电动机差动保护装置

电动机差动保护装置
电动机差动保护装置

WDZ-5231电动机差动保护装置

1装置功能

WDZ-5231电动机差动保护装置主要用于10KV及以下2000KW及以上三相异步电动机的差动保护,与配套的WDZ-5232电动机保护测控装置共同构成大型电动机的全套保护。

WDZ-5200系列电动机保护装置还包括WDZ-5232电动机保护测控装置、WDZ-5233电动机综合保护测控装置,三者在保护、测控功能的区别见下表所示。

2保护功能及原理

2.1电动机状态

电动机按照运行状态,有停机态、起动态、运行态之分。

如果I max<0.125I e,电动机处于停机态;

电动机原本处于停机态,检测到I max>0.125 I e:如果I max>1.125 I e,认为电动机进入起动

态;如果I max ≤1.125 I e ,则认为电动机起动结束,直接进入运行态。

如果电动机处于起动态,检测I max ,如果0.125 I e

其中I max 为电动机机端电流最大值。 2.2

差动起动元件

装置差动速断和比率差动采用突变量起动元件和过流起动元件,当差动电流发生突变或者差动电流的最大值大于相应的过流定值时,起动元件动作并展宽10s ,开放起动继电器。 2.3

差动电流制动电流计算公式

按照同名端同在一侧的原则,进行差动电流的计算,即为两侧电流的矢量和;制动电流按照两侧电流绝对值和的一半计算。

差动电流:l h I I DI ?

?

+=

制动电流:2/)(l h I I HI ?

?+=

2.4 差动速断保护 2.4.1

保护动作逻辑框图

I da >I cdsd

I dc >I cdsd

I db >I cdsd

2.4.2

保护动作判据

cdsd I DI

>max

式中,I cdsd :差动速断保护动作电流整定值(A ) 2.5

比率差动保护

装置采用三折线比率差动原理,其动作曲线如下图所示,第3折线斜率固定为1。比率差动保护必须在电动机不在停机态时,方才有效。

DI Isd

Icdqd

0.5Ie HI

3Ie

2.5.1 保护动作逻辑框图

HI ≤0.5I e DI>I cdqd

0.5I e

DI-I cdqd >K×(HI-0.5I e CT 断线

HI>3I e

DI-I cdqd -K×2.5Ie>HI-3I e

2.5.2 保护动作判据

()?

??

??>->?--≤<-?>-≤>e

e e cdqd e e e cdqd e cdqd I HI I HI I K I DI I HI I . I HI K I DI I HI I DI 3 35.23 50 5.05.0 式中,I cdqd :比率差动保护动作电流整定值(A )

I e :电动机运行额定电流二次值(A )

2.6

延时CT 断线告警功能

延时CT 断线判别逻辑为:六个电流中仅有一个电流小于0.125倍额定电流,且其它五个电流均大于0.125倍额定电流,且连续超过2秒满足此条件,则发出CT 断线告警信号,但不闭锁比例差动。 2.7

瞬时CT 断线闭锁功能 CT 断线判别是基于以下假设的:

(1) CT 断线不是所有相同时发生的; (2) CT 断线与故障不是同时发生的。 满足下述任一条件不进行CT 断线判别:

(1) 起动前某侧最大相电流小于0.2Ie ,则不进行该侧CT 断线判别; (2) 起动后最大相电流大于1.2Ie ;

(3)起动后任一侧电流比起动前增加;

只有在比率差动元件动作后,才进入瞬时CT断线判别程序,这也防止了瞬时CT断线的误闭锁。

某侧电流同时满足下列条件认为是CT断线:

(1)只有一相或二相电流为零;

(2)其它二相或一相电流与起动前电流相等;

通过控制字投入或退出瞬时CT断线可闭锁比率差动。

2.8磁平衡差动保护

通常的基于电流平衡原理的电动机差动保护,在电动机自起动和外部短路暂态过程中,由于两侧电流互感器对穿越性暂态电流的传变特性不一致,产生不小的暂态不平衡差动电流,造成差动保护误动。

现场机端CT和中性侧CT二次电缆可能长度不一致,甚至相差很大,造成CT二次负载相差较大,出现电流传变特性不一致,产生一定的不平衡差动电流,造成差动保护误动。

磁平衡差动保护三相接线如下所示,电动机每相绕组的始端(机端)和终端(中性侧)引线分别入、出磁平衡电流互感器TA0的环形铁芯。在电动机正常运行或外部短路时,各相始端和终端电流一进一出,互感器一次安匝为零,二次无输出,保护不动作。由此可见,在电动机没有发生相间短路的情况下,依靠互感器一次励磁安匝的磁平衡,互感器二次侧没有不平衡电流,从而彻底根除电动机自起动和外部故障短路暂态过程中的误动作。

T A0

T A0

T A0

磁平衡差动保护装置需要和专用磁(自)平衡CT配合使用,从中性侧三相电流接入。此时传统差动保护不再使用。

2.8.1 保护动作逻辑框图

I al >I cph

I cl >I cph

I bl >I cph

2.8.2

保护动作判据

????

