外文翻译---遗传算法在非线性模型中的应用

外文翻译---遗传算法在非线性模型中的应用
外文翻译---遗传算法在非线性模型中的应用

英文翻译

2011 届电气工程及其自动化专业 0706073 班级

题目遗传算法在非线性模型中的应用

姓名学号070607313

英语原文:

Application of Genetic Programming to Nonlinear

Modeling

Introduction

Identification of nonlinear models which are based in part at least on the underlying physics of the real system presents many problems since both the structure and parameters of the model may need to be determined. Many methods exist for the estimation of parameters from measures response data but structural identification is more difficult. Often a trial and error approach involving a combination of expert knowledge and experimental investigation is adopted to choose between a number of candidate models. Possible structures are deduced from engineering knowledge of the system and the parameters of these models are estimated from available experimental data. This procedure is time consuming and sub-optimal. Automation of this process would mean that a much larger range of potential model structure could be investigated more quickly.

Genetic programming (GP) is an optimization method which can be used to optimize the nonlinear structure of a dynamic system by automatically selecting model structure elements from a database and combining them optimally to form a complete mathematical model. Genetic programming works by emulating natural evolution to generate a model structure that maximizes (or minimizes) some objective function involving an appropriate measure of the level of agreement between the model and system response. A population of model structures evolves through many generations towards a solution using certain evolutionary operators and a “survival-of-the-fittest”selection scheme. The parameters of these models may be estimated in a separate and more conventional phase of the complete identification process.

Application

Genetic programming is an established technique which has been applied to several nonlinear modeling tasks including the development of signal processing algorithms and the identification of chemical processes. In the identification of continuous time system models, the application of a block diagram oriented simulation approach to GP optimization is discussed by Marenbach, Bettenhausen and Gray, and the issues involved in the application of GP to nonlinear system identification are discussed in Gray ?s another paper. In this paper, Genetic programming is applied to the identification of model structures from experimental data. The systems under investigation are to be represented as nonlinear time domain continuous dynamic models.

The model structure evolves as the GP algorithm minimizes some objective function involving an appropriate measure of the level of agreement between the model and system responses. One examples is

∑==n i e J 121 (1)

Where 1e is the error between model output and experimental data for each of N data points. The GP algorithm constructs and reconstructs model structures from the function library. Simplex and simulated annealing method and the fitness of that model is evaluated using a fitness function such as that in Eq.(1). The general fitness of the population improves until the GP eventually converges to a model description of the system.

The Genetic programming algorithm

For this research, a steady-state Genetic-programming algorithm was used. At each generation, two parents are selected from the population and the offspring resulting from their crossover operation replace an existing member of the same population. The number of crossover operations is equal to the size of the population i.e. the crossover rate is 100℅. The crossover algorithm used was a subtree crossover with a limit on the depth of the resulting tree.

Genetic programming parameters such as mutation rate and population size

varied according to the application. More difficult problems where the expected model structure is complex or where the data are noisy generally require larger population sizes. Mutation rate did not appear to have a significant effect for the systems investigated during this research. Typically, a value of about 2℅was chosen.

The function library varied according to application rate and what type of nonlinearity might be expected in the system being identified. A core of linear blocks was always available. It was found that specific nonlinearity such as look-up tables which represented a physical phenomenon would only be selected by the Genetic Programming algorithm if that nonlinearity actually existed in the dynamic system.

This allows the system to be tested for specific nonlinearities.

Programming model structure identification

Each member of the Genetic Programming population represents a candidate model for the system. It is necessary to evaluate each model and assign to it some fitness value. Each candidate is integrated using a numerical integration routine to produce a time response. This simulation time response is compared with experimental data to give a fitness value for that model. A sum of squared error function (Eq.(1)) is used in all the work described in this paper, although many other fitness functions could be used.

The simulation routine must be robust. Inevitably, some of the candidate models will be unstable and therefore, the simulation program must protect against overflow error. Also, all system must return a fitness value if the GP algorithm is to work properly even if those systems are unstable.

Parameter estimation

Many of the nodes of the GP trees contain numerical parameters. These could be the coefficients of the transfer functions, a gain value or in the case of a time delay, the delay itself. It is necessary to identify the numerical parameters of each nonlinear model before evaluating its fitness. The models are randomly generated and can

therefore contain linearly dependent parameters and parameters which have no effect on the output. Because of this, gradient based methods cannot be used. Genetic Programming can be used to identify numerical parameters but it is less efficient than other methods. The approach chosen involves a combination of the Nelder-Simplex and simulated annealing methods. Simulated annealing optimizes by a method which is analogous to the cooling process of a metal. As a metal cools, the atoms organize themselves into an ordered minimum energy structure. The amount of vibration or movement in the atoms is dependent on temperature. As the temperature decreases, the movement, though still random, become smaller in amplitude and as long as the temperature decreases slowly enough, the atoms order themselves slowly enough, the atoms order themselves into the minimum energy structure. In simulated annealing, the parameters start off at some random value and they are allowed to change their values within the search space by an amount related to a quantity defined as system …temperature?. If a parameter change improves overall fitness, it is accepted, if it reduces fitness it is accepted with a certain probability. The temperature decreases according to some predetermined …cooling? schedule and the parameter values should converge to some solution as the temperature drops. Simulated annealing has proved particularly effective when combines with other numerical optimization techniques.

