非线性递推数列

非线性递推数列
非线性递推数列

二、非线性递推数列 目的要求:掌握常见的非线性递推数列的通项求法(化为:一阶线性、恒等变形、 不动点法、数归法、母函数法等) 重点:(难点)根据其特点采用相应方法求n a 1、分式递推数列:b

aa d

ca a n n n ++=+1

⑴ 若0=d ,则

c

a

ca b ca b aa a n n n n +=+=

+1

1 令其为c

a

b c b b n n +=+1 (一阶线性……)

⑵ 若0,0≠≠c d ,用不动点法(P166 TH10) 例1、1,1

211=+=

+a a a a n n

n n ,求n a

解:n n

n a a 21

11

+=

+即n n n b b 21+=+ 则()

1

21

122212

12121

1-=

∴-=+-=--+

=-n n n n n n a b b 例2、1,924111==+-++a a a a a n n n n ,求n a 解:变形:()4

9

211-+-+=

+=++αααn n n n b b b a

()()

4

9

6221

-++---=

+ααααn n n b b b 令0962=+-αα(化为⑴型) 321==αα 则11

11

1

1-=

--

=++n

n n n n b b b b b ?

??

???n b 1是等差且常…

1

25

6212

2

1111--=

∴-=

∴-=-=∴

n n a n

b n n b b n n n 题中α恰好是x x x =--492的根,即α为()4

9

2--=x x x f 的不动点 TH9 P166

TH10 P166 ()() d

cn b

an n f -+=

则① ???

???--21ααn n u u 是等比……

② ?

??

???-p u n 1是等差……

2、其他非线性递推数列

恒等变形后 ??????

???

??母函数法数归迭代分式线性等差(等比)

(书上例10、11、12)

例10、{}()33,2,1,2

1

1321≥+=

===--+n a a a a a a a a n n n n n ,求n a

解:变形1213--++=n n n n a a a a (21,-+n n a a 非连续二项) 2133---+=n n n n a a a a

211321-----+-=-?n n n n n n n n a a a a a a a a ()()11231-+---+=+?n n n n n n a a a a a a 即:

2

3

111----++=

+n n n n n n a a a a a a (为常数列) ()43

2

1

311==+=+∴-+n a a a a a a n n n

113-+-=∴n n n a a a 二阶常线性齐次…… =∴n a (特征根法)

例12、()310,10,13

1

2221≥===--n a a a a a n n n

解:变形212

110---?=???

? ??n n n n a a a a ,即:1

12

10--==n n

n n n a a b b b 迭代()()2

2

2

1

221

4

12

14

122

12

1

1101010101010--??====∴--n n b b b b n n n

()212

1

2

1121

122

1110

1010

10

2

2

2

2

b b a a n n n n n →=?=???

? ???=--

-

----

111010--==∴n n n a a 例11、{}()

1211102,2

5,2,u u u u u u u n n n n --===-+ 求证:[]()3

122

n

n n u --=

解:(猜测后证明)适用于递推关系复杂,不便求n a (或证明n a )

1=n 时,()()3

12312122

2

22

222---

---+=+=n u 2=n 时,()()3

123

12133

33

32

2

88---

---+=+=u

1)猜测:()()3

123

122

2n

n n

n n u ---

--+=

(再证:()3

122

n

n --为整数,则()3

122

n

n ---

为(0,1)内的纯小数)

2)数学归纳法证明,设()()3

12n

n n f --= n=0、1、2显然成立

假设n=k 时,结论成立,则n=k+1时

由()

12

112u u u u k k k --=-+

()()()()()()2

5

22221212-

++=----k f k f k f k f ()()()()[]()()()()2

5222212121212-

+++=-+----+--+k f k f k f k f k f k f k f k f 又()()()()()()???-=-+-+=-+k k f k f k f k f k f 112112 则()()()()2

5

2222111111

-

+++=--+-+++k

k k f k f k u (()()k k 11221--++ 为记k 取 ()()1122+-++=k f k f 奇、偶数,恒为2

5

猜测成立

2)再证()n f 为整数

()()()()

