基于小波变换的图像融合算法研究

基于小波变换的图像融合算法研究
基于小波变换的图像融合算法研究

摘要

本文给出了一种基于小波变换的图像融合方法,并针对小波分解的不同频率域,分别讨论了选择高频系数和低频系数的原则。高频系数反映了图像的细节,其选择规则决定了融合图像对原图像细节的保留程度。本文在选择高频系数时,基于绝对值最大的原则,低频系数反映了图像的轮廓,低频系数的选择决定了融合图像的视觉效果,对融合图像质量的好坏起到非常重要的作用。图像融合是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。

MATLAB小波分析工具箱提供了小波分析函数,应用MATLAB进行图像融合仿真,通过突出轮廓部分和弱化细节部分进行融合,使融合后的图象具有了两幅或多幅图象的特征,更符合人或者机器的视觉特性,有利于对图像进行进一步的分析和理解,有利于图像中目标的检测和识别或跟踪。

关键词小波变换;融合规则;图像融合

Image Fusion Algorithm Based on Wavelet

Transform

Abstract

In this paper, the image fusion method based on wavelet transform, and for the wavelet decomposition of the frequency domain, respectively, discussed the principles of select high-frequency coefficients and low frequency coefficients. The high-frequency coefficients reflect the details of the image, the selection rules to determine the extent of any reservations of the fused image on the original image detail. The choice of high-frequency coefficients, based on the principle of maximum absolute value, and consistency verification results. The low-frequency coefficients reflect the contours of the image, the choice of the low frequency coefficients determine the visual effect of the fused image, play a very important role in the fused image quality is good or bad.

MATLAB Wavelet Analysis Toolbox provides a wavelet analysis function using MATLAB image fusion simulation, highlight the contours of parts and the weakening of the details section, fusion, image fusion has the characteristics of two or multiple images, more people or the visual characteristics of the machine, the image for further analysis and understanding, detection and identification or tracking of the target image.

Keywords Wavelet transform; Fusion rule; Image Fusion

目录

摘要...................................................................................................................... I Abstract ............................................................................................................... II

第1章绪论 (1)

1.1 课题研究的意义及背景 (1)

1.1.1 本课题的研究背景 (1)

1.1.2 课题研究的实际意义 (3)

1.2 本文的主要内容 (3)

第2章小波变换理论基础 (6)

2.1小波变换 (6)

2.1.1小波变换的思想 (6)

2.1.2 连续小波基函数 (7)

2.1.3 连续小波变换 (8)

2.1.4 离散小波变换 (9)

2.1.5 二进小波变换 (9)

2.2多分辨率分析与离散小波快速算法 (10)

2.2.1 多分辨率分析 (10)

2.2.2尺度函数和尺度空间 (11)

2.2.3 离散小波变换的快速算法 (11)

2.3几种常用的小波 (12)

2.4 Mallat的快速算法 (14)

2.5 本章小结 (15)

第3章基于小波变换的图像融合方法研究 (16)

3.1图像融合概述 (16)

3.2图像融合的方法 (16)

3.3基于小波变换的图像融合算法原理 (17)

3.3.1 基于小波分解的融合算法流程 (17)

3.3.2 高频系数融合规则 (18)

3.3.3低频系数融合规则 (19)

3.4 本章小结 (21)

第4章实验结果及分析 (22)

4.1 实验的仿真 (22)

4.2 实验的结果分析 (23)

4.3 本章小结 (24)

结论 (25)

致谢 (26)

参考文献 (27)

附录A (28)

附录B (30)

第1章绪论

1.1课题研究的意义及背景

1.1.1本课题的研究背景

图像融合是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象.正是由于这一特点,图像融合技术现已广泛地应用于军、遥感、计算机视觉、医学图像处理等领域中。

图像融合的目的和意义在于对同一目标的多个图像可以进行配准、合成,以克服单一图像的局限性,使有关目标图像更趋完备,从而提高图像的可靠性和清晰度。以获得对某一区域更准确、更全面和更可靠的描述,从而实现对图像的进一步分析和理解,或目标的检测、识别与跟踪。基于小波变换的图像融合方法可以聚焦到图像的任意细节,被称为数学上的显微镜。近年来,随着小波理论及其应用的发展,已将小波多分辨率分解用于像素级图像融合。小波变换的固有特性使其在图像处理中有如下优点:完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;小波分析提供了与人类视觉系统方向相吻合的选择性图像。

但是,图像融合的大多数方法是针对静态图像,在一些实时性要求高的场合缺乏必要的实时性,限制了应用范围。

小波分析(wavelet)是在应用数学的基础上发展起来的一门新兴学科,近十几年来得到了飞速的发展.作为一种新的时频分析工具的小波分析,目前已成为国际上极为活跃的研究领域.从纯粹数学的角度看,小波分析是调和分析这一数学领域半个世纪以来工作的结晶;从应用科学和技术科学的角度来看,小波分析又是计算机应用,信号处理,图形分析,非线性科学和工程技术近些年来在方法上的重大突破.由于小波分析的“自适应性”和“数学显微镜”的美誉,使它与我们观察和分析问题的思路十分接近,因而被广泛应用于基础科学,应用科学,尤其是信息科学,信号分析

的方方面面[1]。

小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家https://www.360docs.net/doc/2711547471.html,grange,https://www.360docs.net/doc/2711547471.html,place以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Yammerer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法棗多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展[1]。

