产淀粉酶菌株筛选综述

产淀粉酶菌株筛选综述
产淀粉酶菌株筛选综述

微生物与转基因技术

摘要微生物目前已是生物技术领域主要的模式生物之一,微生物可以为转基因技术提供工具酶、基因载体;微生物本身也常作为目的基因的受体细胞。通过转基因的方式,可以将人类所需要的基因转移到特定物种上,从而表达出人类想要的性状。本文综述了转基因微生物在食品、农业、医药以及环境保护、传统工业改造等领域研究与应用的国内外现状。在食品生产领域,转基目微生物主要用于食品用群制剂的生产,如凝乳酶.淀粉酶,蛋白酶等,转基因酵母也应用于啤酒的生产.在农业生产领域,转基因微生物主要用于微生物农药、微生物肥料和饲料酶制剂的生产.在医药生产领域,转基因微生物主要用于兽用和人用疫苗的生产,以及利用转基因镟生物生产某些药物。此外,转基因微生物在环境保护,传统工业的改造、印染业,以及新能薄开发等方面也有应用,本文也同样大致介绍了一些目前国内外关于微生物转基因方面的前沿研究。

关键词微生物转基因,DNA重组技术,目的基因,基因载体

1引言

转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段[1]的来源可以是提取

特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的基因片段。基因片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。1980年代以来,现代生物技术迅速发展,在医药、农业、食品、化工、环境和能源等领域发挥了巨大的经济效益和社会效益。自1982年美国FDA批准了世界上第一例基因工程药物重组人胰岛素的正式生产以来,以基因工程药物为主的各种基因工程产品陆续实现商品化生产。其中,转基因微生物是基因工程产品的重要组成部分,在农业生产、食品加工、医药生产以及环境保护等领域得到了广泛的应用。

2微生物与转基因技术

1.微生物与转基因工具酶

转基因技术中,需要一些基本的工具酶,如对供体生物的DNA进行切割以获得目的基因的限制性核酸内切酶、DNA聚合酶类、DNA连接酶、核酸外切酶、反转录酶等。

DNA聚合酶类包括DNA聚合酶Ⅰ、KlenowDNA聚合酶、T4DNA聚合酶、T7DNA聚合酶、耐热DNA聚合酶等。耐热DNA聚合酶是一类在高温下具有聚合活性的DNA聚合的,来自于嗜高温的细菌,方要应用于PCR反应中,具体种类有产自嗜热水生菌的TaqDNA聚合酶、VentDNA聚合酶、PwoDNA聚合酶、TthDNA聚合酶和PfuDNA聚合酶,其中Taq DNA聚合酶,使DNA的体外复制变得异常简便和常规化,大大加快了生物工程、基因组等分子生物学研究的进程,年销售利润达到上亿美元。

依赖于DNA的RNA聚合酶包括SP6噬菌体RNA聚合酶、T4噬菌体RNA聚合酶或T7噬菌体RNA聚合酶,这类酶无需引物,但识别DNA上特异性位点(启动列),合成RNA。

核酸酶S1,来源于米曲霉,具有3’->5’外切核酸酶活性,能特异性降解单链DNA或RNA 的核酸酶,基因工程中用于黏性末端的平切。

核酸酶BAL31,来源于交替单胞菌BAL31,对单链DNA和RNA具有类似核酸酶S1的催化活性,能同时从3’-端和5’-端降解双链DNA并使其缩短大约25%长度,催化反应需要Ca2+。基因工程中用于缩短DNA和构建嵌套缺失体也应用于限制酶图谱制作等。

2.微生物与转基因载体

转基因载体应具有以下基本特性:①必须是一个可独立复制DNA或复制单位;②分子量尽可能小,便于分离纯化和进行离体操作;③分子内具有不影响载体复制、生长的区域,区域中包含多种限制性内切酶的单一切点,确保能在切点内与外源DNA发生重组;④具有区分转化、重组与非重组的多种可供选择的遗传标记(如营养缺陷型、抗药性、噬菌斑形成能力等)。

原核生物的常用克隆载体包括质料载体、λ噬菌体载体、柯斯质粒载体、原核生物的人工染色体载体等。

酵母菌中的外源基因克隆,可就用载体、电转化和醋酸导入等方法。依据酵母菌的质料载体构成与复制方式不同,可划分为:整合性载体、附加体载体、复制型载体、着丝粒载体和酵母人工染色体共5类。

3微生物与转基因技术的应用

一.转基因微生物在食品生产领域的应用

1.转基因微生物生产食品用酶制剂

直接用作食品的转基因微生物如发酵食品菌等目前在市场上尚未出现。在国外,将转101基因细菌和真菌生产的酶用于食品生产和加工已经比较普遍,如奶酪生产中使用的凝乳酶、啤酒和饮料生产中的淀粉酶,以及面包等食品生产中的蛋白酶等。在食品工业中,微生物可用于生产酶制剂、氨基酸、有机酸、维生素、色素、香料等添加剂。

氨基酸、有机酸、维生素、色素和香料等生产菌种的改良涉及到的基因较多,调控复杂,不易利用基因工程技术进行改良,大多仍处于研究阶段,只有少数氨基酸和维生素以转基因微生物生产。而酶制剂应用广泛,涉及的基因单一,适合利用基因工程技术进行改良(王家勤1999)。目前工业上着重于对乳酸菌和酵母菌的基因工程改良。利用基因工程技术改良菌种生产的第一种食品酶制剂是凝乳酶,始于1998年。这一技术已得到了广泛的应用,到2001年,已有17个国家使用转基因微生物的凝乳酶生产干酪。据估计,美国有2,3到3/4的奶酪在生产过程中使用了遗传工程凝乳酶(刘谦等2001)。目前被批准使用的转基因微生物凝乳酶产品有3种,其基因表现的宿主分别为A.niger,K L-∞fis以及E.coil K12。(朱文深2001)。在全球范围内,很多企业已成功地应用转基因微生物生产食品酶制剂,如丹麦的Novo-Nordisk公司和荷兰的Gist.Brocades公司。生产食品酶制剂的转基因微生物包括浅青紫链霉菌、锈赤链霉菌、枯草芽孢菌、地衣芽孢杆菌、特氏克雷伯氏菌、解淀粉芽孢杆菌、米曲霉和黑曲霉等(陈红兵等2001)。

2.转基因酵母在啤酒葡萄酒生产上的应用

转基因酵母菌在食品生产上的应用也较为多见,目前已获准商业化使用的转基因酵母

菌有面包酵母和啤酒酵母。利用转基因啤酒酵母所生产的啤酒已被消费者试用,但尚未在市场上得以推广。转基因方法还用于葡萄酒酵母工程菌的育种,已对苹果酸.乳酸发酵基因及其节基因进行了定位和序列分析,试图把乳酸菌中的苹果酸一乳酸发酵酶基因通过遗传转化导入葡萄酒酵母中,使葡萄酒酵母在酒精发酵的同时,赋予其苹果酸.乳酸发酵降酸的功能(张春晖等2000)。

二、转基因微生物在农业方面的应用

传统的药品生产中,某些药品如胰岛素、干扰素等直接从生物体的组织、细胞或血液中提取,受原料来源限制,价格十分昂贵。利用基因工程方法制造转基因的工程菌,可高效率地生产出各种高质量、低成本的药品,如细胞因子(即淋巴因子如白细胞介素-2、干扰素)、抗体、疫苗、激素等。

转基因产品约有2/3用于人类疾病治疗和预防性用药,它给制药工业带来了革命性的变

化。据估计,人用蛋白药物的全球市场,每年可达200亿美元,而且还在持续增长。在这种巨大利益驱使下,世界各大制药公司相继投入巨资用于这些重组蛋白药物的研究开发。

2. 人生长激素

人生长激素(hGH),又叫做促生长素,具有调节生长与发育的功能,对多种人类疾病诸如垂体性侏儒症、特纳氏综合症、组织坏死等,都具有良好的治疗效果。

hGH的来源是从死人的脑垂体中提取,这种制备方法不仅材料来源困难,无法大量生产,而且存在安全性问题。

1985年,这种由E.coli 生产的rhGH已成为得到美国政府许可生产和使用的第二种基因工程药物。

3. 基因工程疫苗

自从200多年前人们发现,预先接种过牛痘的人能够抵御天花感染的现象,并据此提出免疫的概念后,疫苗就已被广泛地用来预防多种传染病的传播。基因工程疫苗是使用DNA 重组生物技术,把天然的或人工合成的遗传物质定向插入细菌、酵母菌或哺乳动物细胞中,使之充分表达,经纯化后而制得的疫苗。应用基因工程技术能制出不含感染性物质的亚单位疫苗、稳定的减毒疫苗及能预防多种疾病的多价疫苗。基因工程疫苗包括基因缺失活疫苗、基因工程亚单位疫苗、核酸疫苗、蛋白工程疫苗。