One such combination is simulated annealing with Nelder-simplex is an (n+1) dimensional shape where n is the number of parameters. This simples explores the search space slowly by changing its shape around the optimum solution .The simulated annealing adds a random component and the temperature scheduling to the simplex algorithm thus improving the robustness of the method .

This has been found to be a robust and reasonably efficient numerical optimization algorithm. The parameter estimation phase can also be used to identify other numerical parameters in part of the model where the structure is known but where there are uncertainties about parameter values.

Representation of a GP candidate model

Nonlinear time domain continuous dynamic models can take a number of different forms. Two common representations involve sets of differential equations or block diagrams. Both these forms of model are well known and relatively easy to simulate .Each has advantages and disadvantages for simulation, visualization and implementation in a Genetic Programming algorithm. Block diagram and equation based representations are considered in this paper along with a third hybrid representation incorporating integral and differential operators into an equation based representation.

Choice of experimental data set——experimental design The identification of nonlinear systems presents particular problems regarding experimental design. The system must be excited across the frequency range of interest as with a linear system, but it must also cover the range of any nonlinearities in the system. This could mean ensuring that the input shape is sufficiently varied to excite different modes of the system and that the data covers the operational range of the system state space.

A large training data set will be required to identify an accurate model. However the simulation time will be proportional to the number of data points, so optimization time must be balanced against quantity of data. A recommendation on how to select efficient step and PRBS signals to cover the entire frequency rage of interest may be found in Godfrey and Ljung?s texts.

Model validation

An important part of any modeling procedure is model validation. The new model structure must be validated with a different data set from that used for the optimization. There are many techniques for validation of nonlinear models, the simplest of which is analogue matching where the time response of the model is compared with available response data from the real system. The model validation

results can be used to refine the Genetic Programming algorithm as part of an iterative model development process.

Selected from “Control Engineering Practice, Elsevier Science Ltd. ,1998”

中文翻译:

遗传算法在非线性模型中的应用

导言:

非线性模型的辨识,至少是部分基于真实系统的基层物理学,自从可能需要同时决定模型的结构和参数以来,就出现了很多问题。尽管从测量的响应数据来估计模型参数有很多方法,但是结构的辨识却更为棘手。选择模型通常是通过专家知识和实验研究结合的试验和误差逼近法从大量的候选模型中去选择的。可能的模型结构是从系统的工程知识演绎出来的,而这些模型的参数是从现有的实验数据得来的。这样的方法是如此耗时却未达到最佳标准,可能只有这个过程的自动控制才能更快地从更大范围的可能模型结构中去研究。

遗传算法(GP)是一种最优化的方法,它可以通过从数据库自动选择模型结构元件用来使动态系统的非线性结构及元件之间的结合最优化,然后形成一个完善的数学模型。遗传算法是通过效仿自然界的进化去产生一个使一些目标函数最大化(或最小化)的模型结构,这些目标函数包括模型和系统响应之间的协调水平的适当测量。一些模型结构通过很多代向着一种解决方案而发展,这种方案是利用可靠的进化操作者和“适者生存”的选择规则进行。这些模型的参数可能通过被分离和更多完全的辨识过程的传统状态而估计出来。

应用:

遗传算法是一种早已投入使用的技术,这种技术已经在一些包括信号处理运算规则和化学加工辨识在内的非线性建模任务中得到应用。在连续时间系统模型的辨识中,玛伦巴赫、贝特哈慈和格雷研究了应用方框图导向仿真以达到遗传算法最优化问题,另外关于遗传算法在非线性系统辨识中的应用问题在格雷的另一片论文中得以讨论。在这篇文章中,遗传算法是应用在从实验数据得来的模型结构的辨识中,其中被研究的系统是用来代表非线性连续时域动态模型的。

这些模型结构逐渐发展成为遗传算法运算规则,使得包括模型和系统响应之

间的协调水平的适当测量在内的目标函数最小化。举例说明:

∑==n i e J 12

1 (1)

在此式子中,1e 是指N 次数据点中每一次模型输出和实验数据之间的误差。遗传算法运算规则是在函数库的基础上实现构造和重建的,那种模型的单一和模仿的及恰当的退火方法是用来估计一个合适的函数如同方程(1)所示。通常遗传算法是在不断的完善,直到这个遗传算法最后汇聚到这个系统的模型描述。