?>>cph

cph

l t t I I max 式中,I lmax :磁平衡A 、B 、C 相电流(I al ,I bl ,I cl )最大值(A )

I cph :磁平衡差动保护动作电流整定值(A ) t cph :磁平衡差动保护动作时间整定值(s )

2.9

保护定值

2.10 软压板

装置提供软压板功能,在进行软压板投退过程中,会产生软压板虚拟遥信变位信息。

3 背板端子和接线原理图

3.1

模拟量输入

I ah 、I bh 、I ch 为电动机机端三相保护电流,有额定5A 和1A 之分。

I al 、I bl 、I cl 为电动机中性侧三相保护电流,有额定5A 和1A 之分。如果为磁平衡保护,此电流从磁平衡CT 引入,为保证精度,一般选择二次CT 额定为1A 。

3.2背板端子

从装置前面看,背板端子最左边为插槽1,最右边为插槽5,中间分别为插槽2、插槽3、插槽4。从装置背面看,最右边为插槽1,最左边为插槽5。

端子编号为3位数,如“ABC”,第一位A为插槽序号,第二三位BC为自上而下端子的序号。如插槽3的第1个端子,编号为301。

插槽1:模入板

端子101~102为电动机机端保护A相电流输入。

端子103~104为电动机机端保护B相电流输入。

端子105~106为电动机机端保护C相电流输入。

端子107~108为电动机中性侧保护A相电流输入或磁平衡A相电流输入。

端子109~110为电动机中性侧保护B相电流输入或磁平衡B相电流输入。

端子111~112为电动机中性侧保护C相电流输入或磁平衡C相电流输入。

插槽2:空板

插槽3:出口板

端子301~304为保护联跳输出。301~302为其中一副接点输出;303~304为其中另一幅接点输出。

端子305~308为开出2出口。305~306为其中一副接点输出;307~308为其中另一幅接点输出。

端子309~310为保护跳闸出口。

端子311~312为开出4出口。

端子313~314为开出5出口。

端子325~326为装置故障告警信号输出。

端子327~328为保护跳闸信号输出。

端子329~330为保护告警信号输出。

端子331~332为动作告警信号输出,当保护动作或保护告警时,此信号输出。插槽4:接口板

端子401~402为现场总线1输入,401为正极性,402为负极性。可选择CAN、ProfiBus网络接口。

端子403为信号地。

端子404~405为现场总线2输入,404为正极性,405为负极性。可选择CAN、ProfiBus网络接口。

端子406~407为GPS对时输入端口,接485差分电平。

端子408为信号地。

装置接地螺柱必须和现场接地网可靠连接。

插槽5:电源板

端子503~504为装置电源输入,装置电源可选择交直流220V或直流110V。503为装置电源负输入端,504为装置电源正输入端。

端子506~530为24路强电直流110V或220V开入。506为开入公共负端,507~530为24路开入输入。

端子531~532为装置闭锁输出,常闭接点。装置24V失电或内部CPU不正常工作,接点闭合。

3.3 端子接线原理图 3.3.1

模拟量输入接线原理图

中保流

电护

侧性机流电

端侧护

电流

3.3.2

开入、开出、中央信号、网络回路接线原理图

开入16开入21开入公共端

开入23开入24开入

22

开入17开入18开入19开入20小母

线

开入10

开入11开入12采

开入13开入14

开入15装

置L/DC+

L/DC-源

开入1开入4开入5开入6开入7开入2

开入8开入9信量电空气开关

装置闭锁

中装置故障

动作告警信号号

信保护动作

保护告警

央开入3

保护联跳

开出2

开出4

开出5保护跳闸

GPS对时

现场总线2

通讯网

GPS-信号地

信号地

NET2-A

GPS+

NET2-B

NET1-B

NET1-A

现场总线1

4 装置选型

1:CAN 网络

1:直流电源110V 2:直流电源220V 1:二次电流In 1A 5:二次电流In 5A

2:ProfiBus 网络

(1)装置网络通讯接口可选配CAN 、ProfiBus ,均为双网配置;如果需要选配RS485接口,

请特殊说明;

(2)装置开入电源有直流110V 和直流220V 之分;装置电源不区分110V 和220V ,也不

区分交流和直流;

(3)装置保护电流二次额定值有1A 和5A 之分; (4)装置可扩展开入、开出资源,请特殊说明;

(5)装置无测控功能,不配置4~20mA 输出和硬件电能板;也不配置操作回路。

5 整定说明

5.1

重要提示

本整定说明仅供参考。 5.2 差动保护

5.2.1

差动速断电流I cdsd

按躲过电动机起动时的最大不平衡电流计算:

max unb rel cdsd I K I =

式中,K rel :可靠系数,取2

I unbmax :电动机起动时最大不平衡电流,一般不超过2I e ,取2I e I e :电动机额定电流,二次值(A )