三.转基因微生物在农业方面的应用

1997--1999年,经农业部农业生物基因工程安全委员会批准的转基因微生物的中间试验有29项,其中22项为植物用转基因微生物,7项为兽用转基因微生物:同期经批准的转基因微生物的环境释放有7项,其中6项为植物用转基因微生物,1项为兽用转基因微生物。1.转基因微生物农药

1980年代中期以来,国内外在防病杀虫转基因微生物的研究方面取得了一系列突破性进展,转基因微生物制品领先于转基因植物进入商业化应用,其中重要的有防治虫害的Bt 高效工程菌剂、转基因病毒制剂、防治植物霜冻的无冰核活性工程菌、防治果树根癌病的放射土壤杆菌工程菌K1026等。中国的转基因微生物农药主要以苏云金芽孢杆菌(Bt)基因工程制剂和转基因病毒制102剂为主,一批拥有自主知识产权的重组微生物农药产品已初具产业规模,转Bt基因重组杆状病毒、高毒广谱杀虫工程菌、棉铃虫核型多角体病毒杀虫剂等多种基因工程微生物杀虫剂经农业部安全性审批获准进入田间释放或中间试验。

(1)转基因Bt菌剂。苏云金杆菌(简称Bt)杀虫剂是公认的一类无公害的生物农药,是目前国内外生产量最大、应用面积最广的微生物杀虫剂。自1981年Schnepf分离了第一个cry基因以来,全世界从Bt中发现并正式命名的ICP基因已有42大类,总数超过250种。国外已有CoMer、MVP等10余种Bt工程菌制剂投入商业化应用。美国Ecogen、Novartis、Mycogen和Research Seed等公司生产的转Bt遗传工程菌己通过美国环保局和农业部的批准进入商业化生产。美国Mycogen公司将苏云金芽孢杆菌的杀虫蛋白基因导入荧光假单孢菌,并在其发酵生成晶体蛋白后将菌体细胞灭活,用这种“生物微囊”技术加工的菌剂对紫外线的抵抗力可提高36倍,自1991年起已有MVP、M.Trak及M.Peril

等多个产品获准登记,用于防治小菜蛾等蔬菜害虫、马铃薯甲虫和玉米螟等。

(2)转基因病毒杀虫剂。国外近年尝试通过基因工程方法将不同的外源杀虫基因导入野生型苜蓿银纹夜蛾核多角体病毒(AcMNPV),研究取得了良好的进展。中国科学家将蝎神经毒素基因(AalT)和缺失蜕皮激素UTP葡萄糖苷转移酶(egt-)基因导入棉铃虫核多角体病毒(HasNI Ⅳ),得到了杀虫速度明显加快的重组HaSNPV(黄大防2003)。武汉病毒所在国际上首次成功构建了3株缺失egt基因的霞组中国棉铃虫病毒,被农业部“农业微生物遗传工程体安全管理委员会”审批为安全性等级I级,分别于1998年、1031999年、2000年批准进入田间中间试验和环境释放,其中重组棉铃虫病毒1号是中国第一例通过国家安全性评估进入田间中间试验和环境释放的重组病毒杀虫剂,目前正进行中试生产,可望成为中国第二代病毒杀虫剂(中国科学院武汉病毒研究所)。

(3)防治植物霜冻的转基因工程菌。冰核活性细菌是诱发和加重植物霜冻的主要因素,

降低冰核活性浓度可有效减少植物霜冻的发生。因此,利用无冰核活性细菌的生态位点和营养竞争作用可以减少冰核细菌的数量,有效减轻植物霜冻现象的发生。防治植物霜冻的无冰核活性工程菌于1982年研制成功,1987年进入田间试验,防治草莓霜冻效果达70%

以上。。

(4)防治果树根癌病的放射土壤杆菌(Agrobacterium radiobacter)K1026。这一工程

菌的防病效果和稳定性高于自然株K84。通过酶切去除pAgK84质粒中负责细菌接合转移的

编码基因及其相邻的EcoRI片段并经同源交换构建工程菌K1026,增强了生物防治效果的稳定性。1991年和1992年,这种新构建的工程菌以NoGall为商品名在澳大利亚和美国获准登记,成为世界上第一例商品化生产的植物病害生物防治基因工程细菌制剂,目前已在澳大利亚、美国、加拿大、日本和西欧的一些国家推广应用。

(5)对昆虫真菌的遗传改良。白僵菌(Beauveria)和绿僵菌(Metarhizium)是所有

记载的800多种昆虫病原真菌中应用效果最好的菌种,这类微生物杀虫剂可以多次感染害

虫而引起流行,但侵染过程易受环境医I素影响,毒力发挥较慢。

昆虫真菌分子生物学和生物技术研究在国内外起步稍晚,但近年来某些关键技术己取

得突破。中国在国际上首次建立了球孢白僵菌(且bassiana)的农杆菌转化体系,并从该

菌中克隆了类枯草杆菌蛋白酶基因(Bbprl)、几丁质酶基因(Bbehitl)和真菌孢子形成

相关基因。新构建的含有前两种基因的工程菌较单一Bbprl基因工程菌杀虫毒力提高近l 倍,侵染致病时间缩短近一半。

2.转基因微生物肥料

1980年代以来,采用分子技术对外源固氮基因及其调控基因进行转移而构建出的新型重组固氨微生物已进入大规模田间试验和商品化生产。例如,日本率先将nifA固氮基因导入联合固氮菌而构建出耐铵工程菌;美国Bosworth等构建成含rtifA和dctABD等多种固氮相关基因的重组根瘤菌,在田问试验中表现良好(朱守一1999):美国ResearchSeeds公司的转基因中华苜蓿根瘤菌(Sinorhizobium meliloti)RMBPC-2已于1997年获准进行有限商品化生产,这是美国环保局批准进入商品化生产的第—例属间重组固氮微生物(刘谦等2001)。

中国的固氮研究在固氮基因的克隆、调控、耐铵、泌铰及高效固氮菌株构建等方面取

104得重大进展。已分离鉴定出lO余株高固氮活性的固氨菌株,构建了一系列耐铵、泌铰高效固氮工程菌株,比野生菌有更好的节肥增产效果

3.应用转基因微生物生产饲料酶制剂

一些饲料酶的生产已开始利用基因工程技术。以基因工程菌生产的饲料酶也称重组酶。黑曲霉(AspergiUus niger)、米曲霉(A oryzae)和无花果曲霉(Aficuum)等丝状真菌可用于生产包括酶在内的重组蛋白(林藩平2000)。中国农科院饲料所和生物技术研究中心从1996年开始从黑曲霉中克隆植酸酶基因,研制出能高效表达植酸酶的重组毕氏酵母用于生产植酸酶,1999年底完成中试和试生产,

2000年初通过农业部基因工程安全委员会审查,获准商业化生产。重组酵母表达的中性植酸酶量比原始的天然菌株提高4 000倍以上,比专利中报道的且国外正在用于生产的畜禽用酸性植酸酶的基因工程曲霉高近l倍。

四、转基因微生物在材料方面的应用

由微生物合成的有机醇、酸、酯是十分有用的工业原料,在过去数十年得到广泛应用。目前,有关的研究工作正在围绕菌种改良尤其是利用转基因技术大幅度提高微生物的生产能力并改进其性能而开展起来。

1.生物可降解材料

生物可降解材料是指通过自然微生物(细菌、真菌等)的作用可发生降解的高分子。由微生物合成的生物可降解材料主要是PHA构成的生物塑料,包括PHB、PHBV和PHBH,目前都已实现商品化,不过,生物塑料的成本远远高于合成塑料,这是它难以大规模生产和利用的主要原因。