遗传算法运算规则

在这个研究中,应用了一个比较稳定的遗传算法运算规则。对于每一代,父母代都是从库里挑选出来的,下一代则是由他们的作用交叉而产生的代替了现有库中的成员。作用交叉的数量是和库的总类相等的,也就是说交叉率是百分之百。交叉运算法则是一种限定了作为结果的树的深度的子树交叉法。

遗传算法参数比如转换率和群体大小要依据应用而改变。更难的问题在于期望的模型结构是联合体或者数据是聒噪的,这时通常需要更大的群体大小。在这个研究中转换率不会出现对系统调查很明显的影响。通常只有2℅的受到影响。

函数库根据应用率和可能在这个系统辨识中期望的非线性模型的类型而改变。处理线性系统的核心方法经常是非常有用的。结果发现,具体的非线性系统比如查表,如果非线性存在于动态系统中,那么其中所代表的物理现象只有被遗传算法运算法则所选定。

这将允许系统,以测试具体的非线性系统。

程序模型结构辨识

遗传算法的库中的每个成员代表这个系统的候选人模型。评估每个模型并给定它一些合适的价值是必要的。每名候选人是综合采用数值积分例行制作时间响应。这个仿真时间响应,是比较实验数据为这个模型以提供一个合适的价值。在这个论文中平方误差函数的和(等式(1))是用来描述所有工作的,虽然可以用很多其他的合适的函数来描述。

仿真例子必须鲜明有力。无可避免地,有些候选模式会不稳定,因此,仿真

程序必须防止溢出的错误。此外,如果GP算法能正常工作,即使这些系统是不稳定的,所有系统也必须返回一个合适的价值。

参数估计

许多遗传算法树的节点包含有数值参数。这些传递函数的系数、增益值或是在时间延迟的情况下,将会使自身延迟。在评估它的适当的价值前,有必要查明每一个非线性模型的数值参数。模型是随机产生的,因此,可以线性地包含相关参数和参数,并不会影响产量。正因为如此,基于梯度的方法也就不能使用了。虽然遗传算法可以用于识别数值参数,但比起其他方法它的效率较低。而选定的做法是Nelder-Simplex和模拟退火方法的联合,模拟退火的最优化方法是类似于金属冷却的过程。作为金属冷却过程,原子组织起来形成一个有序的最低能源结构,而数额振动或运动中的原子是依赖于温度的。随着温度的降低,运动虽然是任意的,成为较少的振幅,并且只要温度足够慢地缓慢减少,原子就能使自己向最低的能源结构运动。在模拟退火过程中,参数估计是从一些随机值中开始的,并让他们改变他们的价值,这个搜索空间是由一个金额于数量界定为系统的“温度”。如果一个参数变化,全面提升性能,它是能被接受的,如果它降低了性能,也是有一定概率的被接受的。温度下降根据一些预定的“冷却”附表,参数值也应随着温度的降低收敛到一些解决方法。当其他的数字优化技术结合起来时,模拟退火方法是特别有效的。

这样一个模拟退火技术和Nelder-Simplex技术的组合是(n+1)的空间形状,其中n是参数的数量。这个简单的探讨搜索空间慢慢改变其形状靠近了最佳的解决方案。模拟退火以单纯的算法增加了随机性成分和温度调度,提高了方法的可靠性。

这已经被发现是一个稳健而合理的有效率的数值优化算法,参数估计阶段可以被用来确定模型的其他部分的数值参数。该模式的结构是众所周知的,但有不确定性参数值。

遗传算法候选模型的代表性

非线性连续时域动态模型可以采取一些不同的形式。微分方程和方框图是两

种普通代表,这两种形式的模型是众所周知的,并且是比较容易模拟的,对于仿真、可视化和在遗传算法运算规则的施行各有其优缺点。方框图和基于表示法的方程在本文中被考虑随着第三种混合表示法纳入微分和差分算子成为一个基于代表性的方程式。

实验数据集的选择——实验设计

非线性系统辨识提出了关于实验设计的特殊问题。该系统必须对于线性系统在整个频率范围内被激励,但是它也一定要涵盖系统中的任何非线性范围。这可能意味着,输入形式充分的多样化刺激着系统的不同模态并且数据覆盖了系统状态空间的运作范围。

识别一个准确的模型需要打的训练数据集。然而仿真时间将会和数据点的数量成正比,因而最优时间必须兼顾数据的数量。一项建议,就如何选择有效的步骤和 PRBS信号以覆盖整个频率范围,这个方法可能在高德费和刘佳的论文中有所体现。

模型验证

任何建模程序的一个重要组成部分是模型验证。新的模型结构必须同不同的数据集予以审定,从而用于优化过程。有许多非线性模型验证的技术,其中最简单的就是模拟匹配模型的时间响应和从实际系统中来的现有响应数据相比较的技术。该模型验证的结果可以用来改进作为反复的模型发展过程的一部分的遗传算法。