Matlab 是MathWorks 公司于1982年推出的一套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境。在Matlab环境下,对图像的分析和处理可采用人机交互的方式,用户只需按Matlab的格式要求给出相应的命令,其分析处理结果便以数值或图形方式显示出来。作为一种应用广泛的编程工具,Matlab在图形处理方面有着明显的优势:具有强大的矩阵运算功能,时观察图形的变化;带有丰富的图像处理函数库,其图像处理工具箱(image processing toolbox)几乎涵盖了所有常用的图像处理函数,Matlab在图像处理中的应用都是由相应的Matlab函数来实现[3]。随着计算机性能的不断提高,人们发现工程上的许多问题可以通过计算机强大的计算功能来辅助完成。如此一来,MATLAB软件强大的数值运算核心开始被关注。经过近20年的发展,MATLAB的核心被进一步完善和强化,同时许多工程领域的专业人员也开始用MATLAB构造本领域的专门辅助工具,这些工具后来发展为MATLAB的各种工具箱。特别值得一提的是,MATLAB 是一种开放式的软件,任何人经过一定的程序都可以将自己开发的优秀的应用程序集加入到MATLAB工具的行列。这样,许多领域前沿的研究者和科学家都可以将自己的成果集成到MATLAB之中,被全人类继承和利用。因此,我们现在看到的MATLAB才会如此强大和丰富[2]。

1.1.2课题研究的实际意义

小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。

(1)小波分析用于信号与图像融合是小波分析应用的一个重要方面。它的特点是融合准确度高,融合效果好,融合后能保持信号与图像的总数据量不变,且在传递中可以抗干扰。基于小波分析的融合方法很多,比较成功的有基于多分辨分析的图像融合,应用Mallat小波变换算法进行图像数据融合等。

(2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。

(3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面[3]。

MATLAB是功能强大地科学及工程计算软件,它不但具有以矩阵计算为基础的强大数学计算和分析功能,而且还具有丰富的可视化图形表现功能和方便的程序设计能力。MATLAB的应用领域极为广泛,除数学计算和分析外,还被应用于自动控制、系统仿真、数字信号领域、图形图像分析、数理统计、人工智能、虚拟现实技术、通信工程、金融系统等领域[4]。

目前小波分析在许多工程领域中都得到了广泛的应用,成为科技工作者经常使用的工具之一。MATLAB作为一种高性能的数值计算和可视化软件,经过各个领域专家的共同努力,现已包含信号处理、图像处理、通信、小波分析、系统辨识、优化以及控制系统等不同应用领域的工具箱。因此,对此次课题的研究有着十分广泛的意义[3]。

1.2本文的主要内容

本文给出了一种基于小波变换的图像融合方法,针对原图像小波分解的不同频率域,分别讨论了高频系数和低频系数的选择原则。高频系数反映了图像的细节,其选择规则决定了融合图像对原图像细节的保留程度。本文在选择高频系数时,基于绝对值最大的原则,并对选择结果进行了一致性验证。低频系数反映了图像的轮廓,低频系数的选择决定了融合图像

的视觉效果,对融合图像质量的好坏起到非常重要的作用。

在某些情况下,由于受照明、环境条件、目标状态、目标位置以及传感器固有特性等因素的影响,单一的图像信息不足以用来对目标或场景进行更好的检测、分析和理解,需要多幅图像融合来得到更全面的信息。图像融合是将两幅或多幅图像融合在一起,帮助理解图像并快速地获取感兴趣的信息。图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象,所以在多方面图象融合的意义还是十分的巨大的,这也是我选择此课题的原因。

本文的具体内容如下

(1)什么是图像融合及图像融合。

图像融合就是通过一种特定的算法将两幅或多幅图像合成为一幅新的图像。以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。融合算法应该充分利用各原图像的互补信息,使融合后的图像更适合人的视觉感受,图像融合可分为三个层次:像素级融合,特征级融合,决策级融合。

其中像素级融合是最低层次的融合,也是后两级的基础。它是将各原图像中对应的像素进行融合处理,保留了尽可能多的图像信息,精度比较高,因而倍受人们的重视。

(2)什么是基于小波变换的图像融合。

在众多的图像融合技术中,基于小波变换的图像融合方法已成为现今研究的一个热点。这类算法主要是利用人眼对局部对比度的变化比较敏感这一事实,根据一定的融合规则,在多幅原图像中选择出最显著的特征,例如边缘、线段等,并将这些特征保留在最终的合成图像中。在一幅图像的小波变换中,绝对值较大的小波系数对应于边缘这些较为显著的特征,所以大部分基于小波变换的图像融合算法主要研究如何选择合成图像中的小波系数,也就是三个方向上的高频系数,从而达到保留图像边缘的目的。虽然小波系数(高频系数)的选择对于保留图像的边缘等特征具有非常主要的作用,但尺度系数(低频系数)决定了图像的轮廓,正确地选择尺度系数对提高合成图像的视觉效果具有举足轻重的作用。

(3)传统方法与所要研究方法的优劣。

传统的基于小波变换的图像融合中大多数是采用像素平均法,这样得到的融合结果与原始图像的清晰的区域相比,其对应区域的图像质量会有所降低,而也模糊区域相比,其对对应区域的图像又得到了提高,这种方法一定程度上降低了图像的对比度,效果不是很理想,另有一种方法是平均与选择相结合的方法,这种方法是根据两幅图像的相关性采用平均法或选择法,当两幅图像的相关性较强时,就采用平均法,当两幅图像相关性较弱时,就选择局部能量较大的点,这种选择原则在一定程度上符合人眼对较显著的点比较敏感这一事实,图片效果有所提高。但是其未考虑到图