可取I cdsd =(4~5)I e 5.2.2

最小动作电流I cdqd

按躲过电动机正常运行时的最大不平衡电流计算:

e er ap rel umb rel cdqd I K K K I K I ==

式中,K rel :可靠系数,取2

K ap :外部短路故障切除时引起电流互感器误差增大的系数,即非周期分量,取1.5

K er :电流互感器综合误差,取0.1

可取I cdqd =(0.3~0.4)I e 5.2.3

比率制动系数K

可取K=0.4~0.5 5.3 磁平衡差动保护

5.3.1

磁平衡差动动作电流I cph

按躲过电动机起动时的最大不平衡电流计算:

e st er rel unb

rel cph I K K K I K I ==max

式中,K rel :可靠系数,取2

K er :电动机两侧磁不平衡误差,取0.5% K st :电动机起动电流倍数,可取6~7

可取I cph =(0.06~0.12)I e 5.3.2

磁平衡差动动作时间t cph

一般可取t cph =0

(新)高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

电动机保护装置开题报告

本科毕业设计开题报告 题目:电动机智能保护装置的设计 专题: 院(系): 班级: 姓名: 学号: 指导教师: 教师职称:

本科毕业设计开题报告 题目电动机智能保护装置的设计来源工程实际 1、研究目的和意义 电动机作为现代工业动力源,异步电动机价格低廉、结构简单、机械性能较好,在各行业中获得了广范的应用。在传统的电动机保护装置大多由电磁元件装置和模拟电子式保护器完成,但其功能单一、精度差、稳定性不高,动作时间慢的特点无法满足人们对电动机保护可靠性越来越高的要求,其保护长期困扰着继电保护专业人员和运行人员,抓好电动机保护的研究与推广工作,对国民经济有着重要的意义,对其进行可靠有效的保护尤为重要。因此电动机保护的自控、集中监控和智能化自处理是电动机保护主要研究方向。 2、国内外发展情况(文献综述) 我国电动机保护装置大概经过了以下的几个发展几个阶断。 一、热继电器、熔断器、电磁式继电器:建国初期,我国引进苏联JR系列继电器。但热继电器等存在致命缺陷,包括整定粗糙、受环境影响大、误差大、重复性差、功能单一等。无法满足高要求,因此也就无法避免被淘汰的命运。 二、模拟电子式电动机保护装置:在上世界八十年代,由于半导体元件普及,涌出一批性能可靠、功能多样的电子式电机保护器。但这类产品仍存在一些无法避免的缺点,整定精度不高、采样精度不高、无法实现具有多功能为一体的全面保护。随着科技的发展,人们对电机保护要求也越来越高,希望电动机保护器结构简单,体积小,接线简单,这些都是模拟电子保护装置无法实现的。 三、数字式电机保护器:这类电机保护器主要以单片机作为电机保护器,可实现智能化综合保护,在采样和整定上有质的飞越,可对信号进行软件非线性校正,极大地降低了被测信号畸变的影响,真正实现了高度采样。电动机保护器正朝着智能化、综合化、高精度、高可靠性发展。 3、研究/设计的目标: 本设计的目标是以单片机为核心的电机保护系统,能够精准、快速、有效的检测出电动机故障,实现电动机及时有效的保护,对电动机的过压、过流、短路等故障进行实时检测,确保电动机安全运行。 4、设计方案(研究/设计方法、理论分析、计算、实验方法和步骤等): 电动机保护装置是分析三相异步电动机在运行中可能发生的常见故障,以单片机为中心控制部件,如短路、过流、低电压、过负荷、单相接地等。该系统具有自检、自诊断、故障参数记忆等功能。 系统分硬件部分和软件部分 一、硬件部分: 硬件部分主要由电压互感器、电流互感器、A/D转换器、单片机,报警,LED显示。系统先由

电动机综合保护器

电动机综合保护器 电机综合保护器是针对超载、断相起保护作用,器件的接线端分别接电源及与控制线路串联,以便出现超载或断相时切断控制线路作为保护,并不是用它来控制电机起动的。 电机综合保护器对电机进行全面的保护,在电机出现过流、欠流、断相、堵转、短路、过压、欠压、漏电、及三相不平衡状态时予以保护措施,启动延时,数字电流表、电压表功能,能显A、B、C三相运行电流,实现多种参数设定功能,故障记忆报警查询和动作值保持功能,来电自启动和自动复位功能。 电机因电性原因出现过负荷、缺相、层间短路及线间短路、线圈的接地漏电、瞬间过电压的流入等造成损坏,或者是由于机械原因,如堵转、电机转动体遇到固体时,因轴承磨损或润滑油缺乏出现热传导现象,损坏电机。由于非正常运行或停止或损坏,会造成生产损失或停止时间内产生的人力损失无法与电机本身更换的费用相提并论,其损失巨大,那么我们就需要对电机进行有效的保护,以便保证生产的正常运行。 对于因电性原因出现的故障,无论是过电流还是过电压,其主要是因为电流瞬间增大,超过了电机的负载电流值而造成

损坏。电机综合保护器根据这一原理,通过监测电机的两相(三相)线路的电流值变化,进行电机的保护,对于过电压、低电压,是通过检测电机相间的电压变化,进行电机的保护。 电机综合保护器保护功能 1、过负载和过电流的保护 2、缺相保护 3、逆相保护 4、接地漏电保护 5、堵转保护 6、相不平衡保护 7、短路保护 8、过电压保护 9、低电压保护 10、过热保护 11、缺电流保护 对于新型号系列的电机综合保护器增加了过热保护和通讯功能,在控制室可以通过控制软件进行0~254的节点上的电机综合保护器进行远程设置与监测控制。