外文翻译---采用遗传算法优化加工夹具定位和加紧位置

附录 Machining fixture locating and clamping position optimization using genetic algorithms Necmettin Kaya* Department of Mechanical Engineering, Uludag University, Go¨ru¨kle, Bursa 16059, Turkey Received 8 July 2004; accepted 26 May 2005 Available online 6 September 2005 Abstract Deformation of the workpiece may cause dimensional problems in machining. Supports and locators are used in order to reduce the error caused by elastic deformation of the workpiece. The optimization of support, locator and clamp locations is a critical problem to minimize the geometric error in workpiece machining. In this paper, the application of genetic algorithms (GAs) to the fixture layout optimization is presented to handle fixture layout optimization problem. A genetic algorithm based approach is developed to optimise fixture layout through integrating a finite element code running in batch mode to compute the objective function values for each generation. Case studies are given to illustrate the application of proposed approach. Chromosome library approach is used to decrease the total solution time. Developed GA keeps track of previously analyzed designs; therefore the numbers of function evaluations are decreased about 93%. The results of this approach show that the fixture layout optimization problems are multi-modal problems. Optimized designs do not have any apparent similarities although they provide very similar performances. Keywords: Fixture design; Genetic algorithms; Optimization 1. Introduction Fixtures are used to locate and constrain a workpiece during a machining operation, minimizing workpiece and fixture tooling deflections due to clamping and cutting forces are critical to ensuring accuracy of the machining operation. Traditionally, machining fixtures are designed and manufactured through trial-and-error, which prove to be both expensive and time-consuming to the manufacturing process. To ensure a workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped, making it imperative to develop tools that will eliminate costly and time-consuming trial-and-error designs. Proper

3外文翻译模板格式及要求

杭州电子科技大学 毕业论文外文文献翻译要求 根据《普通高等学校本科毕业设计(论文)指导》的内容,特对外文文献翻译提出以下要求: 一、翻译的外文文献可以是一篇,也可以是两篇,但总字符要求不少于1.5万(或翻译成中文后至少在3000字以上)。 二、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。并在每篇中文译文首页用“脚注”形式注明原文作者及出处,中文译文后应附外文原文。 脚注的方法:插入----引用---脚注和尾注 三、中文译文的基本撰写格式为: 1.题目:采用小三号、黑体字、居中打印; 2.正文:采用小四号、宋体字,行间距为固定值20磅,标准字符间距。页边距为左3cm,右2.5cm,上下各2.5cm,页面统一采用A4纸。英文原文如为word文档,请用罗马字体排版,段前空两格。 从正文开始编写页码,页码居中。 四、封面格式由学校统一制作(注:封面上的“翻译题目”指中文译文的题目),填充内容为加粗小三号楷体_GB2312,并按“封面、译文一、外文原文一、译文二、外文原文二、考核表”的顺序统一装订。 五、忌自行更改表格样式,学号请写完整。 封面和考核表均为一页纸张,勿换行换页。

毕业论文外文文献翻译 毕业设计(论文)题目Xxx 翻译(1)题目指翻译后的中文译文的题目翻译(2)题目指翻译后的中文译文的题目学院会计学院(以本模板为准)专业会计学(以本模板为准)姓名XXXXXX(以本模板为准)班级XX020811(以本模板为准)学号XX023101(以本模板为准)指导教师XXXXXX(以本模板为准)

销售人员胜任力素质模型问卷调查分析报告

销售部胜任力模型构建问卷统计分析报告 一、样本基本信息 此次问卷调查共发放问卷15份,回收问卷15份,所回收的问卷全部有效,有效回收率为100%。 根据调研对象的职位不同,对样本进行分类,此次调查的样本分布状况如下: ,2代表“不太重要”,3代表“一般”,4代表“比较重要”,5代表“非常重要”。以下同。 二、关键的知识要求 产品知识:包括产品的名称、性能与特点、主要优点、销售状况、与其他公司产品相比的优劣势、价格特点等。 公司知识:包括行业知识、公司文化(发展历史、价值观等)、组织结构、基本规章制度和业务流程等。 行业知识:行业发展状况、行业新闻及重大事件、竞争对手情况、相关行业的情况。 营销知识:营销心理学、价格管理、预测与调研、品牌管理、客户服务及管理、电话营销、礼仪公关。 专利知识:对专利的理解,每个产品对应的专利点的了解。 从上述四幅图中可以看出,产品知识、公司知识、行业知识、营销知识、专利知识是销售部人员认为最为重要的五个知识要求。