像的边缘的显著特征,这样有时会影响效果,而最新的方法是在原图像中选择最有可能是边缘的点加以保留,这样才能使得合成图像比较清晰,细节丰富。

(4)基于小波变换的图像融合的Matlab实现及程序的编写。

Matlab具有强大的计算功能和丰富的工具箱函数,例如图像处理和小波工具箱包含了大多数经典算法,并且它提供了一个非常方便快捷的算法研究平台。本文通过Mtalab很好的完成了仿真。

第2章 小波变换理论基础

2.1 小波变换

小波分析(Wavelet Analysis )是在现代调和分析的基础上发展起来的一门新兴学科,其基础理论知识涉及到函数分析、傅立叶分析、信号与系统、数字信号处理等诸方面,同时具有理论深刻和应用十分广泛双重意义。我们只对小波分析的整体思想进行介绍。

2.1.1小波变换的思想

小波变换继承和发展了Gabor 的加窗傅立叶变化的局部化思想,并克服了傅立叶变换窗口大小不能随频率变化的不足,其基本思想来源于可变窗口的伸缩和平移。小波变换利用一个具有快速衰减性和振荡性的函数(成为母子波),然后将其伸缩和平移得到了一个函数族(称之为小波基函数),以便在一定的条件下,任一能量有限信号可按其函数族进行时-频分解,基函数在时-频相平面上具有可变的时间-频率窗,以适应不同分辨率的需求[5]。

2ωω0ω ?

?=21a (=a (=a

图2-1 小波变换的时频平面的划分 在加窗傅立叶变换中,一旦窗函数选定,在时频相平面中窗口的大小是固定不变的,不随时频位置(t ,f )而变化,所以加窗傅立叶变换的时-频分辨率是固定不变的,小波变换的时频相平面如图2-1所示,窗函数在时频相平面中随中心频率变换而改变,在高频处时窗变窄,在低频处频窗变窄,因而满足对信号进行时-频分析的要求。它非常适合于分析突变信号和不平稳信号。况且小波变换具有多分辨率分析的特点和带通滤波器的特性,并且可用快速算法实现[5],因而常用于滤波、降噪、基频提取等。但对平稳信号来说,小波分析的结果不如傅立叶变换直观,而且母小波的不

唯一性给实际应用带来了困难[5]。

小波分析属于时频分析[6]的一种。传统的信号分析是建立在傅立叶变换的基础之上的,由于傅立叶分析使用的是一种全局的变换,只提供信号的频域信息,而不提供信号的任何时域信息,因此无法表述信号的时频局域性质,而这性质恰恰是非平稳信号最根本和最关键的性质。

2.1.2 连续小波基函数

小波函数的确切定义[10]为:设)(t φ为一平方可积函数,也即()R L t 2)(∈φ,若其傅立叶变换满足 ()∞<ψ?ωωωd R 2

则称)(t φ为一个基本小波或小波母函数,并称上式为小波函数的可容许性条件。

连续小波基函数)(,t a τφ的定义为:将小波母函数)(t φ进行伸缩和平移,设其伸缩因子(又称尺度因子)为a ,平移因子为τ,令其平移伸缩后的函数为)(,t a τφ,则有

()R a a t a t a ∈>??

? ??-=-ττφφτ,0,2/1, (2-1) 称)(,t a τφ为依赖于参数τ,a 的小波基函数,由于尺度因子a 、平移因子τ是取连续变化的值,因此称)(,t a τφ为连续小波基函数。它们是由同一母函数)(t φ经伸缩和平移后得到的一组函数系列。定义小波母函数)(t φ窗口宽度为t ?,窗口中心为0t ,则相应可求得连续小波)(,t a τφ的窗口中心为ττ+=0,at t a ,窗口宽度为t a t a ?=?τ,。同样,设()ωψ为)(t φ的傅立叶变换,其频域窗口中心为0ω,窗口宽度为ω?,设)(,t a τφ的傅立叶变换为)(,ωτa ψ,则有

()()ωωωττa e a j a ψ=ψ-2

1, (2-2)

所以,其频域窗口中心为0,1ωωτa a = 窗口宽度为ωωτ?=?a

a 1, 可见,连续小波)(,t a τφ的时、频域窗口中心及宽度均随尺度a 的变化而伸缩,若我们称ω???t 为窗口函数的窗口面积,由于

ωωωττ??=??=??t a

t a t a a 1,, (2-3)

所以连续小波基函数的窗口面积不随参数τ,a 而变。这正是海森堡测

不准原理证明的:ω??t 大小是相互制约的,乘积2

1≥???ωt ,且只有当)(t φ为Gaussian 函数时,等式才成立。由此可得到如下几点结论:

(1)尺度的倒数a

1在一定意义上对应于频率ω,即尺度越小,对应频率越高,尺度越大,对应频率越低。如果我们将尺度理解为时间窗口的话,则小尺度信号为短时间信号,大尺度信号为长时间信号;

(2)在任何τ值上,小波的时、频窗口的大小t ?和ω?都随频率ω(或者a

1)的变化而变化。这是与STFT 的基的不同之处; (3)在任何尺度a 、时间τ上,窗口面积ω???t 保持不变,也即时间、尺度分辨率是相互制约的不可能同时提的很高;

(4)由于小波母函数在频域具有带通特性,其伸缩和平移系列就可以看作是一组带通滤波器。通常将通带宽度与中心频率的比值称为带通滤波器的品质因数,通过计算可以发现,小波基函数作为带通滤波器,其品质因数不随尺度a 而变化,是一组频率特性等Q 的带通滤波器组[6]。

2.1.3 连续小波变换

将任意()R L 2空间中的函数)(t f 在小波基下进行展开,称这种展开为函数)(t f 的连续小波变换(Continue Wavelet Transform,简记为CWT),其表达式为

()dt a t t f a t t f a WT R a f ??

