高中数学:线性递推数列的几种解法

高中数学:线性递推数列的几种解法

高中数学 第 1 页 共 1 页 高中数学:线性递推数列的几种解法 ()1n n a a f n +=+类型一:形如的递推式

{}(){}112111,2,,21

n n n n a a a a n n N n a *-==+≥∈-例、已知数列满足求数列的通项公式。

()1n n a f n a +类型二:型如=的递推式 {}(){}11212+++1n n n n a na a a a n a a +=?=例2:数列满足,=1,2,3,,且,求数列的通项。 1n n a pa q ++类型三:型如=的递推式 {}()11123.n n n n a a a a n N a *+==+∈例3:在数列中,已知,,求数列的通项 ()1n n a pa f n ++类型四:型如=的递推式 {}(){}121121n n n n n a n a a n n n N a *+==+-+∈例4 数列的前项和为S ,且满足,

S ,求数列的通项公式. ()()1+n n a f n a g n +类型五:型如=的递推式 {}()(){}112n n n n a na n a n n N a a *+=++∈例5 已知数列 满足,且=1,求数列的通项公式

11+2n n n a pa qa n +-≥类型六:型如=()的递推式

{}()121141339412,.33

n n n n n a a a a a a n n N a *+-==-≥∈例6 已知数列中,=,,且,求 {

}11.n n n n a a a a a +例7、已知数列 ,=0, =5求

()010+1+28=1=0,1,2

..n n n n a a a a a a n a -=例、求出一个序列 ,,它的项均为正数,,并且 求

线性递归数列

线性递归数列 【基础知识】 1、概念:①、递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(n k <)的关系式称为递归式。 ②、递归数列:由递归式和初始值确定的数列成为递归数列。 2、常用方法:累加法,迭代法,代换法,代入法等。 3、思想策略:构造新数列的思想。 4、常见类型: 类型Ⅰ:???=≠+=+为常数)a a a n p n q a n p a n n ()0)(() ()(11(一阶递归) 其特例为:(1))0(1≠+=+p q pa a n n (2))0() (1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n 解题方法:利用待定系数法构造类似于“等比数列”的新数列。 类型Ⅱ:???==≠≠+=++为常数) b a b a a a q p qa pa a n n n ,(,)0,0(2112(二阶递归) 解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα +=,代入初始值求得B A ,。 类型Ⅲ:)(1n n a f a =+其中函数)(x f 为基本初等函数复合而成。 解题方法:一般情况下,通过构造新数列可转化为前两种类型。 【例题】 例1、已知数列}{n a 满足以下递归关系?? ?=+=+14311a a a n n ,求通项n a 。 例2、已知数列}{n a 满足?? ?=-+=+2)12(211a n a a n n ,求通项n a 。 例3、已知数列}{n a 满足?? ?=≥+=+1)2(211a n na a n n ,求通项n a 。 例4、已知数列}{n a 满足?? ?==-=++2,1232112a a a a a n n n ,求通项n a 。 例5、由自然数组成的数列}{n a ,满足11=a ,mn a a a n m n m ++=+,求n a 。

高中数学-数列公式及解题技巧

数列求和的基本方法和技巧 除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。

二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出 了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列 的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。 [例] 求和:1 32)12(7531--+???++++=n n x n x x x S ( 1≠x )………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。 对应高考考题:设正项等比数列{}n a 的首项2 1 1= a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 证明: 设n n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得 113)12()12(n n n n n n n C C C n C n S ++???+-++=- (反序)

线性递推数列的特征方程

具有形如21n n n x ax bx ++=+ ①的递推公式的数列{}n x 叫做 线性递推数列 将①式两边同时加上1 n yx +-,即: 2111n n n n n x yx ax bx yx ++++-=+- 整理得: 211()()n n n n b x yx a y x x y a +++-=--- 令1n n n F x yx +=-为等比数列,则其公比q a y =-且满足b y y a =- 即满足:2y ay b =+ ② 设②式具有两个不相等的实数根r ,s ,则: 1n n n Y x rx +=- ③ 1n n n Z x sx +=- ④ 分别是公比为a r -,a s -的等比数列,并得: 121()()n n Y x rx a r -=-- 1 21()()n n Z x sx a s -=-- 且由③、④可得: ()n n n Y Z s r x -=- 又由韦达定理可得: r s a += rs b =- 于是有:

1121211121211121221 2122121()()()() () () n n n n n n n n n n n n n Y Z x rx a r x sx a s x s r s r x rx x x rx x sx s r s b r b C sx a r a s s r s r x rx x sx s r s b s b r r r C s ------------= =----= -------= -+---++++-== ⑤ 由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、二项和方程 2y ay b =+的两根有关。也就是说,只需知道1x ,2x 和方程2y ay b =+的两根r ,s ,即可得出线性递推数列的通项公式。可见方程2y ay b =+包含了线性递推数列的重要信息,故将之称为线性递推数列的特征方程。 例:(斐波拉契数列)已知数列{}n x 满足: 121x x ==且21 (1,)n n n x x x n n N +++=+≥∈.求数列{}n x 的通项公式。 解:该数列属于线性递推数列,其特征方程为:21x x =+ 解之得:152r + =,152s - = 故可设数列的通项公式为 12151522n n n x C C ????+-=+ ? ? ? ????? 又1121515122x C C ????+-=+= ? ? ? ?????,222121515122x C C ????+-=+= ? ? ? ????? 解得:155C =,255C =-.故所求通项公式为: 51515522n n n x ?? ????+-??=- ? ? ? ????????? .

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

常见递推数列通项九种求解方法

常见递推数列通项地九种求解方法 高考中地递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考地热点之一.是一类考查思维能力地好题.要求考生进行严格地逻辑推理,找到数列地通项公式,为此介绍几种常见递推数列通项公式地求解方法. 类型一:<可以求和)累加法 例1、在数列中,已知=1,当时,有,求数列地通项公式. 解读: 上述个等式相加可得: ∴ 评注:一般情况下,累加法里只有n-1个等式相加. 【类型一专项练习题】 1、已知,<),求. 2、已知数列,=2,=+3+2,求. 3、已知数列满足,求数列地通项公式. 4、已知中,,求. 5、已知,,求数列通项公式. 6、已知数列满足求通项公式? 7、若数列地递推公式为,则求这个数列地通项公式 8、已知数列满足,求数列地通项公式. 9、已知数列满足,,求. 10、数列中,,<是常数,),且成公比不为地等比数列.

答案:1. 2. 3. 4. 5. 6. 7. 8. 9. 10.(1>2 (2> 11.(1>5 (2> 类型二: <可以求积)累积法 例1、在数列中,已知有,(>求数列地通项公式. 解读: 又也满足上式; 评注:一般情况下,累积法里地第一步都是一样地. 【类型二专项练习题】 1、已知,(>,求. 2、已知数列满足,,求. 3、已知中,,且,求数列地通项公式. 4、已知,,求. 5、已知,,求数列通项公式. 6、已知数列满足,求通项公式? 7、已知数列满足,求数列地通项公式. 8、已知数列{a n},满足a1=1, (n≥2>,则{a n}地通项 9、设{a n}是首项为1地正项数列, 且(n + 1>a- na+a n+1·a n = 0 (n = 1, 2, 3, …>,求它地通项公式. 10、数列地前n项和为,且,=,求数列地通项公式. 答案:1. 2. 3. 4. 5. 6.

常见线性递推数列通项的求法

常见线性递推数列通项的求法 对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。 一、一阶递推数列 1、q pa a n n +=+1型 形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以1 1-+p q a 为首项以p 为公比的等比数列? ????? -+1p q a n 例1.在数列{a n }中,,13,111-?==+n n a a a 求n a . 解:在131-?=+n n a a 的两边同加待定数λ,得n n n a a a (3131?=+-?=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-?=-∴-=+n n a a λ数列{}2 1-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32 111+=∴?--n n n a 2、 ()n g a c a n n +?=+1型 (1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a . 解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n Λ,把以上各式相加,得 【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用 2,3,4,,2,1Λ--n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。 (2)1≠c 时: 例3.在数列{}n a 中,,3,1211n a a a n n +==+求通项n a . 解:作新数列}{n b ,使),(2C Bn An a b n n ++-=即),(2C Bn An b a n n +++=(A ,B ,C 为待定 常数)。由213n a a n n +=+可得:C n B n A b n ++++++)1()1(21=,)(322n C Bn An b n ++++ 所以,B A C n A B n A b b n n --+-+++=+2)22()12(321,设2A+1=0,2B-2A=0,2C-A-B=0,可