三、关键的行为能力 创新能力:不受陈规和以往经验的束缚,不断改进工作和学习方法,以适应新观念、新形势发展的要求。不断的有新的销售策略、新的销售方法。 分析判断能力:从市场信息收集、整理到分析运用的全程处理能力。对已知的事实进行分析推理,看问题能抓住事情的本质。通过观察分析很快就能抓住了解全貌,敏锐,能很快发现关键问题,抓住要害。 沟通能力:正确倾听他人意见,理解其感受、需要和观点,并做出适当反应的能力。 计划能力:对工作目标有一定计划,工作前做好充分准备。工作能按部就班的进行。 客户管控能力:有效地与业务伙伴和客户建立良好的工作关系,并运用各方方面的资源完成工作的能力。 人际交往能力:对人际交往保持高度的兴趣,能够通过主动热情的态度,以及诚恳、正直的品质赢得他人的尊重和信赖,从而赢得良好的人际交往氛围的能力。 市场开拓能力:为达到市场开拓目的而具备的沟通、组织等方面的技能与知识。能够与客户、行业协会及中间商进行业务讨论,收集市场对产品的需求,提出产品改进建议。 市场预测能力:密切关注市场,通过对市场变化中反映出来的现象、数据信息等,进行分析处理,用以了解市场变动的趋势、了解客户的需求、指导自己的工作。 谈判能力:在谈判中有效的达成公司的目标,并最大限度地争取和维护公司的利益的能力。 问题解决能力:为了达到最终的结果能够从不同角度分析问题,寻求答案的能力。遇到问题时,能自主地、主动地谋求解决,能有规划、有方法、有步骤地处理问题,并能适宜地、合理地、有效地解决问题。 学习能力:发展自己的专业知识,与他人分享专业知识和经验,学习专业知识的能力。能根据自身学习需要,采用适当的技术手段和方法,获取、加工和利用知识与信息。 应变能力:为应对将来可能面临的困难和挑战,提前采取预防措施或做好相应思想准备的能力。反应迅速,能很好处理突发事件,随机应变,能控制局面。 影响力:说服或影响他人接受某一观点或领导某一具体行为的能力。

蚁群算法蚂蚁算法中英文对照外文翻译文献

蚁群算法蚂蚁算法中英文对照外文翻译文献(文档含英文原文和中文翻译)

翻译: 蚁群算法 起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID 控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。 原理 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐地更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。 为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比

较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢? 1、范围: 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。 2、环境: 蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。 3、觅食规则: 在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信

岗位胜任力模型

岗位胜任模型 个人特征结构,它可以是动机、特质、自我形象、态度或价值观、某领域知识、认知或行为技能,且能显著区分优秀与一般绩效的个体特征的综合表现。 中文名岗位胜任模型性质模型作用确保个人完成工作特点显著区分优秀与绩效 目录 1 定义 2 基本内容 3 建立岗位胜任模型步骤 ?定义绩效标准 ?选取分析效标样本 ?获取效标样本有关胜任特征的数据资料 ?建立岗位胜任模型 ?验证岗位胜任模型 4 作用 ?工作分析 ?人员选拔 ?绩效考核 ?员工培训 ?员工激励 定义 20 世纪中后期,哈佛大学的戴维·麦克米兰(David·McClelland)教授的研究成果,使人们看到现代人力资源管理理论新的曙光,为企业人力资源管理的实践提供了一个全新的视角和一种更有利的工具,即对人员进行全面系统的研究,从外显特征到内隐特征综合评价的胜任特征分析法。这种方法不仅能够满足现代人力资源管理的要求,构建起某种岗位胜任模型(competency model),对于人员担任某种工作所应具备的胜任特征及其组合结构有明确的说明,也能成为从外显到内隐特征进行人员素质测评的重要尺度和依据,从而为实现人力资源的合理配置,提供了科学的前提。 基本内容 1.知识

某一职业领域需要的信息(如人力资源管理的专业知识); 岗位胜任模型岗位胜任模型 2.技能 掌握和运用专门技术的能力(如英语读写能力、计算机操作能力); 3.社会角色 个体对于社会规范的认知与理解(如想成为工作团队中的领导); 4.自我认知 对自己身份的知觉和评价(如认为自己是某一领域的权威); 5.特质 某人所具有的特征或其典型的行为方式(如喜欢冒险); 6.动机 决定外显行为的内在稳定的想法或念头(如想获得权利、喜欢追求名誉)。 建立岗位胜任模型步骤 定义绩效标准 绩效标准一般采用工作分析和专家小组讨论的办法来确定。即采用工作分析的各种工具与方法明确工作的具体要求,提炼出鉴别工作优秀的员工与工作一般的员工的标准。专家小组讨论则是由优秀的领导者、人力资源管理层和研究人员组成的专家小组,就此岗位的任务、责任和绩效标准以及期望优秀领导表现的胜任特征行为和特点进行讨论,得出最终的结论。如果客观绩效指标不容易获得或经费不允许,一个简单的方法就是采用“上级提名”。这种由上级领导直接给出的工作绩效标准的方法虽然较为主观,但对于优秀的领导层也是一种简便可行的方法。企业应根据自身的规模、目标、资源等条件选择合适的绩效标准定义方法。