3

221231221 +-+=

--=--n n n

n n f ()n f ∴为整数,()n f -2为(0,1)内的纯小数 ∴对任意自然数n ,[]()3

122n

n n u --=

例15、母函数法

将数列n n n n C C C ,,,10 当多项式函数()n

n n n n x C x C C x f ++=10

联系是研究组合数性质的有效方法之一

一般:多项式n n x a x a a +++ 10称为数列n a a 0的母函数(有限、无限均可) 而母函数∑∞

=0n n n x a 可求和函数,从而可借助母函数求线性递推数列的通项

例15、()265,2,12110≥-=-==--n a a a a a n n n 解:(显然特征根法可求n a )现用母函数法

令() ++++=n n n x a x a a x f 10 ①

∴=+---06521n n n a a a 设法求出()x f ,即可求n a

寻求()n n n n x a a a 6,51--

由() -----=--n n x a x a x a x xf 12105555 ② () +++=-n n x a x a x f x 2202666 ③

①+②+③得:()

()()()20120102655651x a a a x a a a x f x x +-+-+=+- ()x x a a a n n n n 716521-=++-++-- ()x

x x b x a x x x x f 314

2153121651712---=-+-=+--=

()()()

∑∑∑∞∞∞?-?=-=0

34253425n n n n

n

x x x n n n a 3425?-?=∴

线性递归数列

线性递归数列 【基础知识】 1、概念:①、递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(n k <)的关系式称为递归式。 ②、递归数列:由递归式和初始值确定的数列成为递归数列。 2、常用方法:累加法,迭代法,代换法,代入法等。 3、思想策略:构造新数列的思想。 4、常见类型: 类型Ⅰ:???=≠+=+为常数)a a a n p n q a n p a n n ()0)(() ()(11(一阶递归) 其特例为:(1))0(1≠+=+p q pa a n n (2))0() (1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n 解题方法:利用待定系数法构造类似于“等比数列”的新数列。 类型Ⅱ:???==≠≠+=++为常数) b a b a a a q p qa pa a n n n ,(,)0,0(2112(二阶递归) 解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα +=,代入初始值求得B A ,。 类型Ⅲ:)(1n n a f a =+其中函数)(x f 为基本初等函数复合而成。 解题方法:一般情况下,通过构造新数列可转化为前两种类型。 【例题】 例1、已知数列}{n a 满足以下递归关系?? ?=+=+14311a a a n n ,求通项n a 。 例2、已知数列}{n a 满足?? ?=-+=+2)12(211a n a a n n ,求通项n a 。 例3、已知数列}{n a 满足?? ?=≥+=+1)2(211a n na a n n ,求通项n a 。 例4、已知数列}{n a 满足?? ?==-=++2,1232112a a a a a n n n ,求通项n a 。 例5、由自然数组成的数列}{n a ,满足11=a ,mn a a a n m n m ++=+,求n a 。

数列递推关系与单调性

数列递推关系与单调性 数列与函数的关系:类比函数(单调性与周期性) 求数列的通项公式:法一:直接求n a ;法二:先求n S ,再求n a ,要注意n 的变化 一.线性的 1.已知21n n S a =+求n a 2.已知21n n S a =+求n a 3.已知111,22n n a S a +==+,求n a 注意序号的变化 二.非线性的 1.已知0n a >,2 22n n n S a a =+-;求n a 2.已知0n a >,242n n n S a a =+,求n a 3.已知0n a >,12n n n S a a =+,求n a 总结:(1)11,1,2n n n S n a S S n -=?=?-≥?这主要是解题的步骤;(2)决策好先求n a 还是n S ;(3)()n n S f a =与1()n n S f a +=的区别 递推关系: (1)1()n n a a f n +=+ Exe1.已知11a =,1n n a a n +=+,求n a 2.已知11a =,12n n n a a +=+,求n a 3.已知11a =,12n n n a a n +=++,求n a 4.已知11a =,11(1) n n a a n n +=++,求n a (2)1()n n a a f n += Exe1.已知11a =,11 n n n a a n +=+,求n a 2.已知11a =,12n n n a a n ++=,求n a 3.已知11a =,1n n a na +=,求n a