? ??-==?τφφττ)(1),(),(, (2-4) 由CWT 的定义可知,小波变换同傅立叶变换一样,都是一种积分变换,同傅立叶变换相似,称()τ,a W T f 为小波变换系数。由于小波基不同于傅立叶基,因此小波变换和傅立叶变换有许多不同之处。其中最重要的是,小波基具有尺度a 、平移τ两个参数。因此,将函数在小波基下展开就意味着将一个时间函数投影到二维的时间-尺度相平面上。并且,由于小波基本身所具有的特点,将函数投影到小波变换域后,有利于提取函数的某些本质特征。

与STFT 不同的是,小波变换是一种变分辨率的时频联合分析方法。当分析低频(对应大尺度)信号时,其时间窗很大,而当分析高频(对应小尺度)信号时,其时间窗减小。这恰恰符合实际问题中高频信号的持续时间短、低频信号持续时间较长的规律[7]。

2.1.4 离散小波变换

由连续小波的概念知道,在连续变化的尺度a 及时间τ值下,小波基函数)(,t a τφ具有很大的相关性,体现在不同点上的CWT 系数满足重建核方程,因此信号()t f 的连续小波变换系数()τ,a W T f 的信息量是冗余的。虽然在某些情况下,其冗余性是有益的(例如在去噪,进行数据恢复及特征提取时,常采用CWT ,以牺牲计算量、存储量为代价来获得最好的结果),但在很多情况下,我们希望在不丢失原信号()t f 信息的情况下,尽量减小小波变换系数的冗余度。

减小小波变换系数冗余度的作法是将小波基函数的a 、τ限定在一些离散点上取值。一种最通常的离散方法就是将尺度按幂级数进行离散化,

即取m m a a 0=(m 为整数,10≠a ,一般取20=a )。

关于位移的离散化,当120==a 时,()()τφφτ-=t t a ,。通常对τ进行均匀离散取值,以覆盖整个时间轴。为了不丢失信息,要求采样间隔τ满足Nyquist 采样定理,即采样频率大于等于该尺度下频率通常的2倍。每当m 增加1,尺度a 增加一倍,对应的频带减小一半,可见采样率可以降低一半,也就是采样间隔可以增大一倍。因此,如果尺度0=m 时τ的间隔为s T ,则在尺度为m 2时,间隔可取为s m T 2。此时()t a τφ,可表示为[7]

()()

n t t m m n m -=--222,φφ Z n m ∈, (2-5) 任意函数()t f 的离散小波变换为

()()()dt t t f n m WT n m R f ,,φ?= (2-6) 2.1.5 二进小波变换

对于尺度及位移均离散变化的小波序列,若取离散栅格的20=a ,0=?τ,即相当于连续小波只在尺度上进行了二进制离散,而位移仍取连续变化,我们称这类小波为二进小波,表示为

??

? ??-=-k k t k 222

,2τφφτ (2-7) 二进小波介于连续小波和离散小波之间,它只是对尺度参量进行了离散化,而在时间域上的平移量仍保持连续变化,因此二进小波仍具有连续小波变换的时移共变性,这是它较之离散小波变换所具有的独特优点[7]。

二进小波介于连续小波和离散小波之间,它只是对尺度参量进行了离散化,而在时间域上的平移量仍保持连续变化,因此二进小波仍具有连续小波变换的时移共变性,这是它较之离散小波变换所具有的独特优点[7]。

2.2 多分辨率分析与离散小波快速算法

2.2.1 多分辨率分析

多分辨率分析(Multi-Resolution Analysis ——MRA),又称为多尺度分析是建立在函数空间[3]概念上的理论。但其思想的形成来源于工程,其创建者S.mallat 是在研究图像处理问题时建立这套理论。当时研究图像的一种很普遍的方法是将图像在不同尺度下分解,并将结果进行比较,以取得有用的信息。Meyer 正交小波基的提出,使得Mallat 想到是否用正交小波基的多尺度特性将图像展开,以得到图像不同尺度间的“信息增量” [8]。这种想法导致了多分辨率分析理论的建立。MRA 不仅为正交小波基的构造提供了一种简单的方法,而且为正交小波变换的快速算法提供了理论依据。其思想又同多采样滤波器组不谋而合,可将小波变换同数字滤波器的理论结合起来。因此多分辨率分析在正交小波变换理论中具有非常重要的地位。

若把尺度理解为照相机的镜头的话,当尺度由大到小变化时,就相当于将照相机由远及近的接近目标,在大尺度空间里,对应远镜头下观察到的目标,可观测到目标的细微部分。因此随着尺度由大到小的变化,在各尺度上可以由粗及精的观察目标。这就是多尺度(即多分辨率)的思想。

图2-2 小波空间和尺度空间的包含关系 多分辨率分析是指满足下列性质的一系列闭子空间{}Z j V j ∈,:

(1)一致单调性: ????????????--21012V V V V V

(2)渐近完全性: {}0=∈j Z j V ;()R L V j Z

j 2=∈ (3)伸缩规则性: ()

02)(V t f V t f j j ∈?∈ Z j ∈

(4)平移不变性: ()()00V n t f V t f ∈-?∈,对所有Z n ∈

(5)正交基存在性: 存在0V ∈φ,使得(){}z n n t ∈-φ是0V 的正交基,即 (){}n t s p a n V n -=φ0,()

()n m R

dt m t n t ,δφφ=--?