论文及外文翻译格式(标准)

附件5 论文及外文翻译写作格式样例 附录1 内封格式示例(设置成小二号字,空3行) 我国居民投资理财现状及发展前景的研究 (黑体,加粗,小二,居中,空2行) The Research on Status and Future of Inhabitants’ Investment and Financial Management in China (Times New Roman体,加粗,小二,居中,实词首字母大写,空5行) 院系经济与管理学院(宋体,四号,首行缩进6字符) 专业公共事业管理(宋体,四号,首行缩进6字符) 班级 6408101 (宋体,四号,首行缩进6字符) 学号 200604081010 (宋体,四号,首行缩进6字符) 姓名李杰(宋体,四号,首行缩进6字符) 指导教师张芸(宋体,四号,首行缩进6字符) 职称副教授(宋体,四号,首行缩进6字符) 负责教师(宋体,四号,首行缩进6字符) (空7行) 沈阳航空航天大学(宋体,四号,居中) 2010年6月(宋体,四号,居中)

附录2 摘要格式示例(设置成三号,空2行) 摘要(黑体,加粗,三号,居中,两个字之间空两格) (空1行) 我国已经步入经济全球化发展的21世纪,随着市场经济的快速增长和对外开放的进一步深化,我国金融市场发生了巨大的变化。一方面,投资理财所涉及到的领域越来越广,不仅仅是政府、企业、社会组织进行投资理财,居民也逐步进入到金融市场中,开始利用各种投资工具对个人、家庭财产进行打理,以达到资产保值、增值,更好的用于消费、养老等的目的;另一方面,我国居民投资理财观念逐渐趋于成熟化、理性化;同时,其投资理财工具以及方式手段亦越来越向多元化、完善化发展。 本论文以我国居民投资理财为研究对象,综合运用现代经济学、金融学和管理学的理论;统计学、概率学的方法和工具,主要对我国居民投资理财的历史演变、发展现状、意识观念、存在的问题和主要投资理财工具进行了分析和探讨,并提出了改善和促进我国居民理财现状的对策和建议,指出了普通居民合理化投资理财的途径。 摘要以浓缩的形式概括研究课题的内容,摘要应包括论文的创新性及其理论和实际意义。摘要中不宜使用公式、图表,不标注引用文献编号。中文摘要在300-500字左右。(首行缩进两个字符,宋体,小四,行距最小值:22磅)(空1行) 关键词:(宋体,小四,加粗,左缩进:0)投资理财资理财工具通货膨胀(宋体,小四,每个关键词之间空两格,关键词的个数在3到5个之间)

外文翻译-遗传算法

What is a genetic algorithm? ●Methods of representation ●Methods of selection ●Methods of change ●Other problem-solving techniques Concisely stated, a genetic algorithm (or GA for short) is a programming technique that mimics biological evolution as a problem-solving strategy. Given a specific problem to solve, the input to the GA is a set of potential solutions to that problem, encoded in some fashion, and a metric called a fitness function that allows each candidate to be quantitatively evaluated. These candidates may be solutions already known to work, with the aim of the GA being to improve them, but more often they are generated at random. The GA then evaluates each candidate according to the fitness function. In a pool of randomly generated candidates, of course, most will not work at all, and these will be deleted. However, purely by chance, a few may hold promise - they may show activity, even if only weak and imperfect activity, toward solving the problem. These promising candidates are kept and allowed to reproduce. Multiple copies are made of them, but the copies are not perfect; random changes are introduced during the copying process. These digital offspring then go on to the next generation, forming a new pool of candidate solutions, and are subjected to a second round of fitness evaluation. Those candidate solutions which were worsened, or made no better, by the changes to their code are again deleted; but again, purely by chance, the random variations introduced into the population may have improved some individuals, making them into better, more complete or more efficient solutions to the problem at hand. Again these winning individuals are selected and copied over into the next generation with random changes, and the process repeats. The expectation is that the average fitness of the population will increase each round, and so by repeating this process for hundreds or thousands of rounds, very good solutions to the problem can be discovered. As astonishing and counterintuitive as it may seem to some, genetic algorithms have proven to be an enormously powerful and successful problem-solving strategy, dramatically demonstrating

胜任力模型

平安保险公司A类管理干部胜任素质模型 2012年1月

目录 一、简介 2 二、模型结构 3 三、胜任素质定义与层级 5 结果导向 6 适应调整7 监控能力8 影响能力9 团队领导10 组织理解11 战略导向12 建立创新组织13 归纳思维14 组织文化认同15 积极心态16 责任心17 重诺言18 学习领悟19 人际理解20