(3)1n n a Aa B +=+(1A ≠) Way1:1()11n n B B a A a A A +-=--- Way2.111n n n n n a a B A A A +++=+ 已知11a =,121n n a a +=+,求n a 2.已知11a =,131n n a a +=+,求n a 3.已知11a =,152n n a a +=+,求n a (4)1()n n a Aa f n +=+(1)A ≠ 分为两类:1.()f n pn q =+ 2.()n f n q = 1.1n n a Aa pn q +=++ Way1.?(1):::111n n n n n a a pn q A A A ++++=+ Way2.?(2):::1(1)()n n a x n y A a xn y +-+-=-- Exe1.已知111,2n n a a a n +==+,求n a 2.已知111,321n n a a a n +==++,求n a 2. Exe1.已知111,23n n n a a a +==+,求n a 2.已知111,32n n n a a a +==+,求n a 3.已知111,22n n n a a a +==+,求n a 4.已知111,232n n n a a a +==++,求n a 5.已知111,231n n n a a a n +==+++,求n a (5)1()()n n a f n a p n +=+ Way:::(1)()() h n f n h n += Exe1.已知11111,n n n a a a n n ++==+,求n a

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

线性递推数列的特征方程

具有形如21n n n x ax bx ++=+ ①的递推公式的数列{}n x 叫做 线性递推数列 将①式两边同时加上1 n yx +-,即: 2111n n n n n x yx ax bx yx ++++-=+- 整理得: 211()()n n n n b x yx a y x x y a +++-=--- 令1n n n F x yx +=-为等比数列,则其公比q a y =-且满足b y y a =- 即满足:2y ay b =+ ② 设②式具有两个不相等的实数根r ,s ,则: 1n n n Y x rx +=- ③ 1n n n Z x sx +=- ④ 分别是公比为a r -,a s -的等比数列,并得: 121()()n n Y x rx a r -=-- 1 21()()n n Z x sx a s -=-- 且由③、④可得: ()n n n Y Z s r x -=- 又由韦达定理可得: r s a += rs b =- 于是有:

1121211121211121221 2122121()()()() () () n n n n n n n n n n n n n Y Z x rx a r x sx a s x s r s r x rx x x rx x sx s r s b r b C sx a r a s s r s r x rx x sx s r s b s b r r r C s ------------= =----= -------= -+---++++-== ⑤ 由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、二项和方程 2y ay b =+的两根有关。也就是说,只需知道1x ,2x 和方程2y ay b =+的两根r ,s ,即可得出线性递推数列的通项公式。可见方程2y ay b =+包含了线性递推数列的重要信息,故将之称为线性递推数列的特征方程。 例:(斐波拉契数列)已知数列{}n x 满足: 121x x ==且21 (1,)n n n x x x n n N +++=+≥∈.求数列{}n x 的通项公式。 解:该数列属于线性递推数列,其特征方程为:21x x =+ 解之得:152r + =,152s - = 故可设数列的通项公式为 12151522n n n x C C ????+-=+ ? ? ? ????? 又1121515122x C C ????+-=+= ? ? ? ?????,222121515122x C C ????+-=+= ? ? ? ????? 解得:155C =,255C =-.故所求通项公式为: 51515522n n n x ?? ????+-??=- ? ? ? ????????? .

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

常见线性递推数列通项的求法

常见线性递推数列通项的求法 对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。 一、一阶递推数列 1、q pa a n n +=+1型 形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以1 1-+p q a 为首项以p 为公比的等比数列? ????? -+1p q a n 例1.在数列{a n }中,,13,111-?==+n n a a a 求n a . 解:在131-?=+n n a a 的两边同加待定数λ,得n n n a a a (3131?=+-?=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-?=-∴-=+n n a a λ数列{}2 1-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32 111+=∴?--n n n a 2、 ()n g a c a n n +?=+1型 (1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a . 解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n Λ,把以上各式相加,得 【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用 2,3,4,,2,1Λ--n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。 (2)1≠c 时: 例3.在数列{}n a 中,,3,1211n a a a n n +==+求通项n a . 解:作新数列}{n b ,使),(2C Bn An a b n n ++-=即),(2C Bn An b a n n +++=(A ,B ,C 为待定 常数)。由213n a a n n +=+可得:C n B n A b n ++++++)1()1(21=,)(322n C Bn An b n ++++ 所以,B A C n A B n A b b n n --+-+++=+2)22()12(321,设2A+1=0,2B-2A=0,2C-A-B=0,可