高中数学-递推数列的通项的求法练习

高中数学-递推数列的通项的求法练习 1.(·海南三亚一模)在数列1,2,7,10,13,…中,219是这个数列的第( )项.( ) A .16 B .24 C .26 D .28 答案 C 解析 设题中数列{a n },则a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n =3n -2.令3n -2=219=76,解得n =26.故选C. 2.设数列{a n }的前n 项和S n =n 2 ,则a 8的值为( ) A .15 B .16 C .49 D .64 答案 A 解析 a 1=S 1=1,a n =S n -S n -1=n 2-(n -1)2 =2n -1(n≥2).a 8=2×8-1=15.故选A. 3.已知数列{a n }满足a 1=0,a n +1=a n +2n ,则a 2 017等于( ) A .2 017×2 018 B .2 016×2 017 C .2 015×2 016 D .2 017×2 017 答案 B 解析 累加法易知选B. 4.已知数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2 x n (n≥2),则x n 等于( ) A .(23)n -1 B .(23)n C.n +12 D.2 n +1 答案 D 解析 由关系式易知?????? 1x n 为首项为1 x 1=1,d =12的等差数列,1 x n =n +12,所以x n =2 n +1 . 5.已知数列{a n }中a 1=1,a n =12a n -1+1(n≥2),则a n =( ) A .2-(12)n -1 B .(12)n -1 -2 C .2-2n -1 D .2n -1 答案 A 解析 设a n +c =12(a n -1+c),易得c =-2,所以a n -2=(a 1-2)(12)n -1=-(12)n -1 ,所以选A. 6.若数列{a n }的前n 项和为S n =32a n -3,则这个数列的通项公式a n =( ) A .2(n 2+n +1) B .2·3n C .3·2n D .3n +1

高中三角函数和数列部分公式

公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 推导:cos(2α)=cos(α+α)=cosαcosα-sinαsinα=cos^2(α)-sin^2(α)……① 在等式①两边加上1,整理得:cos(2α)+1=2cos^2(α) 将α/2代入α,整理得:cos^2(α/2)=(cosα+1)/2 在等式①两边减去1,整理得:cos(2α)-1=-2sin^2(α) 将α/2代入α,整理得:sin^2(α/2)=(1-cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=±[(1-cosα)/2]^(1/2)(正负由α/2所在象限决定) cos(α/2)=±[(1+cosα)/2]^(1/2)(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=±[(1-cosα)/(1+cosα)]^(1/2) 推导:tan(α/2) =sin(α/2)/cos(α/2) =[2sin(α/2)cos(α/2] /2cos(α/2)^2 =sinα/(1+cosα) =(1-cosα)/sinα 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

高中数学:线性递推数列的几种解法

高中数学 第 1 页 共 1 页 高中数学:线性递推数列的几种解法 ()1n n a a f n +=+类型一:形如的递推式 {}(){}112111,2,,21 n n n n a a a a n n N n a *-==+≥∈-例、已知数列满足求数列的通项公式。 ()1n n a f n a +类型二:型如=的递推式 {}(){}11212+++1n n n n a na a a a n a a +=?=例2:数列满足,=1,2,3,,且,求数列的通项。 1n n a pa q ++类型三:型如=的递推式 {}()11123.n n n n a a a a n N a *+==+∈例3:在数列中,已知,,求数列的通项 ()1n n a pa f n ++类型四:型如=的递推式 {}(){}121121n n n n n a n a a n n n N a *+==+-+∈例4 数列的前项和为S ,且满足, S ,求数列的通项公式. ()()1+n n a f n a g n +类型五:型如=的递推式 {}()(){}112n n n n a na n a n n N a a *+=++∈例5 已知数列 满足,且=1,求数列的通项公式 11+2n n n a pa qa n +-≥类型六:型如=()的递推式 {}()121141339412,.33 n n n n n a a a a a a n n N a *+-==-≥∈例6 已知数列中,=,,且,求 { }11.n n n n a a a a a +例7、已知数列 ,=0, =5求 ()010+1+28=1=0,1,2 ..n n n n a a a a a a n a -=例、求出一个序列 ,,它的项均为正数,,并且 求