PHA最早是在巨大芽孢杆菌中发现的,现在已知有90多个细菌属可以合成PHA,最常见和丰度最高的PHA是PHB。在仅添加葡萄糖而限制氮或磷时,真氧产碱菌中的PHB积累量可达细胞干重的80%,PHB可被环境细菌分泌的PHB脱聚合酶完人降解,生成CO2和H2O。真氧产碱菌中合成PHB的3个酶(3-酮基硫解酶、乙酰乙酰辅酶A还原酶和PHA合酶)的编码基因——PhaA、PhaB、PhaC已被克隆,并组成操纵子后导入大肠杆菌中表达。当大肠杆菌在氮源受限而碳源过剩的条件下生长时,可以大量积累原来所不能合成的PHB,其产量已达到真氧产碱菌的50%,。PHB的聚合度通常在103-104之间,PHB颗粒的直径为0.2-0.5μm。

在含有葡萄糖的培养基中加入丙酸或戊酸,可诱导真氧产碱菌合成1种由羟基丁酸和羟基戊酸单体构成的多单体随掺入的共聚物——PHBV。产PhaA、PhaB、PhaC基因转移到大肠杆菌中,同时解除其对组成型表达的丙酸代谢途径基因的转录调控作用,已使该重组大肠杆菌菌株能有效地利用丙酸合成PHBV。在正常情况下,真氧产碱菌不能利用乙醇作为碳源,但通过导入醇脱氢酶基因可构建出能利用乙醇和丙醇的重组真氧产碱菌株条的,它可将乙醇和丙醇转化成乙酰辅酶A(PHBV前体)。

2.生物化工原料

工业发酵生产丙酮和丁醇的历史悠久,并鉴定出以淀粉为原料生产丙酮和丁醇的梭状菌属的丙酮丁醇梭菌。可是,由于产物的最终产量偏低、副产物较多,生产原料价格高等原因,使丙酮和丁醇发酵业长期停滞不前。目前梭状菌属的分子遗传学研究不断深入,若干与丙酮和丁醇合成有关的基因已相继被克隆,并且建立了新的宿主表达系统,为有机酸醇的代谢途径提供了契机。

五.转基因微生物在其他方面的应用

转基因微生物在环境保护,传统工业改造以及新能源开发利用方面有着巨大的潜力。

1.环境保护方面

转基因微生物可用于海洋石油污染的治理,以及生活污水以及工业废水等的处理。许多微生物“以污染物为食”,如碳水化合物类污染物、蛋白质类污染物和脂肪类污染物,都能被各种微生物分解,成为它们生长的能量。利用微生物解决环境污染有巨大发展潜力,越来越多人开始专注开发环保用微生物菌剂。

这种菌剂是由一种或多种微生物组合或混合培养制成的产品,通过它们的生长代谢将污染物降解,达到净化效果。由于大多数污染物都需要几种微生物一起发挥作用,所以复合微生物菌剂的应用较多。其中有一种基因工程菌,是将多种微生物的降解性基因从细胞中分离出来,组装到一个细胞中,使其集多种微生物的降解功能于一身,可以同时降解多种污染物,“相当于转基因”。目前采用转基因光合细菌生产糖和乳酸等化合物有多种益处,能够减少二氧化碳排放。还有科学人员在紫羊茅中分离出一种金属硫蛋白基因MT like,通过构建衣藻外源基因系统,使该基因在系统总高效表达,筛选出藻类新品系,提高藻类对重金属的结合能力和抗性,可治理工业污水。以及转基因大肠杆菌可协助清楚汞污染。

2.传统工业改造方面

传统的化学工业过程很多是在高温高压的件下进行,利用转基因技术不仅能节约能源,还能避免环境污染。用常规的方法生产农药不仅投资多、耗能高,而且严重污染环境,1970年代以来,国内外把苏云金杆菌毒蛋白基因转移到大肠杆菌体内,生产出天然杀虫剂,不仅投资少、耗能低,而且避免了环境污染。在发酵工业中,用转基因的方法构建工程菌,可以大大改进产品质量并提高产量。例如:我国在头孢菌素C的发酵中采用基因工程菌株,使得发酵单位达到2.8万以上,已赶上国际先进水平。利用转基因的方法构建工程菌可以生产制造塑料的原料聚羟基丁酸,这种产品可以被微生物分解,从而消除白色污染,并且没有毒害。日本地球环境产业技术研究机构成功地使用转基因微生物从废纸中制取出琥珀酸,将琥珀酸制造成本降低了90%。

3.新能源开发方面

微生物发酵法用甘蔗、木薯粉、玉米渣等生产酒精,通过转基因的方法可以构建多功能超级工程菌,使之分解纤维素和木质素,从而利用稻草、木屑、植物秸秆、食物的下脚料等生产酒精,也被称为绿色石油。麻省理工学院生物系科学家克里斯托弗?布里格姆(Christopher Brigham)致力于开发这种经过生物性改造的细菌,目前他正尝试让这种生物将大量的二氧化碳作为碳源,从而使它能够利用废气制造燃料。英国《工业微生物学和生物技术》杂志报道,美国加利福尼亚州的一家公司对大肠杆菌进行基因改造,使之产生大量色氨酸并生产出靛蓝染料,用于布料的印染。

六.转基因微生物的前景以及安全性

转基因微生物是常用的研究材料,并且应用广泛。由于微生物的易培养,繁殖能力强等特点,人们将其应用于各种产业,也正是现在全世界的研究热点。人们所制成的各类基因工程菌也给人类的生活带了改变,这一技术的发展和研究标志着生命科学时代的进步与发展,人类将长期并且甚至永久地研究这一特殊且不可缺少的生物群体。不过,微生物易随环境的改变而发生变异,在应用的同时存在较大不确定性和潜在风险。微生物体积小、面积大;吸收多、转化快;生长旺、繁殖快;适应强、变异快;分布广、种类多。根据这些特点,菌剂使用必须高度注意环境安全,警惕其代谢产物对环境生态以及社会安全的影响。

土样中淀粉降解细菌的筛选综述

土样中淀粉降解细菌的筛选(设计性实验) 一、实验目的 1.掌握土壤样品中微生物菌种分离和筛选技术的实验设计方案。 2.掌握富集、平板稀释涂布法、分离筛选产淀粉酶菌株的基本原理。 3.初步掌握从土壤样品中分离筛选产淀粉酶菌株的基本技术。 二、实验原理 在自然条件下,产淀粉酶的细菌和其它各种细菌混杂生活在土壤中,要想分离出来必须建立相应的“筛子”。淀粉酶能使淀粉分解成葡萄糖,而淀粉与碘液发生反应形成蓝色化合物。葡萄糖不与碘液发生反应形成蓝色化合物,结果可使淀粉酶产生菌周围形成透明圈,从而筛选出淀粉酶产生菌。 微生物酶产生菌的筛选具体分为增殖培养、初筛和复筛过程。增殖培养是通过控制培养基的营养成分和/或培养条件使样品中的目的菌得以大量繁殖,而非目的菌的生长受到抑制或繁殖减缓,从而提高样品中目的菌的数量和比例。初筛是对所得的纯种进行检测。由于淀粉酶是胞外酶,在分离培养基中加适量可溶淀粉通过平板透明圈法来检测淀粉酶产生菌。筛选透明圈比值大的菌株接种到培养基中进行培养,再进行复筛。复筛的目的是淘汰底产菌。 三、实验材料 1、培养基:蛋白胨, NaCl,可溶性淀粉,琼脂,蒸馏水。 2、玻璃仪器: 培养皿10副,试管10支,三角瓶 6个,移液管 10支(1mL7支,10mL 3支),100mL量筒2个,玻璃棒,玻璃珠。 3、其它:酒精灯,硅胶塞,包装绳,包装纸,PH试纸,接种环,电子天平,称量纸,高压蒸汽灭菌锅,摇床,角匙,记号笔等。 四、方法与步骤 1、土壤样品: 食品厂、粮食加工厂、饭店等日常接触淀粉较多的肥沃土壤。 2、培养基的制备 (1)液体培养基:称取蛋白胨1.0 g、NaCl 0.5 g、可溶性淀粉0.2 g溶于装有100 mL蒸馏水的三角瓶中,调pH为7.2至7.4,分装为2个三角瓶,50mL/个,包扎,121℃高压蒸汽灭菌20分钟。 (2)固体淀粉培养基:称取蛋白胨1.5g, NaCl 0.75g,可溶性淀粉0.3g ,溶于