几种分式型递推数列的通项求法

几种分式型递推数列的通项求法 李云皓 (湖北省宜昌市夷陵中学,湖北 宜昌 443000) 1.1 引言 数列是高中数学中的重要内容之一,是高考的热点,而递推数列又是数列的重要内容。数列中蕴含着丰富的数学思想,递推数列的通项问题也具有很强的逻辑性和一定的技巧性,因此此类问题也经常渗透在高考试题和数学竞赛中。本文对分式型递推数列求通项问题作一些探求,希望对大家有所启发。 2.1基本概念 设数列{a n }的首项为a 1,且 a n +1=α1a n +β1 α2a n +β2 n =1,2,? ① 其中αi 、βi i =1,2,? 为常数,同时α2≠0,α1α2 ≠β 1β2 ,我们称这个递推公式为 分式递推式,而数列{a n }称为由分式递推式给定的数列。显然,该数列的递推式也可写成 a n +1a n +αa n +1+βa n +γ=0 n =1,2,? ② 2.2递推式的特征方程与特征根 我们先来看一个引例: 首项为a 1,由递推式a n +1a n +αa n +1+βa n =0 (n =1,2,?)给定的数列{a n }的通项公式我们是会求的: a n +1a n +αa n +1+βa n =0 ∴1+αa n +βa n +1 =0 即 1a n +1=?αβa n +1 β 为常系数等比差数列(由递推式a n +1=αa n +β给定的数列,其中α、β为常数),该数列的通项是熟知的,为 a n =αn?1(a 1? β1?α)+β 1?α 于是考虑能不能变型后让②中的γ没有,即让①中的β1没有。我们可以利用递推式的特征方程来解决这个问题。 下面给出特征方程推导过程: 数列的递推式为 a n +1=α1a n +β1 2n 2 两边同时减去x 得

数列的递推关系

数列的递推关系 ? 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列.这种表示方法叫做递推公式法或递推法. ? 教学难点: 1.根据数列的首项和递推公式写出它的前几项,关归纳出通项公式. 2.n n S a 的关系 ???-=-1 1S S S a n n n )1() 2(=≥n n . ? 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划). 二、递推公式 钢管的例子 3+=n a n 从另一个角度,可以: 1 4 11+==-n n a a a Λ ) 2() 1(≥=n n “递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式. 例1.已知21=a ,41-=+n n a a 求n a . 解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n 解二:由题设: 41-=-+n n a a

∴ Λ Λ4 4 432211-=--=--=------n n n n n n a a a a a a ) +412-=-a a )1(41--=-n a a n ∴ )1(42--=n a n 例2.若记数列{}n a 的前n 项之和为S n 试证明:?? ? -=-1 1 S S S a n n n ) 1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时, n n a a a S +++=Λ21 1211--+++=n n a a a S Λ ∴ n n n a S S =--1 ∴???-=-1 1S S S a n n n )1() 2(=≥n n 注意:1? 此法可作为常用公式; 2? 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a . 例3.已知数列{}n a 的前n 项和为① n n S n -=22 ② 12 ++=n n S n ,求数列{}n a 的 通项公式. 解:1.当1=n 时,111==S a 当2≥n 时,34)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合 34-=n a n 2.当1=n 时,311==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n 例4.已知21=a ,n n a a 21=+ 求n a .