小波空间和尺度空间的包含关系如图2-2所示[7]。

2.2.2尺度函数和尺度空间

若一个函数()()R L t 2∈φ,它的的整数平移系列()()k t t k -=φφ满足

()()Z k k t t k k k k ∈'='',,,,δφφ (2-8)

则()t φ可定义为尺度函数(scale function)。

定义由()t k φ在()R L 2空间张成的闭子空间为0V 称为零尺度空间:

()Z k t span V k k

∈=,}{0φ (2-9)

则对于任意()0V t f ∈,有 ()t a t f k k k φ∑=)( (2-10)

同小波函数相似,假设尺度函数()t φ在平移的同时又进行了尺度的伸缩,得到了一个尺度和位移均可变化的函数集合:

())2(22)(2,t k t t j k j j k j ---=-=φφφ (2-11) 则称每一固定尺度j 上的平移系列()t j 2φ所张成的空间j V 为尺度为j 的尺度空间: ()Z k t s p a n V j k k j ∈=-,}2{φ

对于任意()j V t f ∈,有

()()()

∑∑-==---k j k j j k k k k t a t a t f 22

22φφ (2-12) 由此,尺度函数()t φ在不同尺度上其平移系列张成了一系列的尺度空间Z j j V ∈}{。由式(2-11)随着尺度j 的增大,函数()t k j ,φ的定义域变大,且实际的平移间隔)2(τ?j 也变大,则它的线性组合式(2-12)不能表示函数(小于该尺度)的细微变化,因此其张成的尺度空间只能包括大尺度的缓变信号。相反随着尺度j 的减小,线性组合便能表示函数的更细微(小尺度范围)变化,因此其张成的尺度空间所包含的函数增多(包括小尺度信号的大尺度缓变信号),尺度空间变大。也即随着尺度的减小,其尺度空间增大[6]。

2.2.3 离散小波变换的快速算法

对于任意函数0)(V t f ∈,可以将它分解为细节部分1W 和大尺度逼近部分1V ,然后将大尺度逼近部分1V 进一步分解。如此重复就可以得到任意尺度(或分辨率)上的逼近部分和细节部分。这就是多分辨率分析的框架。

设()t f j s 为函数)(t f 向尺度空间j V 投影后所得到的j 尺度下的概貌信号

()()

()t c t c t f k k j k j k j k k j i s ∑∑Φ=Φ=-,,,2, Z k ∈ (2-13)

其中()(

)t t f c k j k j ,,,Φ=,称为尺度展开系数。

若将函数)(t f 向不同尺度的小波空间j W 投影,则可得到不同尺度下的细节信号()t f j d :

()()

()Z k t d t d t f k j k k j j k k k j j d ∈==∑∑-,2,,,φφ (2-14) 其中()t t f d k j k j ,,),(φ=,称为小波展开系数。

若将()()R L t f 2∈按以下空间组合展开:

()j J j j V W R L ⊕=∑-∞=2

(2-15)

其中J 为任意设定的尺度,则

()()()t c t d t f k j k k j k j J j k k j ,,,,Φ+

=

∑∑∑∞-∞=-∞=∞-∞=φ (2-16)

当∞→J 时,上式变为 ()()t d t f k j j k k j ,,φ∑∑∞-∞=∞-∞==

(2-17)

即对应于1==B A 时的离散小波变换综合公式(或逆小波变换)。1==B A 时的小波框架为正交小波基,所以常称式(2-16)、(2-17)为离散正交小波变换综合公式。

由此可知,离散正交小波变换同多分辨率分析的思想是一致的,多分辨率分析理论为正交小波变换提供了数学上的理论基础[7]。

2.3 几种常用的小波

同傅立叶分析不同,小波分析的基(小波函数)不是唯一存在的,所有满足小波条件的函数都可以作为小波函数,那么小波函数的选取就成了十分重要的问题[8]。

1) Haar 小波

A.Haar 于1990年提出一种正交函数系,定义如下:

??

???-=011)(x H ψ 其它12/12/10<≤≤≤x x (2-18)

这是一种最简单的正交小波,即

0)()(=-?∞

∞-dx n x t ψψ ,2,1±±=n … (2-19)

2)Daubechies(dbN)小波系

该小波是Daubechies 从两尺度方程系数{}k h 出发设计出来的离散正交小波。一般简写为dbN ,N 是小波的阶数。小波ψ和尺度函数吁中的支撑区为2N-1。?的消失矩为N 。除N =1外(Haar 小波),dbN 不具对称性〔即非线性相位〕;dbN 没有显式表达式(除N =1外)。但{}k h 的传递函数的模的平方有显式表达式。假设∑-=+-=1

01)(N k k k N k y C y P ,其中,k N k C +-1为二项

式的系数,则有

)2(sin )2(cos )(2220ω

ω

ωP m N = (2-20)

其中 ∑-=-=120

021)(N k ik k e h m ωω 3)Biorthogonal(biorNr.Nd)小波系

Biorthogonal 函数系的主要特征体现在具有线性相位性,它主要应用在信号与图像的重构中。通常的用法是采用一个函数进行分解,用另外一个小波函数进行重构。Biorthogonal 函数系通常表示为biorNr.Nd 的形式:

Nr=1 Nd=1,3,5

Nr=2 Nd=2,4,6,8

Nr=3 Nd=1,3,5,7,9

Nr=4 Nd=4

Nr=5 Nd=5

Nr=6 Nd=8

其中,r 表示重构,d 表示分解。

4)Coiflet(coifN)小波系

coiflet 也是函数由Daubechies 构造的一个小波函数,它具有coifN(N=1,2,3,4,5)这一系列,coiflet 具有比dbN 更好的对称性。从支撑长度的角度看,coifN 具有和db3N 及sym3N 相同的支撑长度;从消失矩的数目来看,coifN 具有和db2N 及sym2N 相同的消失矩数目。

5)SymletsA(symN)小波系

Symlets 函数系是由Daubechies 提出的近似对称的小波函数,它是对db 函数的一种改进。Symlets 函数系通常表示为symN(N=2,3,…,8)的形式。

6)Morlet(morl)小波

Morlet 函数定义为x Ce x x

5cos )(2/2-=ψ,它的尺度函数不存在,且不

具有正交性。

7)Mexican Hat(mexh)小波

Mexican Hat 函数为

2/24/12)1(3

2)(x e x x ---=

ψπ (2-21) 它是Gauss 函数的二阶导数,因为它像墨西哥帽的截面,所以有时称这个函数为墨西哥帽函数。墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足 0)(=?∞

∞-dx x ψ (2-22)

由于它的尺度函数不存在,所以不具有正交性。

8)Meyer 函数

Meyer 小波函数ψ和尺度函数?都是在频率域中进行定义的,是具有紧支撑的正交小波。

????

?????--=ψ--0))123(2cos()2())123(2sin()2()(?2/2/12/2/1ωπυππωπυππωωωj j e e ]38,32[38343432ππωπωππωπ?≤≤≤≤ (2-23) 其中,)(a υ为构造Meyer 小波的辅助函数,且有

???????-=--0))123(2cos()2()2()(?2/12/1ωπυπππωφ 3

4343232πωπωππω>≤≤≤ (2-24) 2.4 Mallat 的快速算法

Mallat [9]在Burt 和Adelson 图像分解和重构的拉普拉斯塔形算法的基础上,基于多分辨率框架理论,提出了塔式多分辨分解与综合算法,巧妙的将多分辨分析与小波分析结合在一起,Mallat 塔式算法在小波分析中的地位颇似FFT 在经典傅立叶变换中的地位。

信号序列()n s 的Mallat 塔式分解算法,即序列的离散小波变换算法,其中2↓表示二次采样(即删掉奇次编号的样本),如果)(n g )(n h 为共轭镜像滤波器对(QMF),则实现正交小波变换,此时滤波器组是非线性相位的,如果)(n g 和)(n h 为线性相位滤波器,则实现双正交小波变换。设()()n s n c =0,则Mallat 塔式算法用下列迭代方程表示:

()()(),...2,1,0,21=-=

∑∞

-∞=+j k n g k c n d k j j

()(),...2,1,0),2(1=-=

∑∞

-∞=+j k n h k c n c k j j (2-25) 从式(2-25)可以看出,Mallat 塔式算法实际上是通过低通和高通滤波,把信号分解为低频和高频部分。

2.5 本章小结

本章主要介绍了基于小波变换图像融合的分析理论基础,详细的阐述了小波变换的思想,并介绍了几种常用的小波变换,它们分别是:连续小波变换及离散小波变换二进小波变换及Mallat 的快速算法。

第3章基于小波变换的图像融合方法研究

3.1图像融合概述

在众多的图像融合技术中,基于小波变换的图像融合方法已成为现今研究的一个热点。图像融合是将不同传感器得到的多个图像根据某个算法进行综合处理,以得到一个新的、满足某种需求的新图像,它可将同一对象的两个或者更多的图像合成在一幅图像中,以便它比原来的任何一幅图像更容易为人们所理解。高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效的提高了图像信息的利用率和系统对目标探测识别的可靠性。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,以增强影像中信息解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述[9]。

3.2图像融合的方法

图像数据融合是把来自多传感器的对同一目标检测的多幅图像数据用某种方法进行处理,生成一幅能够更有效地表示该目标的检测信息。对源图像按相应象素逐个取均值的方法,将使只在一幅源图像中出现的特征的对比度减弱,甚至出现不应有的现象。为解决这一问题,近年来提出了基于塔式算法的图像融合方法。它提供了对应于多尺度的灵活、方便的多分辨率格式信息,通过适当的算法进行融合,并进行图像重建,生成融合图像[14]。金字塔图像融合方法克服了上述缺点,但仍有不尽如人意之处。如,金字塔的大小是源图像的4/3,增大了数据量;在金字塔重建时,有时可能出现不稳定性,特别是当多幅源图像中存在明显差异区时,融合图像将出现斑块,这就有待于我们去发现更好的方法去解决问题。图像融合将不同传感器得到的多个图像根据某个算法进行综合处理,以得到一个新的、满足某种需求的新图像。这里所说的金字塔图像融合方法也就是对图象进行从高到低的小波分解,分别提取出图象中的高频分量和低频分量,由于其形状很类似于金字塔,所以在这里我就叫这种算法为金字塔算法,这种方法对于图象的融合很有效。

图像融合技术不同于一般意义的图像增强,它涉及到计算机视觉、图像理解等多个领域。根据融合处理所处的不同阶段,图像融合的处理有像素级融合、特征级融合和决策级融合3个层次。像素级融合中,多分辨率图像融合算法是其中一类重要的算法,而小波变换法是多分辨率分析中一种常用的算法。基于小波变换的融合算法减少了层间的相关性,得到更好的融合结果。由于不同模式的图像传感器的成像机理不同,工作电磁波的