非线性递推数列

二、非线性递推数列 目的要求:掌握常见的非线性递推数列的通项求法(化为:一阶线性、恒等变形、 不动点法、数归法、母函数法等) 重点:(难点)根据其特点采用相应方法求n a 1、分式递推数列:b aa d ca a n n n ++=+1 ⑴ 若0=d ,则 c a ca b ca b aa a n n n n +=+= +1 1 令其为c a b c b b n n +=+1 (一阶线性……) ⑵ 若0,0≠≠c d ,用不动点法(P166 TH10) 例1、1,1 211=+= +a a a a n n n n ,求n a 解:n n n a a 21 11 += +即n n n b b 21+=+ 则() 1 21 122212 12121 1-= ∴-=+-=--+ =-n n n n n n a b b 例2、1,924111==+-++a a a a a n n n n ,求n a 解:变形:()4 9 211-+-+= +=++αααn n n n b b b a ()() 4 9 6221 -++---= +ααααn n n b b b 令0962=+-αα(化为⑴型) 321==αα 则11 11 1 1-= -- =++n n n n n b b b b b ? ?? ???n b 1是等差且常…

1 25 6212 2 1111--= ∴-= ∴-=-=∴ n n a n b n n b b n n n 题中α恰好是x x x =--492的根,即α为()4 9 2--=x x x f 的不动点 TH9 P166 TH10 P166 ()() d cn b an n f -+= 则① ??? ???--21ααn n u u 是等比…… ② ? ?? ???-p u n 1是等差…… 2、其他非线性递推数列 恒等变形后 ?????? ??? ??母函数法数归迭代分式线性等差(等比) (书上例10、11、12) 例10、{}()33,2,1,2 1 1321≥+= ===--+n a a a a a a a a n n n n n ,求n a 解:变形1213--++=n n n n a a a a (21,-+n n a a 非连续二项) 2133---+=n n n n a a a a 211321-----+-=-?n n n n n n n n a a a a a a a a ()()11231-+---+=+?n n n n n n a a a a a a 即: 2 3 111----++= +n n n n n n a a a a a a (为常数列) ()43 2 1 311==+=+∴-+n a a a a a a n n n 113-+-=∴n n n a a a 二阶常线性齐次…… =∴n a (特征根法)

高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

二阶线性递推数列的通项公式的求法(1)

二阶线性递推数列的通项公式的求法 课程背景:二阶线性递推数列的通项公式的求法是高考中数列的一个高频考点,由于其递推数列的特殊性和复杂性,很多学生感到无从下手,是学生高考中较大的一个失分点,其实本题来源于课本习题,本课就这个问题以课本习题为载体来深入的探讨和研究一下二阶线性递推数列的通项公式的求法 课程内容: 真题再现: 1.(2015广东文19)设数列{}n a 的前n 项和为n S ,* n ∈N .已知11a =,232 a =,354 a = , 且当2n …时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)求证:11 2n n a a +? ? - ???? 为等比数列; (3)求数列{}n a 的通项公式. 2.在数列{}n a 中,11,a =21a =,11n n n a a a +-=+(2n ≥),求数列{}n a 的通项公式 问题呈现:第一题中的第三问是难点,当2n …时,211458n n n n S S S S ++-+=+,易得 211 14()4()()n n n n n n S S S S S S +++--= ---,即2114 n n n a a a ++=-,实际上就是已知2114 n n n a a a ++=- ,求{}n a 的 通项公式。第2题更是典型的已知11n n n a a a +-=+(2n ≥), 求数列{}n a 的通项公式 这两题的共同特点是:已知数列* 1221,,(,0),n n n a a a b a p a q a n N p q ++===+∈≠求{}n a 的通项公式,即 二阶线性递推数列的通项公式的求法。这是学生的一个难点,同时也是高考重点考查的知识,很多学生感到很繁琐,无从下手。实质,此类题型来源于我们的课本习题 课本例题呈现: 例13 已知数列{}n a ,212132,2,5--+===n n n a a a a a (3n ≥),求数列的通项公式。(人教版高中数学必修5第二章数列复习参考题B 组第6题) 解法 1:(归纳猜想)由已知可得:11, a =23452,19,44,145, a a a a ====猜想 1 1 * 1[7313 (1)]()4 n n n a n N --= ? +?-∈(用数学归纳法证明略) 解法2:(构造法) 将2132--+=n n n a a a 变形,]23)[2(3)2(21211------+-=+-=-n n n n n n a a a a a a λ λλλ 若,23λ λ-= -即1-=λ或者3,则{}1n n a a λ+-是一个等比数列,公比为2-λ.1-=λ时, 1{}n n a a ++是一个首项为7,公比为3的数列, 1 173n n n a a --+=?① 3λ=时,1{3}n n a a +-是一个首项为-13,公比为1-的等比数列 1 1313(1) n n n a a -+-=-?-② 由①②两式消去1n a +得:1 1 * 1[73 13(1) ]()4n n n a n N --= ?+?-∈

相关文档
最新文档