数列通项篇(分式型递推式求通项)

数列通项篇(分式型递推式求通项) 分式型递推式求通项 形如:D Ca B Aa a n n n ++=+1或D Ca B Aa a n n n ++=+21 两种方法 三种类型 三条原则 两种方法: 减倒法:即减个数字取倒数 减除法:即减个数字两式相除(两边同时减去不同的数字,相除) 三种类型 D Ca B Aa a n n n ++=+1或D Ca B Aa a n n n ++=+21 D Cx B Ax x ++=或D Cx B Ax x ++=2为其对应的特征方程 若21,x x 为对应的特征根,则有 (1)当21x x =实根时,减倒法构造}1{1 x a n -等差数列, (2)当21x x ≠实根时,减除法构造}{2 1x a x a n n --等比数列, (3)当21x x ≠复根时,减除法构造}{ 21x a x a n n --周期数列,

例1、在数列}{n a 中,21=a ,1 3371+-= +n n n a a a ,求数列}{n a 的通项公式。 例2、(重庆高考)在数列}{n a 中,11=a ,05216811=++-?++n n n n a a a a ,求数列}{n a 的通项公式。 例3、已知在数列}{n a 中,41=a ,4 2321--=+n n n a a a ,求数列}{n a 的通项公式。

例4、(湖南高考)已知在数列}{n a 中,11=a ,1331+-=+n n n a a a ,则=2009a _______________ 三、分式型递推式求通项的三条原则 (1)选择题、填空题直接列举找规律; (2)解答题有台阶,按构造的台阶式顺势而为; (3)解答题无台阶,按减倒法和减除法直接构造; 例5、已知在数列}{n a 中,21=a ,121+=+n n a a ,1 2-+=n n n a a b ,则数列}{n b 的通项公式=n b _______________ 例6、(全国卷)已知在数列}{n a 中,21=a ,n n a c a 11-=+,若2 5=c ,21-=n n a b ,求数列}{n b ,}{n a 的通项公式。

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

高中数学:线性递推数列的几种解法

高中数学 第 1 页 共 1 页 高中数学:线性递推数列的几种解法 ()1n n a a f n +=+类型一:形如的递推式 {}(){}112111,2,,21 n n n n a a a a n n N n a *-==+≥∈-例、已知数列满足求数列的通项公式。 ()1n n a f n a +类型二:型如=的递推式 {}(){}11212+++1n n n n a na a a a n a a +=?=例2:数列满足,=1,2,3,,且,求数列的通项。 1n n a pa q ++类型三:型如=的递推式 {}()11123.n n n n a a a a n N a *+==+∈例3:在数列中,已知,,求数列的通项 ()1n n a pa f n ++类型四:型如=的递推式 {}(){}121121n n n n n a n a a n n n N a *+==+-+∈例4 数列的前项和为S ,且满足, S ,求数列的通项公式. ()()1+n n a f n a g n +类型五:型如=的递推式 {}()(){}112n n n n a na n a n n N a a *+=++∈例5 已知数列 满足,且=1,求数列的通项公式 11+2n n n a pa qa n +-≥类型六:型如=()的递推式 {}()121141339412,.33 n n n n n a a a a a a n n N a *+-==-≥∈例6 已知数列中,=,,且,求 { }11.n n n n a a a a a +例7、已知数列 ,=0, =5求 ()010+1+28=1=0,1,2 ..n n n n a a a a a a n a -=例、求出一个序列 ,,它的项均为正数,,并且 求

数列递推规律

公务员考试行测常考题型:数列递推规律 递推数列是数列推理中较为复杂的一类数列。其推理规律变化多样,使得很多考生不易察觉和掌握。要想掌握递推数列的解题方法,需要从两个方面入手。 一是要清楚递推数列的“鼻祖”,即最典型、最基础的递推数列; 二是要明确递推规律的变化方式。 (一)递推数列的“鼻祖” 1,1,2,3,5,8,13,21…… 写出这个数列之后,有不少考生似曾相识。其中有一些考生知道,这个数列被称为“斐波那契(Febonacci,原名Leonardo,12-13世纪意大利数学家)数列”或者“兔子数列”。这些考生中还有一些人知道这个数列的递推规律为:从第三项开始,每一项等于它之前两项的和,用数学表达式表示为 这个递推规律是整个数列推理中递推数列的基础所在。在公务员考试中,曾经出现过直接应用这个规律递推的数列。 例题1:(2002年国家公务员考试A类第4题)1,3,4,7,11,() A.14 B.16 C.18 D.20 【答案】:C。 【解析】:这道题可以直接应用斐波那契数列的递推规律,即 因此所求项为 7+11=18 (二)递推规律的多种变式 例题2:(2006年北京市大学应届毕业生考试第1题)6,7,3,0,3,3,6,9,5,() A.4 B.3 C.2 D.1 【答案】:A。 【解析】:这是很别致的一道试题。从形式上看,这个数列很特殊,不仅给出的已知项达到了9项之多,而且每一项都是一位数字,由此可以猜到这个数列的运算规律。这个数列从第三项开始存在运算递推规律取“”的尾数 由此可知所求项为 取“9+5=14”的尾数,即4 这道题的运算递推规律是将两项相加之和变为了取尾数。 例题3:(2005年国家公务员考试二卷第30题,2006年广东省公务员考试第5题)1,2,2,3,4,6,()