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

ZYD300H 电机保护器

智能型微机电机保护器使用说明书(LED/LCD通用) 1.概述 智能型微机监控电机保护器适用于AC380V、AC660V低压系统,作为低压异步电动机和增安型电动机的保护、监测和控制的新一代智能化综合装置。除了先进的电动机保护、监控功能,还提供了设备运行和跳闸的记录以及额定参数等重要信息,并且采用现场总线方式结构,为现代化的设备管理带来很大的便利;广泛用于石油、化工、电力、冶金、煤炭、轻工、纺织等行业。 符合标准:GB3836.3-2000、GB14048.4-2003、IEC255 2.特点 ●“tE时间保护”符合有关增安型防爆电动机过载保护的国家标准(GB3836.3-2000) ●交流采样,测量A、B、C三相电流及控制回路电压 ●现场显示电动机运行状态,保存三次电动机故障跳闸记录 ●一路保护输出,二路自定义继电器输出,一路4~20mA电流输出,一路RS485接口 ●分体式电机保护器可选DI输入模块,控制正反向启动,自启动,及开关量控制单元 ●大屏幕LED或高清晰度宽温液晶显示,并具有背景光,跟随电动机运行状态和用户要求实时显示 ●三相电流不平衡、断相、过压、欠压、自启动等功能用户可取可舍 ●启动中过流保护设定,可根据电机情况进行多种倍数调节 ●模拟量输出微调功能,可以消除由于线路衰减造成的误差精度 ●2路可编程继电器J2 J3多达5种设置输出功能。满足不同的现场保护情况 ●采用E2PROM存储技术,实现参数电设定,掉电后设定参数仍保存下来,勿须再设定 ●采用RS485通信总线,可广泛用于各种监控系统作为带有电机保护及控制的智能化监控单元 ●一机多用,可取代电流表、电压表、热继电器、电流互感器、时间继电器和漏电继电器等 3.主要功能 保护功能: 过流、堵转、断相、三相电流不平衡、过压、欠压、短路、漏电(选配)等故障保护 测量功能: 三相电流、控制回路电压的测量和显示 通用功能: 增安型电动机保护、三相异步电动机保护、馈线保护,三种保护装置通用 通信功能: 通过本保护器的RS485接口与上层系统通信。总线接口支持参数设置、控制及监测等功能,支持Modbus通信协议。 一般采用RS485总线接口进行物理连接,通常上位机或PLC设备作为主站,本保护器作为子站。 电流输出: 4~20mA电流输出,20mA对应的电流值可设。 起动方式: 直接起动、正反起动、Y-△起动、自耦降压起动、远程自启动

XX-MM 系列电动机综合保护装置

XX-MM系列电动机综合保护装置 (V1.0版)

目录 第1章概述 (1) 1.1产品简介及产品特点 (1) 1.2产品功能 (2) 1.2.1监测功能 (2) 1.2.2保护功能 (3) 1.2.3通讯功能 (3) 第2章装置选型 (4) 第3章产品结构及安装尺寸 (5) 3.1显示面板安装尺寸 (5) 3.2主体端子视图及安装尺寸 (6) 3.3电流互感器安装尺寸 (7) 3.4漏电互感器安装尺寸 (8) 第4章保护功能原理 (10) 4.1过流保护 (10) 4.2堵转保护 (10) 4.3接地保护 (11) 4.4漏电保护 (11) 4.5启动超时 (11) 4.6不平衡保护 (11) 4.7缺相保护 (11) 4.8相序保护 (12) 4.9过热保护 (12) 4.10超分断保护 (12) 4.11tE时间保护 (13) 第5章操作说明 (15) 5.1上电检查 (15) 5.2显示面板 (15)

5.3一级菜单 (16) 5.4定值查看 (17) 5.5定值设置 (17) 5.4.1保护定值设置 (17) 5.4.2通讯设置 (18) 5.4.3额定参数 (19) 5.4.420mA参数 (19) 5.4.5启停判据 (19) 5.4.6出厂设置 (20) 5.4.7修改密码 (20) 5.6时间校正 (21) 5.7事故清除 (21) 5.8热量清除 (21) 5.9事故记录 (22) 5.9.1清楚事故 (22) 5.9.2记录查看 (22) 第6章技术参数 (23) 第7章附录 (25) 7.1附录A典型接线图 (25) 7.2附录B Modbus通讯规约(Vcom.1) (26) 7.3保护定值整定推荐表 (28) 7.4初始密码表 (29) 第8章服务承诺 (30)