一、简介 作为中国金融界的飞速发展的企业,平安保险努力在激烈的竞争中保持健康的发展势头,迎接中国加入WTO后保险业面临的挑战。储备干部体系的完善是管理人员整体水平的提高的一个关键。为了建立一个高效率的管理干部发展和储备系统,A类管理干部胜任素质模型明确界定了作为优秀的平安管理干部需要具备的能力和行为特征。 胜任素质(COMPETENCY)方法是由国际知名的美国哈佛大学心理学教授McClelland博士倡导创立的。“胜任素质”是能区分在特定的工作岗位、组织环境、和文化氛围中个人工作表现的任何可以客观衡量的非技术性的个人特征。胜任素质是在国际上,特别是先进企业中得到普遍认可和广泛应用的管理干部选拔、培养和发展的有效方法。 A类管理干部胜任素质模型是由平安项目小组与昱泉管理顾问(上海)公司团队合作,经过严格的研究开发努力的结果。模型建立过程严格遵循胜任素质方法的基本准则和操作要求。分析与平安公司优秀的管理业绩直接挂钩的管理行为模式。该模式与平安的实际情况密切结合,直接服务于平安的发展战略和商业目标,促进平安管理干部的职业生涯发展。 该模型建立在广泛深入搜集的第一手材料的基础上。平安各级管理干部提供了大量的客观数据。通过对各种数据的详细分析,形成具有十五项胜任素质的平安A类管理干部胜任素质模型。

外文翻译---遗传算法在非线性模型中的应用

英文翻译 2011 届电气工程及其自动化专业 0706073 班级 题目遗传算法在非线性模型中的应用 姓名学号070607313

英语原文: Application of Genetic Programming to Nonlinear Modeling Introduction Identification of nonlinear models which are based in part at least on the underlying physics of the real system presents many problems since both the structure and parameters of the model may need to be determined. Many methods exist for the estimation of parameters from measures response data but structural identification is more difficult. Often a trial and error approach involving a combination of expert knowledge and experimental investigation is adopted to choose between a number of candidate models. Possible structures are deduced from engineering knowledge of the system and the parameters of these models are estimated from available experimental data. This procedure is time consuming and sub-optimal. Automation of this process would mean that a much larger range of potential model structure could be investigated more quickly. Genetic programming (GP) is an optimization method which can be used to optimize the nonlinear structure of a dynamic system by automatically selecting model structure elements from a database and combining them optimally to form a complete mathematical model. Genetic programming works by emulating natural evolution to generate a model structure that maximizes (or minimizes) some objective function involving an appropriate measure of the level of agreement between the model and system response. A population of model structures evolves through many generations towards a solution using certain evolutionary operators and a “survival-of-the-fittest”selection scheme. The parameters of these models may be estimated in a separate and more conventional phase of the complete identification process.

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

外文文献翻译封面格式及要求(模版)

毕业论文外文文献翻译 院 年级专业: 2009 级XXXXXXXXXXX 姓 名:学 号:附 件: 备注:(注意:备注页这一整页的内容都不需要打印,看懂了即可)

1.从所引用的与毕业设计(论文)内容相近的外文文献中选择一篇或一部分进行翻译(不少于3000实词); 2.外文文献翻译的装订分两部分,第一部分为外文文献;第二部分为该外文文献的中文翻译,两部分之间用分页符隔开。也就是说,第一外文文献部分结束后,使用分页符,另起一页开始翻译。 3.格式方面,外文文献的格式,除了字体统一使用Times new roman 之外,其他所有都跟中文论文的格式一样。中文翻译的格式,跟中文论文的格式一样。 (注意:备注页这一整页的内容都不需要打印,看懂了即可,定稿后,请删除本页.) 范文如下:注意,下面内容每一部份均已用分页符分开了,如果用本模板,请将每一模块单独删除,直接套用到每一模板里面,不要将全部内容一次性删除. 【Abstract】This paper has a systematic analysis on outside Marco-environment of herbal tea beverage industry and major competitors of brands inside the herbal tea market. Based on

the theoretic framework, this paper takes WONG LO KAT and JIA DUO BAO herbal tea as an example, and researches the strategy on brand positioning and relevant marketing mix of it. Through analysis on the prevention sense of WONG LO KAT herbal tea, it was positioned the beverage that can prevent excessive internal heat in body, a new category divided from the beverage market. the process of brand positioning of it in Consumers brain was finished. Based on this positioning strategy, WONG LO KAT reasonably organized and arranged its product strategy, price strategy, distribution strategy and promotion strategy, which not only served for and further consolidated the position of preventing excessive internal heat in body, but also elevated the value of brand. The JDB and WONG LO KAT market competition brings us enlightenment. Reference the successful experience from the JDB and lessons from the failure of the WONG LO KAT.,Times New Roman. 【Key Words】Brand positioning; Marketing mix; Positioning Strategy; enlightenment, lessons;ABC (本页为英文文献摘要,关键词两项一起单独一页,字体为:Times New Roman,小四号,1.5倍行距)