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选 实验项目性质:设计性 所涉及的知识点:无菌技术、富集培养、纯种分离、淀粉酶性质、酶活测定 计划学时:8学时 一、实验目的 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.掌握产酶微生物筛选的方法。 二、实验原理 α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、增殖培养、纯种分离和性能测定。 1、采样:即采集含菌的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。在土壤中,数量最多的当推细菌,其次是放线菌,第三霉菌,酵母菌最少。除土壤以外,其他各类物体上都有相应的占优势生长的微生物。例如枯枝、烂叶、腐土和朽木中纤维素分解菌较多,厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多,果实、蜜饯表面酵母菌较多;蔬菜牛奶中乳酸菌较多,油田、炼油厂附近的土壤中石油分解菌较多等。 2、增殖培养(又称丰富培养) 增殖培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。因此,增殖培养事实上是选择性培养基的一种实际应用。 3、纯种分离 在生产实践中,一般都应用纯种微生物进行生产。通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 4、性能测定 分离得到纯种这只是选种工作的第一步。所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。性能测定的方法分初筛和复筛两种。 初筛一般在培养皿上根据选择性培养基的原理进行。例如要测定淀粉酶的活力可以把斜面上各个菌株一一点种在含有淀粉的培养基表面,经过培养后测定透明圈与菌落直径的比值大小来衡量淀粉酶活力的高低。 复筛是在初筛的基础上做比较精细的测定。一般是将微生物培养在三角瓶中作摇瓶培养,然后对培养液进行分析测定。在摇瓶培养中,微生物得到充分的空气,在培养液中分布均匀,因此和发酵罐的条件比较接近,这样,测得的结果更具有实际的意义。 三、实验用品 1.器材 (1)小铁铲和无菌纸或袋。

微生物综合试验——产淀粉酶细菌菌株的筛选和培育

产淀粉酶细菌菌株的筛选和选育 邢大鹏 (合肥工业大学生物与食品工程学院2008级食品科学与工程专业08-1班) 摘要:从合肥工业大学校园内的土壤中筛选到一株产淀粉酶的细菌菌株。形态及生理生化特征测定结果表明,菌株与芽孢杆菌属(Bacillaceae)中的枯草芽孢杆菌(BacillussubtilisCohn)种的特征基本一致。然后利用划线分离法和富集培养制备一定量的枯草芽孢杆菌,最后利用DNS法测定其产酶活力。 关键词:淀粉酶,产酶,细菌,枯草芽孢杆菌 Amylase production screening and selection of bacteria strains Xing Dapeng Abstract: From the Hefei University of Technology campus in the A strain of soil amylase producing bacteria strains. Morphological, physiological and biochemical characteristics of test showed that, strains and Bacillus (Bacillaceae) in Bacillus subtilis (BacillussubtilisCohn) basically the same kinds of characteristics. Then use the train crossed separation and enrichment of preparation of certain bacillus subtilis, finally, using the DNS method for determining the enzyme production vigor. Key words: amylase, enzyme production, bacteria,Bacillus,stubtilis. 芽孢杆菌是人类发现最早的细菌之一。早在1835年,Ehrenberg所描述的“Vibriosubtilis”即是现在大家熟悉的“枯草芽孢杆菌”,它是由Cohn于1872年正式命名的,现作为芽孢杆菌属(Bacillaceae)的模式菌株[1]。从生物学特性来讲,枯草芽孢杆菌具有典型的芽孢杆菌特征,其细胞呈直杆状,大小(0.8-1.2)μm×(1.5-4.0)μm,单个,革兰氏染色阳性,着色均匀,可产荚膜,运动(周生鞭毛);芽孢中生或近中生,小于或等于细胞宽,呈椭圆至圆柱状;菌落粗糙,不透明,扩张,污白色或微带黄色;能液化明胶,胨化牛奶,还原硝酸盐,水解淀粉,为典型好氧菌[2]。 1997年,Kunst F.等人首先完成了枯草芽孢杆菌的完整基因组序列测定,并将结果发表在《Nature》杂志上[3]。

土样中淀粉降解细菌的筛选

土样中淀粉降解细菌的筛选 小组成员:袁少锋付晓俊沈豪曹凯方洁梅 一、实验目的 1.掌握土壤样品中微生物菌种分离和筛选技术的实验设计方案。 2.掌握富集、平板稀释涂布法、分离筛选产淀粉酶菌株的基本原理。 3.初步掌握从土壤样品中分离筛选产淀粉酶菌株的基本技术。 二、实验原理 在自然条件下,产淀粉酶的细菌和其它各种细菌混杂生活在土壤中,要想分离出来必须建立相应的“筛子”。淀粉酶能使淀粉分解成葡萄糖,而淀粉与碘液发生反应形成蓝色化合物。葡萄糖不与碘液发生反应形成蓝色化合物,结果可使淀粉酶产生菌周围形成透明圈,从而筛选出淀粉酶产生菌。 微生物酶产生菌的筛选具体分为增殖培养、初筛和复筛过程。增殖培养是通过控制培养基的营养成分和/或培养条件使样品中的目的菌得以大量繁殖,而非目的菌的生长受到抑制或繁殖减缓,从而提高样品中目的菌的数量和比例。初筛是对所得的纯种进行检测。由于淀粉酶是胞外酶,在分离培养基中加适量可溶淀粉通过平板透明圈法来检测淀粉酶产生菌。筛选透明圈比值大的菌株接种到培养基中进行培养,再进行复筛。复筛的目的是淘汰低产菌。 三、实验材料 1、培养基:蛋白胨, NaCl,可溶性淀粉,琼脂,蒸馏水。 2、玻璃仪器: 培养皿10副,试管10支,三角瓶 6个,移液管 10支(1mL7支,10mL 3支),100mL量筒2个,玻璃棒,玻璃珠。 3、其它:酒精灯,硅胶塞,包装绳,包装纸,PH试纸,接种环,电子天平,称量纸,高压蒸汽灭菌锅,摇床,角匙,记号笔等。 四、方法与步骤 1、土壤样品:三食堂附近 2、培养基的制备 (1)液体培养基:称取蛋白胨1.0 g、NaCl 0.5 g、可溶性淀粉0.2 g溶于装有100 mL蒸馏水的三角瓶中,调pH为7.2至7.4,分装为2个三角瓶,50mL/个,包扎,121℃高压蒸汽灭菌20分钟。