UFit-M电动机保护装置

UFit-M电动机保护测控装置 一、概述 本装置适用于10kV及以下电压等级的电动机保护测控,可集中组屏,也可在开关柜就地安装,全面支持变配电综合自动化系统。 1.保护功能 ◆二段式定时限过流保护(限时速断、过电流) ◆二段式定时限负序过流保护(负序限时速断、负序过电流) ◆二段式反时限过流保护 ◆二段式反时限负序过流保护 ◆堵转保护 ◆过负荷告警 ◆低电压、过电压保护 ◆零序过流保护(报警可选择跳闸) ◆零序过压保护(报警可选择跳闸) ◆过热保护 ◆非电量保护(温度过高、温度升高) ◆ 2.辅助功能 ◆PT断线告警 ◆控制回路断线告警 ◆装置故障告警 ◆故障录波 ◆保护定值和时限的独立整定 ◆自检和自诊断 3.测控功能 ◆电量测量(遥测量):电压、电流、有功功率、无功功率、有功电能、无功电能、 功率因数、电网频率等 ◆遥信量:装置共有14路开入量,其中:12路为采集外部遥信,2路为内部开关 量信号 ◆遥控量:完成1台断路器就地或遥控分合闸操作 4.闭锁功能

◆断路器就地和遥控操作互为闭锁且具有防跳功能 5.通讯功能 ◆标准的RS485多机通讯接口

二、基本原理 过流Ⅰ段保护按躲过启动电流整定,时限可整定为速断或带极短的时限,该保护主要对电动机短路提供保护。当任一相达到整定值,,且过流Ⅰ段保护的投退控制字处于投入状态,则定时器启动,若持续到整定时限,则立即跳闸。 过流I段跳闸(J3) 图1 过流I 段保护逻辑图 过流II 段保护,又称堵转保护,它是在电动机启动完毕后自动投入,该保护可根据启动电流或堵转电流整定,主要对电动机启动时间过长和运行中堵转提供保护。在超过电动机启动时间后,当任一相达到整定值,且过流Ⅱ段保护的投退控制字处于投入状态,则定时器启动,若持续到整定时限,则立即跳闸。过流II 段还可以通过控制字选择该段采用定时限还是反时限特性。 图2 过流II 段保护逻辑图 当电动机三相电流有较大不对称,会出现较大的负序电流,而负序电流将在转子产生 2倍工频电流,使转子的附加发热大大增加,危及电动机的安全运行。 本装置具有两段定时限负序过流保护,分别对电动机反相,断相,匝间短路以及较严重的电压不对称等异常工况提供保护. 其中负序过流II 段作为灵敏的不平衡电流保护,可通过控制字来选择该段跳闸或报警,选择报警时该段可作为负序过负荷报警使用,也可通过控制字来选择该段采用定时限还是反时限特性。 根据国际电工委员会标准(IEC60255-4)的规定, 本装置采用其标准反时限特性方程中的极端反时限特性方程(extreme IDMT): p t Ip I t 1802 -?? ? ??=

电动机保护措施与装置

电动机知识 电动机保护措施与装置 为了防止电动机发生故障而损坏,甚而使事故扩大,对电动机一般有以下几种电气保护措施: 1)短路保护对电动机及其线路的短路大电流作及时的切断保护,一般采用熔丝或断路器的电磁瞬时脱扣作短路保护。 2)过载(过负荷)保护电动机一般采用热继电器(与接触器配合)或断路器的热脱扣器进行过载保护。 3)断相运行保护(又称缺相运行保护或两相运行保护)缺相运行保护也是一种过载保护,在条件允许时,应单独设置缺相运行保护装置。常用保护方法有: (1)采用带断相保护装置的热继电器作缺相保护; (2)欠电流继电器断相保护; (3)零序电压继电器断相保护; (4)断丝电压继电器断相保护; (5)利用速饱和电流互感器保护; (6)电子式断相保护线路。 4)失压和欠压(低电压)保护为了防止电动机在过低电压下起动和运行,一般采用交流接触器的电磁机构,断路器的失压脱扣器,自耦减压起动器的欠压脱扣器及电压继电器等。 5)接地或接零保护当电动机外壳带电时,防止人接触及机壳而触电的保护装置。 〃电动机启动困难或根本不能起动的原因及 〃锤片式粉碎机的常见故障及排除方法 〃合理选用配电变压器的容量 〃电动机正常运行时对三相电压的要求 〃实现电动机继电接触控制需要基本的控制

〃潜水排污泵及井用潜水电泵四大常见冷却 〃电动机的正反转控制 〃电机发生以下故障应立即切断电源 〃冬季收藏农机具要七防 Domain:https://www.360docs.net/doc/251280047.html, dnf辅助More:d2gs2f 〃电动机单线远程正反转控制电路图_电路 〃同步电动机的结构_电路图 〃直流无刷电动机原理与控制_电路图 〃塔机电气系统维护及故障排查方法 〃电动机工作电流超限报警电路_电路图 〃申励电动机的半波调速电路_电路图 〃高压数字绝缘电阻测试仪厂家为您解读电 〃三个接触器控制的星形-三角形降压起动 〃电动机刀开关控制线路_电路图 〃五菱之光微型车启动困难、无怠速、易熄 〃海尔XQG52-HDY800等玫瑰钻系列滚筒式洗 〃接触器控制的单向运行控制线路_电路图 〃防爆油桶泵的优势分析 〃频器容量问题解决注意事项简析 〃基于UC3637的直流电动机PWM控制电路图_ 〃电动机轴承异响故障分析及应对措施 〃多台电动机逐一星形三角形起动电路_电 〃变频器的暂停减速功能 〃变频器过压类故障的分析 〃变频器启动前的直流制动功能 〃变频器与电动机的距离 收录时间:2014年02月24日15:05:08 来源:《高效饲料加工技术问答》作者:

实用文档之高压电动机差动保护原理及注意事项

实用文档之"高压电动机差动保护原理及注意事项" 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之

差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT 二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下: ≥1 & & ≥1 ACT BTJ ACT BTJ t dz 差动速断(投跳) 比率差动(投跳) I da >I sd I ∑>I N I d >I set I ∑I sd I d >I set 差动 速断 保护 分相 比率 差动 保护

电动机差动保护的原理及应用

电动机差动保护的原理及应用 摘要:本文阐述了大型电动机差动保护原理。分析了差动保护的分类及对灵敏度的影响并介绍了差动原理逻辑图。 关键词:差动保护、比率差动、二次谐波闭锁比率差动 引言 大型高压电动机作为昂贵的电气主设备在发电厂,化工厂等大企业得到广泛的应用。如果发生严重故障导致电机烧毁,将严重影响生产的正常进行,造成巨大的经济损失,因此必须对其提供完善的保护。现有电动机综合保护装置主要针对中小型电动机,为其提供电流速断,热过载反时限过流,两段式定时限负序,零序电流,转子停滞,启动时间过长,频繁启动等保护功能。而对于2000KW以上特大容量电动机,则无法满足其内部故障时对保护灵敏度与速动性的要求,因而研制此装置并配合综合保护装置,为高压电动机提供更可靠更灵敏的保护措施。按照《电力装置的继电保护和自动装置设计规范》GB50062的要求:2MW 及以上的电机应装设纵差保护。 一概述 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

CSC 237A数字式电动机保护装置

CSC 237A数字式电动机综合保护测控装置 1装置简介 本装置适用于10kV及以下各种中性点非直接接地系统,作为大中型异步电动机(数百千瓦以上) 相间故障、过负荷、堵转等综合保护。可在开关柜就地安装。 2 主要功能及技术参能 2.1 保护功能 ?反应相间故障的速断保护 ?反应堵转的过电流保护 ?过负荷保护(可选择跳闸或仅告警发信) ?长起动保护 ?过热保护(过热跳闸、过热告警、热积累记忆功能) ?不平衡保护(断相/反相,负序过流保护,可选择定时限或反时限) ?接地保护(零序过流保护,可选择跳闸或仅告警发信) ?低电压保护 ?F-C过流闭锁 ?非电量保护 2.2 测控功能 ?15路开入遥信采集、装置遥信变位、事故遥信 ?正常断路器遥控分合 ?Ua、Ub、Uc、Ia、Ic、P、Q、COSф等模拟量的遥测 ?各种事件SOE等

2.3 技术参数

3 保护元件 3.1 长起动保护 装置测量电动机起动时间Tstart的方法:当电动机的最大相电流从零突变到10%Ie时开始计时,直到起动电流过峰值后下降到120%Ie时为止,之间的历时称为Tstart。(Ie为电动机额定电流。)电动机起动时间过长会造成转子过热,当装置实际测量的起动时间超过整定的允许起动时间Tstart时,保护动作于跳闸。

图1 异步电动机起动电流特性 为了降低起动电流,减少对电网的无功冲击,大型的异步电动机常常串联电抗器或者电阻,以实现降压起动;起动完毕后短接串联电抗器或者电阻。本装置设置了专用的控制字,如果选择“降压起动方式投入”,则装置在起动完毕以后,给出一付“投全压”的接点,以便及时短接分压电抗器,使电动机进入额定电压运行。 为了试验方便,当CSC 237保护装置检测到电动机在“起动过程中”时(即上图中的Tstart时段),面板MMI最下一指示绿灯(备用)点亮。 3.2 过热保护 过热保护综合考虑了电动机正序、负序电流所产生的热效应,为电动机各种过负荷引起的过热提供保护,也作为电动机短路、起动时间过长、堵转等的后备。 用等效电流Ieq来模拟电动机的发热效应,即: Ieq= 2 2 2 2 1 1 I K I K+ 式中:Ieq-等效电流 I1-正序电流 I2-负序电流 K1-正序电流发热系数,电动机起动过程中取0.5,电动机起动结束后取1.0 K2-负序电流发热系数 根据电动机的发热模型,电动机的动作时间t和等效运行电流Ieq之间的特性曲线由下列公式给出:

电动机保护器的保护原理及应用

电动机保护器的保护原理及应用 1、引言 在当今的动力设备中,电动机是应用最为广泛的,电动机能够正常运转发挥,是其他的设备能够正常工作的前提条件,所以电动机保护器的合理利用是对正常的生产工作负责的表现,只有在电动机正常发挥其功能的基础上,才能够保证一个企业的工作流程不会受到干扰,可以正常运转。现如今,电动机已经被广泛的应用到各行各业当中,在各个领域当中都发挥着及其重要的作用。电动机保护器的作用是保证电动机在发电,供电,用电的一系列流程中,不会中途受到某些因素的制约而停止工作的的一种设备。在电机出现过热、接地、轴承磨损、定转子偏心时、绕组老化时,电动机保护器会予以报警或保护控制。如今电动机保护器几乎渗透到所有用电领域,其影响也是非常的巨大,所以电动机保护器的保护就显得和重要。 2、电动机保护器的保护原理与构成 2.1电动机烧毁的主要原因是运行时出现断相和过载烧毁绕组,因而,有电动机存在的电路应该装设有电动机保护器,以保证在电动机出现断相和过流运行时及时切断工作电源,保护电动机免受损坏,小型电动机的主要保护器是热继电器,而当面对大型电动机时,如果还使用热继电器对电动机进行保护的话其连接点(即进出热继电器的螺丝接线点)就很容易出现发热现象及发生故障,为避免如上问题,就出现了电动机综合保护器,电动机综合保护器是穿心式的,可以减少电线连接点,可以减少发热点和故障点,价格也便宜。 2.2使用电机综合保护器时必须注意控制线路的接线问题,以确保正常运行 2.3有的电机综合保护器注明,一定要接上负载才能正常工作,不接负载时表示电路处于缺相工作状态,因此综合保护器是拒绝合闸的,电动机将无法启动,这说明电机综合保护器内部是依靠电流互感器来检测三相线电流的有无,来判断电路是否存在缺相问题,因而在未接通电源或没有负载时,个闭点实际上是开点所以没办法合闸。 2.4某些大型电机冷却系统故障或是长时间工作在高温高湿环境下造成电机故障。电动机保护原理的研究是保证电动机保护器性能高低的关键,根据三相对称分量法的理论,三个不对称的向量可以唯一分解成三组对称的向量,分别为正序分量、负序分量和零序分量。电动机在发生对称故障和不对称故障时,电动机的三相电流都会发生变化。电动机故障条件流过绕组的电流过大,超过电动机的额定电流,因此可根据这一特征来对电动机过电流进行保护。电机过载、断相、欠压都会造成绕组电流超过额定值。电源电压欠压,运行电流上升的比例将等于电压下降的比例;电机过载时,常造成堵转,此时的运行电流会大大超过额定电流。针对以上情况,电动机保护器可通过对三相运行电流进行检测,根据运行电流的不同性质来确定不同的保护方式,从而对电机予以的断电保护。电动机的故障类型分为过流保护、负序电流保护、零序电流保护、电压保护和过热保护等几种。通过对电动机保护器的保护原理分析可以看出,理想的电动机保护器应满足可靠、经济、方便等要素,具有较高的性能价格比。经过发展和更新,如今电动机保护器一般由电流检测电路、温度检测电路、基准电压电路、逻辑处理电路、时

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

大型电动机高阻抗差动保护原理

大型电动机高阻抗差动保护原理、整定及应用 李德佳核电秦山联营有限公司 314300 [摘要]本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。 [关键词]高阻抗差动保护匝数比 1 概述 高阻抗差动保护的主要优点: 1、区外故障CT饱和时不易产生误动作。2、区内故障有较高的灵敏度。它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。 2 高阻抗差动保护原理及定值整定原则 2.1高阻抗差动保护的动作原理 2.1.1正常运行时: 原理图见图1,∵I1=I2 ∴ij=i1-i2=0. 因此,继电器两端电压: Uab= ij×Rj=0. Rj-继电器内部阻抗。 电流不流经继电器线圈,也不会产生电压,所以继电器不动作。 图中: TA1、TA2--电流互感器; Ru-- 保护电阻器; U>-- 高阻抗差动继电器。 2.1.2电动机启动时: 原理图见图2。由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和,假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。由于 ij=i1-i2 导致ij上升,继电器两端电压Uab上升。这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

电动机差动保护装置

WDZ-5231电动机差动保护装置 1装置功能 WDZ-5231电动机差动保护装置主要用于10KV及以下2000KW及以上三相异步电动机的差动保护,与配套的WDZ-5232电动机保护测控装置共同构成大型电动机的全套保护。 WDZ-5200系列电动机保护装置还包括WDZ-5232电动机保护测控装置、WDZ-5233电动机综合保护测控装置,三者在保护、测控功能的区别见下表所示。 2保护功能及原理 2.1电动机状态 电动机按照运行状态,有停机态、起动态、运行态之分。 如果I max<0.125I e,电动机处于停机态; 电动机原本处于停机态,检测到I max>0.125 I e:如果I max>1.125 I e,认为电动机进入起动

态;如果I max ≤1.125 I e ,则认为电动机起动结束,直接进入运行态。 如果电动机处于起动态,检测I max ,如果0.125 I e I cdsd I dc >I cdsd I db >I cdsd 2.4.2 保护动作判据 cdsd I DI >max 式中,I cdsd :差动速断保护动作电流整定值(A ) 2.5 比率差动保护 装置采用三折线比率差动原理,其动作曲线如下图所示,第3折线斜率固定为1。比率差动保护必须在电动机不在停机态时,方才有效。