基于小波变换的图像融合

基于小波变换的图像融合 摘要:图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一一幅新的图像的过程,其的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间的互补信息的处理来提高图像的清晰度。本文的研究重点是基于小波变换实现图像的初步融合,完成将两幅不同的图像进行合并以形成一幅新的图像。关键词:图像融合,小波变换,融合算法,图像信息 Abstract The image fusi on is a procedure that comb ine more tha n two images in order to get a new image, and it ' s main purpose of image fusi on of multiple images is enhance the reliability of image through deal with the ultra data of the in itial image, and improve the defi niti on of the image through deal with the compleme ntary in formatio n of the images. The key point of this article is realized the image fusi on based on the wavelet tran sform and comb ines two images to get a new image. Key Words : image fusion, wavelet transform, fusion algorithm, image in formatio n 一、引言 图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一幅新的图像的过程。在众多的图像融合技术,基于小波变换的图像融合方法已成为现今的个热点,图像融合技术是数据融合技术的一种特定情形,它是以图像的形式来表达具 体的信息,它对人的视觉产生作用。图像融合具体来说是根据某一算法,将所获得的针对同一目标场景的多幅配准后的图像进行综合处理,从而得到一幅新的、满足某种条件的、对目标或场景的描述更为准确、更为全面、更为可靠的图像。融合后的图像应该比原始图像更加清晰可靠和易于分辨。图像融合充分利用了多个原始图像所包含的冗余信息和互补信息,能够起到扩大传感范围、提高系统可靠性和图像信息利用率的作用。 二、小波变换图像融合 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种 改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又 一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域 变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier变换不能解决的许多困难问题。 近些年来,小波变换倍受科技界的重视,它不仅在数学上已形成了一个新的分支,

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

基于小波变换的图像融合算法研究

摘要 本文给出了一种基于小波变换的图像融合方法,并针对小波分解的不同频率域,分别讨论了选择高频系数和低频系数的原则。高频系数反映了图像的细节,其选择规则决定了融合图像对原图像细节的保留程度。本文在选择高频系数时,基于绝对值最大的原则,低频系数反映了图像的轮廓,低频系数的选择决定了融合图像的视觉效果,对融合图像质量的好坏起到非常重要的作用。图像融合是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。 MATLAB小波分析工具箱提供了小波分析函数,应用MATLAB进行图像融合仿真,通过突出轮廓部分和弱化细节部分进行融合,使融合后的图象具有了两幅或多幅图象的特征,更符合人或者机器的视觉特性,有利于对图像进行进一步的分析和理解,有利于图像中目标的检测和识别或跟踪。 关键词小波变换;融合规则;图像融合

Image Fusion Algorithm Based on Wavelet Transform Abstract In this paper, the image fusion method based on wavelet transform, and for the wavelet decomposition of the frequency domain, respectively, discussed the principles of select high-frequency coefficients and low frequency coefficients. The high-frequency coefficients reflect the details of the image, the selection rules to determine the extent of any reservations of the fused image on the original image detail. The choice of high-frequency coefficients, based on the principle of maximum absolute value, and consistency verification results. The low-frequency coefficients reflect the contours of the image, the choice of the low frequency coefficients determine the visual effect of the fused image, play a very important role in the fused image quality is good or bad. MATLAB Wavelet Analysis Toolbox provides a wavelet analysis function using MATLAB image fusion simulation, highlight the contours of parts and the weakening of the details section, fusion, image fusion has the characteristics of two or multiple images, more people or the visual characteristics of the machine, the image for further analysis and understanding, detection and identification or tracking of the target image. Keywords Wavelet transform; Fusion rule; Image Fusion

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

浅谈多源图像融合方法研究

浅谈多源图像融合方法研究 图像融合已成为图像理解和计算机视觉领域中的一项重要而有用的新技术,多源遥感图像数据融合更是成为遥感领域的研究热点,其目的是将来自多信息源的图像数据加以智能化合成,产生比单一传感器数据更精确、更可靠的描述和判决,使融合图像更符合人和机器的视觉特性,更有利于诸如目标检测与识别等进一步的图像理解与分析。遥感图像融合的目的就在于集成或整合多个源图像中的冗余信息和互补信息,利用优势互补的数据来提高图像的信息可用程度,同时增加对研究对象解译(辨识)的可靠性。 标签:遥感图像图像融合几何纠正空间配准图像去噪 1前言 多源遥感图像融合就是将多个传感器获得的同一场景的遥感图像或同一传感器在不同时刻获得的同一场景的遥感图像数据或图像序列数据进行空间和时间配准,然后采用一定的算法将各图像数据或序列数据中所含的信息优势互补性的有机结合起来产生新图像数据或场景解释的技术。 2多源图像融合的预处理 预处理的主要目的是纠正原始图像中的几何与辐射变形,即通过对图像获取过程中产生的变形、扭曲和噪音的纠正,以得到一个尽可能在几何和辐射上真实的图像。 2.1图像的几何纠正 图像几何校正一般包括两个方面,一是图像像素空间位置互换,另一个是像素灰度值的内插。故遥感图像几何校正分为两步,第一步是做空间几何变换,这样做的目的是使像素落在正确的位置上;第二步是作像素灰度值内插,重新确定新像素的灰度值,重采样的方法有最临近法、双线性内插法和三次卷积内插法。数字图像几何校正的主要处理过程如图1所示。 2.2图像的空间配准 图像数据配准定义为对从不同传感器、不同时相、不同角度所获得的两幅或多幅影像進行最佳匹配的处理过程。其中的一幅影像是参考影像数据,其它图像则作为输入影像与参考影像进行相关匹配。图像配准的一般过程是在对多传感器数据经过严密的几何纠正处理、改正了系统误差之后,将影像投影到同一地面坐标系统上,然后在各传感器影像上选取少量的控制点,通过特征点的自动选取或是计算其各自间的相似性、配准点的粗略位置估计、配准点的精确确定以及配准变换参数估计等的处理,从而实现影像的精确配准。

