取量气管内气体体积和温度,根据读数进行查表和计算。
(2) 分析完毕后,打开水准瓶,使量气管内水位恢复零点。
1.1.5计算
二氧化硫含量的计算:
图1 气体中二氧化硫含量测定装置
1—气体管路;2—三通旋塞;3—冷却器;4—反应管;5—水准瓶;6—气体量管;
7—温度计
SO 2%(v )=N W N V t
P P V V ++⨯-⨯⨯273273760100 =N W N V t P P V V ++⨯-⨯⨯])00367.01(760[100
式中:
V N —与碘反应的二氧化硫体积(标准状态),毫升;V N =1.0944R ,R 为反应管中
加入的碘溶液的毫升数;
V — 气体量管上表示的吸收二氧化硫后的余气体积,毫升;
P — 大气压力,毫米汞柱;
P W—在t℃时的水蒸气压力,毫米汞柱;
t—温度计温度,℃。
或由剩余气体体积V和温度t直接查表(附表)求得二氧化硫得含量。