数列的几种递推公式

数列的几种递推公式 一、 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 二、 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。

例3:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:1231 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437 52633134 8531n n n n n --= ????=---。 变式:已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则 {a n }的通项1 ___n a ?=?? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32, 用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a , n a a a a a a a a a n n =???====∴-1 3423121,,4,3,1, 1, 将以上n 个式子相乘,得2 ! n a n =)2(≥n 三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。

非线性递推数列

二、非线性递推数列 目的要求:掌握常见的非线性递推数列的通项求法(化为:一阶线性、恒等变形、 不动点法、数归法、母函数法等) 重点:(难点)根据其特点采用相应方法求n a 1、分式递推数列:b aa d ca a n n n ++=+1 ⑴ 若0=d ,则 c a ca b ca b aa a n n n n +=+= +1 1 令其为c a b c b b n n +=+1 (一阶线性……) ⑵ 若0,0≠≠c d ,用不动点法(P166 TH10) 例1、1,1 211=+= +a a a a n n n n ,求n a 解:n n n a a 21 11 += +即n n n b b 21+=+ 则() 1 21 122212 12121 1-= ∴-=+-=--+ =-n n n n n n a b b 例2、1,924111==+-++a a a a a n n n n ,求n a 解:变形:()4 9 211-+-+= +=++αααn n n n b b b a ()() 4 9 6221 -++---= +ααααn n n b b b 令0962=+-αα(化为⑴型) 321==αα 则11 11 1 1-= -- =++n n n n n b b b b b ? ?? ???n b 1是等差且常…

1 25 6212 2 1111--= ∴-= ∴-=-=∴ n n a n b n n b b n n n 题中α恰好是x x x =--492的根,即α为()4 9 2--=x x x f 的不动点 TH9 P166 TH10 P166 ()() d cn b an n f -+= 则① ??? ???--21ααn n u u 是等比…… ② ? ?? ???-p u n 1是等差…… 2、其他非线性递推数列 恒等变形后 ?????? ??? ??母函数法数归迭代分式线性等差(等比) (书上例10、11、12) 例10、{}()33,2,1,2 1 1321≥+= ===--+n a a a a a a a a n n n n n ,求n a 解:变形1213--++=n n n n a a a a (21,-+n n a a 非连续二项) 2133---+=n n n n a a a a 211321-----+-=-?n n n n n n n n a a a a a a a a ()()11231-+---+=+?n n n n n n a a a a a a 即: 2 3 111----++= +n n n n n n a a a a a a (为常数列) ()43 2 1 311==+=+∴-+n a a a a a a n n n 113-+-=∴n n n a a a 二阶常线性齐次…… =∴n a (特征根法)

递推数列常十种方法

求递推数列通项公式的十种策略例析 递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。 一、利用公式法求通项公式 例1 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 解:n n 1n 23a 2a ?+=+两边除以1n 2+,得 23 2a 2a n n 1 n 1n + = ++,则232 a 2a n n 1n 1n =-++, 故数列}2a { n n 是以1222 a 1 1==为首,以23 为公差的等差数列,由等差数列的通项公式,得23) 1n (12a n n -+=,所以数列}a {n 的通项公式为n n 2)2 1 n 23(a -=。 评注:本题解题的关键是把递推关系式n n 1n 23a 2a ?+=+转化为 2 3 2a 2a n n 1 n 1n = -++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12 a n n -+=,进而求出数列}a {n 的通项公式。 二、利用累加法求通项公式 例2 已知数列}a {n 满足1a 1 n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+ 则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---Λ

相关文档
最新文档