实验一 淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选 一、实验要求: 1、写出完整的分离纯化淀粉酶产生菌的实验步骤; 2、写出分离培养基及其相关试剂所需的量、仪器、器皿所需的量; 3、掌握从土壤分离酵母菌的方法和技术,从样品中分离出所需菌株; 4、学习并掌握平板倾注法和斜面接种技术,了解培养淀粉酶产生菌的培养 条件和培养时间。 二、实验原理:用梯度稀释法来分离淀粉酶产生菌 三、实验材料: 1.培养皿、移液管、刮铲、显微镜等, 2.可选取厨房土壤、面粉加工厂和菜园土壤 ; 3.培养基与试剂 :牛肉膏、蛋白胨、NaCl 、可溶性淀粉、蒸馏水、琼脂粉。 四、实验步骤: 1、选定采土点后,铲去表土层2-3cm,取3-10cm深层土壤5g,装入灭过 菌的牛皮纸袋内,封好袋口,并记录取样地点、环境及日期。土样采集后应及时分离,凡不能立即分离的样品,应保存在低温、干燥条件下,尽量减少其中菌相的变化。 2、培养基的配置,(1) 分离培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀 粉 即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中再加入15g琼脂粉 pH调至7.2 121℃灭菌15min 待冷却至50℃左右时 于超净工作台倒平板。注: 先将可溶性淀粉加少量蒸馏水调成糊状 再加到溶化好的培养基中 调匀; (2) 分离培养基液体培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀粉,即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中 pH调至7.2,121℃灭菌15min。 3、取所采的土样5g加入到三角瓶中,加入无菌水45mL,30℃摇床振荡30min制成土 壤悬液 ,此时的稀释度为10-1。另取7支试管 分别记作10-2、10-3、10-4、10-5、10-6、10-7、10-8共8个梯度 每支试管内加入9mL无菌水。用无菌移液管从三角瓶中吸取1mL土壤悬液加入到10-2试管中混匀, 再从此试管中吸取1mL加入到10-2试管中, 依此类推直至10-7试管。分别从10-6、10-7、10-8三个稀释度的试管中吸取100uL悬液, 均匀涂布于分离培养基平板上, 于27℃培养1-2天,等长出菌落后, 将检测试剂卢戈氏碘液加入到平板中, 菌落周围形成水解圈的菌株即是产淀粉酶的菌株, 因淀粉遇碘变蓝色 ,如菌落周围有无色圈说明该菌能分解淀粉。将水解圈直径与菌落直径之比较大菌株,即产酶能力较强的菌株的进行编号。 4、纯化; 将保存的菌株用接种环沾取少量培养物至平板上, 并进行2-3次划线分离, 挑取单菌落至平板上, 培养后观察菌苔生长情况并镜检验证为纯培养。将纯化后产酶能力较强菌株保存至斜面培养基中培养.

产淀粉酶的芽孢杆菌的分离和筛选(1)

从土壤中分离和筛选产淀粉酶活性的芽孢杆菌及部分鉴定 试验 一、实验目的 1、通过本实验的学习,学习掌握从环境中分离产淀粉酶菌株以及菌株初步鉴定的方法; 2、巩固微生物分离纯化、细菌生理生化鉴定,对所学习过的微生物学实验方法进行综合技能训练; 3、培养综合利用微生物学、生物化学等相关知识,自行设计、实施并判断实验结果的能力。 4、根据所学知识自主设计实验方案,在实验方案通过审核后组织实施,最终要求获得产淀粉酶的菌株。 二、实验原理 1、土壤中含有各种微生物,其中产淀粉酶的芽孢杆菌含量在不同土壤中含量也不同,因此实验前进行预埋工作,能使土壤中产淀粉酶的细菌含量增加。待实验前取样即可。 2、在只用淀粉充当碳源的选择培养基中,只有能产生淀粉酶利用淀粉的菌体能成为优势菌种。在淀粉选择培养基中,产淀粉酶的菌种可以得到富集及分离。 3、芽孢是菌体生长到一定阶段形成的一种抗逆性很强的休眠体结构,芽孢最主要的特点就是抗性强,对高温、紫外线、干燥、电离辐射和很多有毒的化学物质都有很强的抗性。它帮助菌体度过不良环境,在适宜的条件下可以重新转变成为营养态细胞。细菌富集一段时间后,生长环境不利,会产生芽孢,再在80-90℃温度下杀死菌体,可使芽孢得到富集。 4、芽孢杆菌属的共同特征是:革兰氏阳性;接触酶阳性;水解淀粉;VP试验阳性;不产生吲哚;苯甲氨酸不脱氨;分解酪素;不分解酪氨酸;不产生二羟丙酮;营养体的最高生长温度大约从25℃到75℃以上;最低生长温度大约5℃到45℃;生长最低pH值,从—8到2左右;耐盐范围从低于2%的NaCl到25%NaCl;营养

明胶(22℃)7天内液化1厘米或1厘米以上。枯草芽孢杆菌和地衣芽孢杆菌在糖发酵试验用阿拉伯糖,木糖和甘露糖代替葡萄糖可产酸;作为营养生长的最低限培养基是无维生素的,但含有葡萄糖、柠檬酸盐和一个氨态盐作为唯一的碳源和氮源。 5、在含有淀粉的鉴别培养基的平板上,具有产淀粉酶能力的芽孢杆菌,水解淀粉生成小分子糊精和葡萄糖,在淀粉平板上菌落周围出现水解圈,但肉眼不易分辨,滴加碘液,未水解的淀粉呈蓝色,水解圈无色。 二、实验材料 1、土壤样品 实验前三天在距土壤表层5-8厘米左右处填埋馒头,实验前一天用塑料袋在预埋处取样 2、药品 可溶性淀粉、蛋白胨、Nacl、牛肉膏、琼脂粉、碘、碘化钾、磷酸氢二钠、柠檬酸、盐酸 3、试剂: (1)配制稀碘液: 原碘液:称取碘和碘化钾,用少量水使碘完全溶解,定容至500ml,贮存于棕色瓶中。 稀碘液:吸取原碘液,加入碘化钾用水溶解定容至500ml,贮存于棕色瓶中。 (2)可溶性淀粉溶液:称取2.00g可溶性淀粉于烧杯中,用少量水调成浆糊状,边搅拌边缓慢加入70ml沸水中,然后用水冲洗装淀粉的烧杯,洗液倒入其中,搅拌加热至完全透明,冷却定容至100ml。(溶液现配现用) (3)磷酸缓冲液(pH=):称取45.23g磷酸氢二钠和8.07g柠檬酸,用水溶解并定容到1000ml,用pH计校正后使用

淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选 及酶活力测定 指导老师:辛树权 生命科学学院08级生物技术(三)班豆豆 同组人:xx xxx 摘要:自然界是微生物的大本营,实验室微生物几乎都是从自然界中选育出来的。我们从学校的花坛中采集一些土壤样本,拿到实验室中,进行淀粉产生菌的筛选。利用土壤制成菌液,将其涂抹在牛肉膏蛋白胨培养基上进行纯化,再用淀粉培养基培养,最后通过淀粉透明圈的大小来判断淀粉产生菌产淀粉的能力。再使用分光光度计精确测量淀粉酶的酶活力。关键词:淀粉酶;分离;纯化;透明圈;酶活力;摇瓶;分光光度计 一、实验目的: 1、学习从土壤中分离微生物的方法; 2、学习淀粉酶产生菌的筛选方法 3、了解分光光度计法测定酶活力的原理及方法。 二、实验原理: 土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境中培养几天,细菌或者是其他的微生物便能在平板上生长繁殖,形成菌落。将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养集中的淀粉成分来完成自身的生命活动,才能够生存。故在淀粉培养基上长出的菌便是淀粉产生菌。在培养基上滴碘液,淀粉被分解掉的部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断菌种产淀粉的能力。

淀粉酶是指一类能催化分解淀粉分子中糖苷键的酶的总称,主要包括α-淀粉酶和β-淀粉酶等,α-淀粉酶可从淀粉分子内部切断淀粉的α-1,4糖苷键,形成麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖,是淀粉的粘度下降,因此又称为液化型淀粉酶。淀粉遇碘呈蓝色。这种淀粉-碘复合物在660nm处有较大的吸收峰,可用分光光度计测定。随着酶的不断分作用,淀粉长链被切断,生成小分子的糊精,使其对碘的蓝色反应逐渐消失,因此可以根据一定时间内蓝色消失的程度为指标来测定α-淀粉酶的活力。 三、实验器材及试剂: 1.、材料:长春师范学院家属楼前小菜园 2培养基: (1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl 5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至7.2,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板) (2)筛选培养基:淀粉培养基(可溶性淀粉 20g, 硝酸钾 1g, 磷酸氢二钾 0.5g, 氯化钠 0.5g, 硫酸镁 0.5g, 硫酸亚铁 0.01g, 琼脂 20g, 水 1000毫升,调整pH值到7.2~7.4。) (3)摇瓶培养:淀粉培养液。 3、试剂: 碘液、2%可溶性淀粉、pH6.0磷酸氢二钠-柠檬酸缓冲液、标准糊精溶液、 0.5mol/L乙酸、0.85%生理盐水。 4、器材: 培养皿、锥形瓶、高压灭菌锅、超净工作台、恒温水浴锅、分光光度计。