神经网络和遗传算法的模糊系统的自动设计论文中英文资料对照外文翻译

基于神经网络和遗传算法的模糊系统的自动设计摘要 本文介绍了基于神经网络和遗传算法的模糊系统的设计,其目的在于缩短开发时间并提高该系统的性能。介绍一种利用神经网络来描绘的多维非线性隶属函数和调整隶属函数参数的方法。还提及了基于遗传算法的集成并自动化三个模糊系统的设计平台。 1 前言 模糊系统往往是人工手动设计。这引起了两个问题:一是由于人工手动设计是费时间的,所以开发费用很高;二是无法保证获得最佳的解决方案。为了缩短开发时间并提高模糊系统的性能,有两种独立的途径:开发支持工具和自动设计方法。前者包括辅助模糊系统设计的开发环境。许多环境已具有商业用途。后者介绍了自动设计的技术。尽管自动设计不能保证获得最优解,他们仍是可取的手工技巧,因为设计是引导走向和依某些标准的最优解。 有三种主要的设计决策模糊控制系统设计: (1)确定模糊规则数, (2)确定隶属度函数的形式。 (3)确定变化参数 再者,必须作出另外两个决定: (4)确定输入变量的数量 (5)确定论证方法 (1)和(2)相互协调确定如何覆盖输入空间。他们之间有高度的相互依赖性。(3)用以确定TSK(Takagi-Sugeno-Kang)模式【1】中的线性方程式的系数,或确定隶属度函数以及部分的Mamdani模型【2】。(4)符合决定最低套相关的输入变量,计算所需的目标决策或控制的价值观。像逆向消除(4)和信息标准的技术在此设计中经常被利用。(5)相当于决定使用哪一个模糊算子和解模糊化的方法。虽然由数种算法和模糊推理的方法已被提出,仍没有选择他们标准。[5]表明动态变化的推理方法,他依据这个推理环境的结果在性能和容错性高于任何固定的推理的方法。 神经网络模型(以更普遍的梯度)和基于遗传算法的神经网络(最常见的梯度的基础)和遗传算法被用于模糊系统的自动设计。基于神经网络的方法主要是用来设计模糊隶属度函数。这有两种主要的方法; (一)直接的多维的模糊隶属度函数的设计: 该方法首先通过数据库确定规则的数目。然后通过每个簇的等级的训练来确定隶属函数的形式。更多细节将在第二章给出。 (二)间接的多维的模糊隶属度函数的设计: 这种方法通过结合一维模糊隶属函数构建多维的模糊隶属度函数。隶属度函数梯度技术被用于调节试图减少模糊系统的期望产量和实际生产所需的产出总量的误差。 第一种方法的优点在于它可以直接产生非线性多维的模糊隶属度函数;没有必要通过结合一维模糊隶属函数构建多维的模糊隶属度函数。第二种方法的优点在于可通过监测模糊系统的最后性能来调整。这两种方法都将在第二章介绍。 许多基于遗传算法的方法与方法二在本质上一样;一维隶属函数的形式利用遗传算法

外文翻译排版格式参考

毕业设计(论文)外文资料翻译 系别:电子信息系 专业:通信工程 班级:B100309 姓名:张杨 学号: B 外文出处: 附件: 1. 原文; 2. 译文 2014年03月

An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new to the device. Future articles will examine other aspects of the ARM architecture. Basic Characteristics The principle feature of the ARM 7 microcontroller is that it is a register based load-and-store architecture with a number of operating modes. While the ARM7 is a 32 bit microcontroller, it is also capable of running a 16-bit instruction set, known as "THUMB". This helps it achieve a greater code density and enhanced power saving. While all of the register-to-register data processing instructions are single-cycle, other instructions such as data transfer instructions, are multi-cycle. To increase the performance of these instructions, the ARM 7 has a three-stage pipeline. Due to the inherent simplicity of the design and low gate count, ARM 7 is the industry leader in low-power processing on a watts per MIP basis. Finally, to assist the developer, the ARM core has a built-in JTAG debug port and on-chip "embedded ICE" that allows programs to be downloaded and fully debugged in-system. In order to keep the ARM 7 both simple and cost-effective, the code and data regions are accessed via a single data bus. Thus while the ARM 7 is capable of single-cycle execution of all data processing instructions, data transfer instructions may take several cycles since they will require at least two accesses onto the bus (one for the instruction one for the data). In order to improve performance, a three stage pipeline is used that allows multiple instructions to be processed simultaneously. The pipeline has three stages; FETCH, DECODE and EXECUTE. The hardware of each stage is designed to be independent so up to three instructions can be processed simultaneously. The pipeline is most effective in speeding up sequential code. However a branch instruction will cause the pipeline to be flushed marring its performance. As we shall see later the ARM 7 designers had some clever ideas to solve this problem. Instruction Fig 1 ARM 3- Stage pipeline

相关文档
最新文档