智能电动机保护器ARD系列

智能电动机保护器ARD系列 5.1概述 ARD系列智能电动机保护器,具有过载、断相、不平衡、欠载、接地/漏电、堵转等保护功能。产品有ARD2简易型系列和ARD3高级型系列两大类。ARD保护器可与接触器、电动机起动器等电器元件构成电动机控制保护单元,具有远程自动控制、现场直接控制、面板指示、信号报警、现场总线通信等功能。可广泛应用于煤矿、石化、冶炼、电力、建筑等行业的配电领域。 5.2符合标准 ●GB/T14048.1-2000低压开关设备和控制设备总则 ●GB14048.4-2010机电式接触器和电动机起动器(含电动机保护器) ●GB14048.5-2001低压开关设备和控制设备控制电路电器和开关元件,第1部分:机电 式控制电路电器 ●GB/T17626.4-2006电快速瞬变脉冲群抗扰度试验 ●GB/T17626.5-2006浪涌(冲击)抗扰度试验 ●JB/T10736-2007低压电动机保护器 5.3适用环境 工作温度:-10℃~+55℃ 贮存温度:-20℃~+65℃ 相对湿度:5%~95%不结霜 海拔:≤2500m 污染等级:2级 防护等级:IP20 安装类别:III级 运用场合:煤矿、石化、冶炼、电力、船舶、以及民用建筑等领域 5.4产品规格 5.4.1ARD2系列智能电动机保护器 5.4.1.1功能 ARD2系列智能电动机保护器(以下简称保护器),采用最新的单片机技术,具有抗干扰能力强、工作稳定可靠、数字化、智能化、网络化等特点。保护器能对电动机运行过程中出现的过载、断相、不平衡、欠载、接地/漏电、阻塞、外部故障等多种情况进行保护,并设有SOE故障事件记录功能,方便现场维护人员查找故障原因。 5.4.1.2型号说明 ARD2—□/□ 附加功能:见表2 额定电流:见表1 设计序号 智能电动机保护器

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

电机保护器工作原理接线图说明书

JL-200型电机保护器-工作原理-接线图-说明书 一、概述 JL-200系列电机保护器是我公司在多年研制电机保护器产品的基础上开发出的新一代高科技产品。此产品以微电脑控制器(MCU)为核心元件,通过高精度CT检测电流,电机保护器具有自动线性修正功能,在宽电流范围内仍具有较高的测量精度,对过载、短路、堵转、欠载、缺相、三相电流不平衡、过压、欠压、相序、接触器故障等具有可靠的保护作用;并可实现报警和事件记录。本产品具有性价比高、功能齐全、工作稳定可靠、精度高、保护动作准确、安装、参数设定简单方便等特点。可广泛适用于机械、冶金、建材、化工、纺织行业等工业三相电动机及其它电器的保护与监测。 二、产品主要特点 系统采用宽温、低功耗工业级芯片,更适合于工业现场使用。 软件、硬件及电磁兼容性三个方面协同设计,产品具有很强的抗干

扰能力和很高的可靠性,特别适合于工业现场使用。 电流互感器变比可设置(5A规格),用户可直接查看一次回路的电力参数,使得采样数据更直观,使用更灵活。 采用交流同步采样和先进的数字信号处理算法,实现了实时数据处理和高精密性,有着卓越的可靠性,具有响应速度快、测量准确、精度高,事件记录等优点。 具有自学习过程,能自动检测电机起动过程与时间,生成起动曲线,优化保护参数;并能根据故障前电机负载率和运行时间自动调整过载保护动作时间。 事件记录功能:当保护动作时,记录保护类型、采样电流等参数,形成事件追忆数据,在失电或复位后可长久保存,便于事后分析。 采用模块化设计结构,产品体积小,结构紧凑,安装方便,在低压控制终端柜和1/4模数及以上各种抽屉柜中可直接安装使用,提高了控制线路的可靠性和自动化水平。 结构紧凑、华丽、精湛优美的外观和卓越的设计体现了高雅、精致、紧凑的产品。 完善的事故记录及自检功能,友好的人机界面,所有测量值和参数、保护信息等由面板液晶显示器实时显示。 三、技术参数 1、电动机保护功能 ●过载保护●欠载保护●堵转保护●阻塞保护●温度保护●相序保护●欠压保护●过压保护●起动超时保护

发电机差动保护原理

发电机差动保护原理

5.1 发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ≥ I op.0 ( I res ≤ I res.0 时) I op ≥ I op.0 + S(I res – I res.0) ( I res > I res.0 时) 式中:I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res.0为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零; b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于1.2倍的额定电流。 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护

该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: ??????????=?-Λ?2.2223sen j e e I U R P ? 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2. U ?的角度)。 故障分量负序方向保护的动作判据可表示为: P e I U R ε>?????????Λ?22' 2.22'sen j e I I ?-ΛΛ?=? 实际应用动作判据综合为: u U ε>??2 i I ε>??2 ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > εP (εu 、εi 、εP 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保

相关文档
最新文档