从土壤中分离产淀粉酶的芽孢杆菌实验方案解析

土壤中产淀粉酶芽胞杆菌的筛选及其淀粉酶活力的测定设计性实验方案 一、综述: 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。淀粉酶广泛存在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂]等多种领域。在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程中均有重要价值,如添加淀粉酶分布非常广泛,是人们经常研 【】究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用1。 常见产淀粉酶的主要为芽孢杆菌属。其中的常见产淀粉酶的芽孢杆菌菌种有:地衣芽 【】【】孢杆菌、枯草芽孢杆菌、蜡样芽孢杆菌和纳豆芽孢杆菌2、凝结芽孢3。由于芽孢杆菌属 是一类好氧或兼性厌氧、产生抗逆性内生抱子的杆状细菌,许多为腐生菌,主要分布于土壤【】和植物体表面及水体中4。所以此次实验从土壤中分离产淀粉酶的芽孢杆菌。 二、实验目的要求 1.了解生物分离提纯的原理和方法技术 2.掌握从土壤中筛选产淀粉酶菌株的原理和方法 3.掌握微生物摇瓶培养方法及淀粉酶活力测定的原理和方法 4.培养学生的综合应用微生物实验方法的能力 5.培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 三、实验原理 自然界中,土壤是微生物生活最适宜的环境。土壤具有微生物进行生长繁殖和生命活动中所需的各种条件。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的 【】土层中菌数最多,随土层加深,菌的数量减少5。 从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。平板分离法普遍用于微生物的分离与纯化。其基本原理是选择适合与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物生长的环境,从而淘汰一些不需要的微生物。

产淀粉酶菌株筛选综述

微生物与转基因技术 摘要微生物目前已是生物技术领域主要的模式生物之一,微生物可以为转基因技术提供工具酶、基因载体;微生物本身也常作为目的基因的受体细胞。通过转基因的方式,可以将人类所需要的基因转移到特定物种上,从而表达出人类想要的性状。本文综述了转基因微生物在食品、农业、医药以及环境保护、传统工业改造等领域研究与应用的国内外现状。在食品生产领域,转基目微生物主要用于食品用群制剂的生产,如凝乳酶.淀粉酶,蛋白酶等,转基因酵母也应用于啤酒的生产.在农业生产领域,转基因微生物主要用于微生物农药、微生物肥料和饲料酶制剂的生产.在医药生产领域,转基因微生物主要用于兽用和人用疫苗的生产,以及利用转基因镟生物生产某些药物。此外,转基因微生物在环境保护,传统工业的改造、印染业,以及新能薄开发等方面也有应用,本文也同样大致介绍了一些目前国内外关于微生物转基因方面的前沿研究。 关键词微生物转基因,DNA重组技术,目的基因,基因载体 1引言 转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段[1]的来源可以是提取 特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的基因片段。基因片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。1980年代以来,现代生物技术迅速发展,在医药、农业、食品、化工、环境和能源等领域发挥了巨大的经济效益和社会效益。自1982年美国FDA批准了世界上第一例基因工程药物重组人胰岛素的正式生产以来,以基因工程药物为主的各种基因工程产品陆续实现商品化生产。其中,转基因微生物是基因工程产品的重要组成部分,在农业生产、食品加工、医药生产以及环境保护等领域得到了广泛的应用。 2微生物与转基因技术 1.微生物与转基因工具酶 转基因技术中,需要一些基本的工具酶,如对供体生物的DNA进行切割以获得目的基因的限制性核酸内切酶、DNA聚合酶类、DNA连接酶、核酸外切酶、反转录酶等。 DNA聚合酶类包括DNA聚合酶Ⅰ、KlenowDNA聚合酶、T4DNA聚合酶、T7DNA聚合酶、耐热DNA聚合酶等。耐热DNA聚合酶是一类在高温下具有聚合活性的DNA聚合的,来自于嗜高温的细菌,方要应用于PCR反应中,具体种类有产自嗜热水生菌的TaqDNA聚合酶、VentDNA聚合酶、PwoDNA聚合酶、TthDNA聚合酶和PfuDNA聚合酶,其中Taq DNA聚合酶,使DNA的体外复制变得异常简便和常规化,大大加快了生物工程、基因组等分子生物学研究的进程,年销售利润达到上亿美元。 依赖于DNA的RNA聚合酶包括SP6噬菌体RNA聚合酶、T4噬菌体RNA聚合酶或T7噬菌体RNA聚合酶,这类酶无需引物,但识别DNA上特异性位点(启动列),合成RNA。 核酸酶S1,来源于米曲霉,具有3’->5’外切核酸酶活性,能特异性降解单链DNA或RNA 的核酸酶,基因工程中用于黏性末端的平切。 核酸酶BAL31,来源于交替单胞菌BAL31,对单链DNA和RNA具有类似核酸酶S1的催化活性,能同时从3’-端和5’-端降解双链DNA并使其缩短大约25%长度,催化反应需要Ca2+。基因工程中用于缩短DNA和构建嵌套缺失体也应用于限制酶图谱制作等。 2.微生物与转基因载体

“产淀粉酶菌株的筛选”优秀设计

产淀粉酶(α-淀粉酶)细菌菌株筛选 一、实验目的: 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.学习淀粉酶活性的测定方法。 二、实验原理: 1.α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其 是在含有淀粉类物质的土壤等样品中。 2.从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、富集培养、初 步筛选、分离纯化和性能测定。 a)采样:即采集含菌种的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多, 然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土 壤可说是微生物的大本营。例如厨房土壤、面粉加工厂和菜园土壤中淀粉的分 解菌较多。 b)富集培养: 富集培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于 待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从 而便于我们从其中分离到这类微生物。 c)初步筛选: i.(选择培养基)初筛使用选择培养基对菌种进行培养,通过培养基的特殊 成分,来筛选出目的菌种,从而进行培养。 ii.(鉴别培养基)初筛利用鉴别培养基,通过添加一些特殊的试剂或成分来鉴别出目的菌种,从而筛选出来并对其进行培养。 d)分离纯化: 通过上述的筛选只能说我们要分离的目的菌种已经存在,但还要把夹杂在其中 的杂菌除去,从而得到纯种的菌落。纯种分离的方法很多,主要有:平板划线 分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 e)性能测定: 分离纯化得到的菌种之后,所分得的菌种是否具有实验所要求的性能,还必须 要进行性能测定后才能决定取舍。 三、实验材料: 1.培养基配制: a)培养基按以下比例配制后,加蒸馏水调至100%; b)富集培养基:可溶性淀粉1%、蛋白胨1%、葡萄糖0.5%、NaCl 0.5%、牛肉膏 0.5%、pH7.0; c)分离培养基:玉米粉2%、黄豆饼粉1.5%、琼脂粉0.8%、CaCl 0.02%、MgSO4 0.02%、 NaCl 0.25%、K2HPO40.2%、柠檬酸钠0.2%、硫酸铵0.075%(溶解后加入)、 Na2HPO40.2%、pH7.0。 2.主要试剂和溶液的配制: a)2%淀粉溶液:准确称取淀粉2g溶于100ml 0.1mol/L pH5.6的柠檬酸缓冲液中。 b)0.1mol/L的柠檬酸缓冲液、pH=1.0的盐酸

土壤淀粉酶产生菌的分离纯化及相关性质测定

土壤淀粉酶产生菌的分离纯化及相关性质测定 摘要:为了了解土壤中微生物的种类和特征并从中分离出淀粉酶产生菌,对其进行纯化和培养,并测定其产生的淀粉酶的活性以及对其进行生理生化试验,了解其代谢特征,需要进行一系列的实验,并在此过程中掌握分离纯化微生物、微生物液体培养法、透明圈法测定淀粉酶活力以及生理生化试验的操作方法和原理。主要实验过程如下:从土壤中筛选淀粉酶产生菌后进行复筛,接着进行种子培养,所得发酵液用于淀粉酶活力的测定以及生理生化反应。 关键词:土壤淀粉酶产生菌分离纯化发酵培养透明圈法生理生化试验 正文: 1、土壤淀粉酶产生菌的分离与纯化 1.1 实验原理 在自然条件下,微生物常常在各种生态系统中群居杂聚。为了研究某种微生物的特性,或者大量培养和利用某一种微生物,必须事先从有关的生态环境中分离出所需的菌株,获得纯培养。获得纯培养的方法称为微生物的纯种分离法,也即是从含有多种杂居在一起的微生物材料中,通过稀释分离、划线分离、单孢子分离等方法,使它们分离成为单个个体并在固定培养基的固定地方繁殖成为单个菌落,从单个菌落中挑选所需纯种。不同微生物可用不同培养基和不同培养条件进行单菌分离获得纯种,纯种再经繁殖培养后,可用于进一步研究形态、生理等欲从含有多种微生物的样品中直接辨认出,并且取得某种所需微生物的个体进行纯培养,那是困难的。由于微生物可以形成菌落,而每个单一菌落常常是由一种个体繁殖而成。不同微生物的菌落是可以识别和加以鉴定的。因此将样品中不同微生物个体在特定的培养基上培养出不同的单一菌落,再从选定的某一所需菌落中取样,移植到新的培养基中去,就可以达到分离纯种的目的。这就是纯种分离法的原理。 在微生物的分离和纯种培养过程中,必须使用无菌操作技术。所谓无菌操作,就是在分离、接种、移植等各个操作环节中,必须保证在操作过程中杜绝外界环境中的杂菌进入培养的容器。 淀粉是有葡萄糖通过α-1,4糖苷键构成的直链淀粉和α-1,6位有分支的直链淀粉组成的。按照水解方式的不同,主要的淀粉酶可以分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶4大类。产淀粉酶的微生物有细菌、霉菌和酵母等。利用淀粉遇碘变为蓝色的特性,将分离的微生物接种在含有淀粉的固体培养基表面进行培养,利用滴加碘液后菌落周围出现透明圈,未水解的淀粉呈蓝色,

高产淀粉酶菌株的筛选

高产淀粉酶菌株的筛选 一:前言 1. 掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2. 巩固以前所学的微生物学实验技术。 3. 学会筛选高产淀粉酶菌株。 关键词:产淀粉酶、芽孢杆菌、酶活力、筛选 1.α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。 2. 从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、富集培养、初步筛选、分离纯化和性能测定。 a) 采样:即采集含菌种的样品采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。例如厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多。 b) 富集培养:富集培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。 c) 初步筛选: i. 初筛使用选择培养基对菌种进行培养,通过培养基的特殊成分,来筛选出目的菌种,从而进行培养。 ii. 初筛利用鉴别培养基,通过添加一些特殊的试剂或成分来鉴别出目的菌种,从而筛选出来并对其进行培养。 d) 分离纯化:通过上述的筛选只能说我们要分离的目的菌种已经存在,但还要把夹杂在其中的杂菌除去,从而得到纯种的菌落。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 e) 性能测定:分离纯化得到的菌种之后,所分得的菌种是否具有实验所要求的性能,还必须要进行性能测定后才能决定取舍。 二、实验材料:接种环、试管、三角瓶、培养皿、移液管、高压蒸汽灭菌锅、玻璃棒、量筒、酒精灯、纱布、棉花、面线绳、恒温培养箱载玻片可见分光光度计显微镜紫外操作台 实验试剂:牛肉膏、蛋白胨、淀粉、NaCl、琼脂粉、蒸馏水、卢卡式碘液、95%乙醇、蕃红、革兰氏碘液 培养基配制:牛肉膏1.3g、蛋白胨2.5g、NaCl 1.3g、淀粉2g、溶于250mL蒸馏水中,一边加热再慢慢加入5g琼脂粉 三:实验步骤 1培养基的制备及其仪器的灭菌

α淀粉酶产生菌的研究进展综述

α-淀粉酶产生菌的研究进展综述 1309030202 刘铭迪 【摘要】:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本文对α-淀粉酶产生菌的研究进展进行了相关综述。 【关键词】:α淀粉酶产生菌;耐受;性质;应用 【正文】:α一淀粉酶(α一1,4一D一葡萄糖一葡萄糖苷水解酶)普遍分布在动物、植物和微生物中,是一种重要的淀粉水解酶。它以随机作用方式切断淀粉、糖原、寡聚或多聚糖分子内的α一1,4葡萄糖苷键,产生麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α一淀粉酶。目前,α一淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。如在淀粉加工业中,微生物α一淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。 1、α一淀粉酶的性质 不同来源的α一淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重要。目前关于不同来源仅一淀粉酶性质的研究已经很多,但将它们进行完整归纳的比较少,本文将其性质进行总结,为以后α一淀粉酶的应用提高相关依据。 1.1 底物特异性 α一淀粉酶和其它酶类一样,具有反应底物特异性,不同来源的淀粉酶反应底物也各不相同,通常α一淀粉酶显示出对淀粉及其衍生物有最高的特异性,这些淀粉及衍生物包括支链淀粉、直链淀粉、环糊精、糖原质和麦芽三糖等。 1.2 最适pH和最适温度 反应温度和pH对酶活力影响较大,不同来源的α一淀粉酶有各自的最适作用pH和最适作用温度,通常在最适作用pH和最适作用温度条件下酶相对比较稳定,在此条件下进行反应能最大程度地发挥酶活力,提高酶反应效率。因此,在工业应用中应了解不同的酶最适pH和最适温度,确定反应的最佳条件,最大限度地提高酶的使用效率是很重要的。 通常情况下α一淀粉酶的最适作用pH一般在2到12之间变化。真菌和细菌类α一淀粉酶的最适pH在酸性和中性范围内,如芽孢杆菌仅一淀粉酶的最适pH为3,碱性α一淀粉酶的最适pH在9~12。另外,温度和钙离子对一些α一淀粉酶的最适pH有一定的影响,会改变其最适作用范围。不同微生物来源的α一淀粉酶的最适作用温度存在着较大差异,其中最适作用温度最低的只有25c~30℃,而最高的能达到100c~130c。另外,钙离子和钠离子对一些酶的最适作用温度也有一定的影响。 1. 3 金属离子对酶稳定性的影响 α一淀粉酶是金属酶,很多金属离子,特别是重金属离子对其有抑制作用;另外,巯基,N一溴琥珀酸亚胺,p一羟基汞苯甲酸,碘乙酸,BSA,EDTA和EGTA等对α一淀粉酶也有抑制作用。 2、α-淀粉酶的生产

淀粉酶产生菌的筛选及酶活力测定

南昌大学实验报告 淀粉酶产生菌的筛选及酶活力测定 一、实验目的: 1、学习从土壤中分离微生物的方法; 2、学习淀粉酶产生菌的筛选方法 3、了解分光光度计法测定酶活力的原理及方法。 二、实验原理: 土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境中培养几天,细菌或者是其他的微生物便能在平板上生长繁殖,形成菌落。将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养集中的淀粉成分来完成自身的生命活动,才能够生存。故在淀粉培养基上长出的菌便是淀粉产生菌。在培养基上滴碘液,淀粉被分解掉的部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断菌种产淀粉的能力。 淀粉酶是指一类能催化分解淀粉分子中糖苷键的酶的总称,主要包括α-淀粉酶和β-淀粉酶等,α-淀粉酶可从淀粉分子内部切断淀粉的α-1,4糖苷键,形成麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖,是淀粉的粘度下

降,因此又称为液化型淀粉酶。淀粉遇碘呈蓝色。这种淀粉-碘复合物在660nm处有较大的吸收峰,可用分光光度计测定。随着酶的不断分作用,淀粉长链被切断,生成小分子的糊精,使其对碘的蓝色反应逐渐消失,因此可以根据一定时间内蓝色消失的程度为指标来测定α-淀粉酶的活力。 三、实验器材及试剂: 1、培养基: (1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板) (2)筛选培养基:淀粉培养基(可溶性淀粉20g,硝酸钾1g,磷酸氢二钾,氯化钠,硫酸镁,硫酸亚铁,琼脂20g,水1000毫升,调整pH值到~。) (3)摇瓶培养:淀粉培养液。 2、试剂: 碘液、2%可溶性淀粉、磷酸氢二钠-柠檬酸缓冲液、标准糊精溶液、L乙酸、%生理盐水。 3、器材: 培养皿、锥形瓶、高压灭菌锅、超净工作台、恒温水浴锅、分光光度计。 四、实验步骤:

实验一 淀粉酶产生菌的分离和酶活性测定 - 附件

本科学生实验报告 学号: 124120463 姓名: 学院:生命科学学院专业、班级: 12级生物技术班实验课程名称:酶工程实验一 教师:吴倩 云南师范大学教务处编印

实验一淀粉酶产生菌的分离及酶活性测定 一、目的要求 1、掌握从土壤中分离酶产生菌的方法,学会应用微生物生态知识分离产酶微生物。 2、掌握淀粉酶活性测定的原理,学会淀粉酶活性的测定方法。 二、基本原理 (一)淀粉酶产生菌的分离 1.菌种的采集 ①要获得产生某种酶的菌种,可从富含该酶作用底物的场所去采集。 ②胞外酶的稳定性和最适反应条件通常和菌的最适生长条件一致,因此要筛 选具有某一特性的酶时,只要到相应的环境中采样即可。 2.富集培养 ①原理:采集到的样品中如果所需的菌很少,需要先经过富集培养,使所需 的菌大量繁殖,而不需要的菌则不生长或少生长,以利于筛选。 ②富集的方法:控制培养的温度、pH和营养成分等。 3.菌种的分离 ①淀粉与碘液反应会形成蓝色化合物。 ②淀粉酶能使淀粉分解为葡萄糖,而葡萄糖与碘反应不会形成蓝色化合物, 结果可使淀粉酶产生菌周围形成透明圈,从而筛选出淀粉酶产生菌。 (二)淀粉酶产生菌的发酵及葡萄糖标准曲线绘制 1.原理:根据淀粉酶水解淀粉生成还原性糖,还原糖与3,5 -二硝基水杨酸共 热后被还原成棕红色的氨基化合物,在一定的范围内,还原糖的量和反应液的颜色呈比例关系,可利用比色法在540nm进行测定。 2.酶活定义:在一定pH5.5、37℃条件下,每分钟内从底物溶液中分解释放 1μmol葡萄糖所需要的酶量为一个酶活单位U/g。 酶活计算公式:酶活(U/g)=A×5×K×N×1000/(T×W) A:样品的OD值(平均值) K:标准曲线的斜率 N:稀释倍数5:0.2毫升反应液转换为1毫升体积 T:反应时间(min)1000:转换因子1mmol=1000μmol W:葡萄糖的分子量(180.2g/mol) 3绘制标准曲线 ①先配制一系列浓度不同的标准溶液,用选定的显色剂进行显色,在一定波 长下分别测定它们的吸光度A。 ②以A为横坐标,浓度c为纵坐标,则得到一条拟合度较好的直线,称为标 准曲线。 ③然后使用用完全相同的方法和步骤测定被测溶液的吸光度,便可从标准曲 线上找出对应的被测溶液浓度或含量 三、器材

产淀粉酶菌株的筛选

发酵工程实验报告产淀粉酶菌株的筛选 姓名:×× 班级:生物技术 学号:×× 指导老师:×××

产淀粉酶菌株的筛选 ×× (长春师范大学生命科学学院生物技术) 【摘要】为筛选产淀粉酶的高产菌株, 利用淀粉水解圈作为筛选模型, 从学校附近土壤中筛选得到产淀粉酶能力较强的细菌。对其酶活力进行测定, 最终得到产淀粉酶的高产菌株。 【关键词】淀粉酶;水解圈;酶活力;高产菌株 Screening of Strains Producing Starch ×× (Technology of Biological Life Science College of Changchun Normal University) [Abstract] for the high-yield strains were screened for amylase, the starch hydrolysis circle as a model for screening, screening from the school near the soil produced amylase ability of the bacteria. Determination of the enzyme activity, high yield strain eventually produced amylase. [Key words] Amylase;Hydrolysis circle;Enzyme activity;Producing strain 前言:生活中的微生物无处不在,某些微生物给人们带来困扰,但更多的微生物对我们人类有必不可少的作用。淀粉酶是水解淀粉和糖原的酶类的总称,广泛存在于动植物和微生物中, 是最早实现工业生产并且迄今为止用途最广、产量最大的酶制剂品种。特别是20世纪60年代以来,由于酶法生产葡萄糖,以及用葡萄糖生产异构糖浆的大规模工业化, 淀粉酶的需要量越来越大,几乎占整个酶制剂总产量的50% 以上。微生物的许多种类都能产生淀粉酶。淀粉酶种类繁多,特点各异且用途广泛。因为淀粉酶的用途广泛, 各国在对淀粉酶产生菌的筛选方面都做了大量的研究工作,目前所得淀粉酶活力最高可达到260 U /mL左右。虽然不少微生物能产生淀粉酶,但适合商业生产需要的菌株仍然很少, 在淀粉酶生产过程中选择适合的菌株是最重要的前提条件。本文以土壤作为原料, 从中筛选出具有产淀粉酶能力的出发菌株,并对所得的出发菌株进行酶活力测定,使其给工业生产带来经济效益做大量的准备工作。 1. 材料与方法 1.1器材 ①培养皿、量筒、试管、滴管、吸水纸、烧杯、移液管、三角瓶、酒精灯、玻璃棒、接种环、镊子、天平、滤纸、pH试纸、试管架、容量瓶等。 ②恒温培养箱、高温灭菌锅、无菌操作台、控温摇床、分光光度计、离心机。 ③棉花、牛皮纸、记号笔、线绳、称量纸、试管架、药匙、吸耳球、镊子、酒精棉、废液瓶、胶塞、火柴。 1.2试剂 ①牛肉膏、蛋白胨、琼脂、可溶性淀粉、NaCl、蒸馏水、1mol/L NaOH、1mol/L HCl、无菌水、95%乙醇、75%酒精、酵母膏、KH2PO4、碘液、淀粉溶液(0.5%)、蔗糖溶液(1%)、3,5

高性能淀粉酶菌株的筛选[开题报告]

毕业论文开题报告 生物工程 高性能淀粉酶菌株的筛选 1 选题的背景和意义 淀粉酶是能催化淀粉和糖原水解转化成葡萄糖、麦芽糖及其它低聚糖的一类酶的总称,在淀粉糖工业、食品工业、医药、纺织、洗涤剂、青贮饲料、微生态制剂以及酿酒行业中被广泛应用。淀粉酶是最早用于工业化生产并且迄今为止仍是用途最广、产量最大的酶制剂产品之一[1、2]。 不同种类的淀粉酶水解淀粉会生成不同的产物。根据淀粉酶水解淀粉的作用方式可分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶。α-淀粉酶能随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,所得产物的还原性末端葡萄糖单位碳原子为α构型,同时该酶能使淀粉浆的粘度下降,又称为液化酶;β-淀粉酶是从淀粉的非还原性末端切下一分子的麦芽糖,又被称为糖化酶,其产物还原性末端葡萄糖单位碳原子为β构型;葡萄糖淀粉酶是从底物非还原末端依次水解α-l,4糖苷键和分支的α-1,6-糖苷键,生成葡萄糖。异淀粉酶是只水解糖原或支链淀粉分支点的α-1,6-糖苷键,切下侧枝链[3]。 淀粉酶是工业中最重要的酶。如今,在生物制药领域,它也具有重要的作用。虽然淀粉酶具有很多来源,但是微生物来源的淀粉酶,特别是α-淀粉酶和葡糖淀粉酶,在商业上发挥着重要的作用。由于淀粉是可以由淀粉酶水解的惟一天然物质,分离有效的微生物菌株生产对生淀粉有效性高的淀粉酶是非常理想的。应用新的耐热性葡糖淀粉酶可以促进淀粉的水解过程,而使用α-淀粉酶可以使整个过程一步便可以完成,具有经济效益。现在,必须开发具有双重功效的,如液化作用和糖化作用的微生物菌株如淀粉分解酵母。也应该开发具有有效β-淀粉酶活性的菌株,β-淀粉酶可以用来生产麦芽糖浆。可以用农业和工业上的废物作为淀粉酶生产的底物,从而降低开支,也解决了废物的处理和污染问题。在工业上的作用,淀粉酶的耐热性已成为非常重要的性质,因此,我们也应该努力从耐热和极端耐热的微生物中生产淀粉酶。另外,将淀粉酶的应用范围拓宽如应用于生物制药领域也具有积极的意义。

相关文档
最新文档