基于图像的小波变换

基于图片的小波变换 研硕13-13张佳浩 0 引言 在经典的信号分析理论中,傅里叶理论是应用最广泛、效果最好的一种分析手段。但它只是一种纯频域的分析方法,不能提供局部时间段上的频率信息。随后的短时傅里叶变换STFT,虽然可以同时分析时域和频域信息,但是由于STFT的固定时窗,对于分析时变信号是不利的。这是因为时变信号中的高频一般持续时间很短,而低频持续时间比较长,所以都希望对高频信号采用大的时窗,对低频信号采用小的时窗进行分析。小波变换正是在这样的背景下发展起来的。近年来,小波变换作为一种变换域信号处理方法,得到了非常迅速的发展,在信号分析、图像处理、地震勘探和非线性科学等诸多领域得到了广泛的运用。小波理论为各种信号及图像处理方法提供了一种统一的分析框架,成为当前信号与图像处理等众多领域的研究热点。当前对数字图像进行多分辨率观察和处理时,离散小波变换(DWT)是首选的数学工具。除了具有有效、高度直观的描述框架以及多分辨率图像存储之外,DWT还有利于我们深入了解图像时域和频域特性。 1 小波变换 小波变换是一种窗口大小固定不变,但其形状可以改变的局部化分析方法。小波变换在信号的高频部分可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息。 小波变换分为以下两种: 1.1 连续小波变换 引言中提到的短时傅里叶变换(STFT),其窗口函数是通过函数 时间轴的平移与频率限制得到的,由此得到的时频分析窗口具有固定的大小。对于非平稳信号而言,需要时频窗口具有可调的性质,即要求在高频部分具有较好的时间分辨率特性,而在 低频部分具有较好的频率分辨率特性。为此,特引入窗口函数,并定义平方可积分函数的连续小波变换为: (1) 式中:a称为尺度参数;b称为平移参数。很显然,并非所有函数都能保证式(1)中的变换对于所有均有意义;另外,在实际应用中,尤其是信号处理以及图像处理的应用中,变 换只是一种简化问题、处理问题的有效手段,最终目的需要回到对原问题的求解,因此还要保证连续小波变换存在逆变换。同时,作为窗口函数,为了保证时间窗口与频率窗口具有快速衰 减特性,经常要求函数具有如下性质: 式中:C为与x,ω无关的常数;ε>0。 1.2 离散小波变换

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

图像融合的方法研究

东北大学 研究生考试试卷 考试科目:现代信号处理理论和方法______________ 课程编号:_______________________________ 阅卷人:_________________________________ 考试日期:_________ 2011年11月24日________________ 姓名:________________ 朱学欢 _______________________ 学号:____________ 1101139 ___________________ 注意事项 〔?考前研究生将上述项目填写清楚 2?字迹要清楚,保持卷面清洁 3?交卷时请将本试卷和题签一起上交 东北大学研究生院

基于MATLAB的图像融合方法 姓名:朱学欢学号:1101139 一、图像融合算法 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象。正是由于这一特点,图像融合技术现已广泛地应用于军事、遥感、计算机视觉、医学图像处理等领域中。 数字图像融合是图像分析的一项重要技术,其目的是将两幅或多幅图像拼接起来构成一副整体图像,以便于统一处理,该技术在数字地图拼接、全景图、虚拟现实等领域有着重要应用。虽然Photoshop等图像处理软件提供了图像处理功能,可以通过拖放的方式进行图像拼接,但由于完全是手工操作,单挑乏味,且精度不高,因此,有必要寻找一种方便可行的图像融合方法。Matlab具有强 大的计算功能和丰富的工具箱函数,例如图像处理和小波工具箱包含了大多数经典算法,并且它提供了一个非常方便快捷的算法研究平台,可让用户把精力集中在算法而不是编程上,从而能大大提咼研究效率。 在图像融合中,参加融合的源图像是由不同的传感器或者是同一传感器在不同时刻得到的,所以在进行融合之前需要对图像进行配准和一些预处理操作。在本实验中所提到的参加融合的图像都是经过了配准了的,图像融合的过程可以发生在信息描述的不同层。 聚九左边杵范It (b) 寓M用僱竝舍技倉遵胯于勲钟机 (?) AW CT图倬ex詹M阳图偉側玄乌b的*售丼髭 圈1-5图俅融令校*摩匿単上的庭周 1、图像融合算法的层次分类 图像融合系统的算法按层次结构划分可分为信号级、像素级、特征级和决策级。 信号级融合: 是指合成一组传感器信号,目的是提供与原始信号形式相同但品质更高的信号。

小波变换与PCNN在图像处理中的比较与结合

收稿日期:2005-10-25 基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910) 小波变换与PC NN 在图像处理中的比较与结合 田 勇,敦建征,马义德,夏春水,吴记群 (兰州大学信息科学与工程学院,甘肃兰州 730000) 摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果. 关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理 中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03 The Comparison Between Wavelet Transform and PC NN in Image Processing and Their Combination TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun (School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China ) Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first https://www.360docs.net/doc/2711547471.html, bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing . Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1] .目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8] ,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别. 1 小波变换理论简介 [13~16] 小波(wav elet)即小区域的波.“小”是指在时域 具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n) C J =∫ R |J (k )|2 |k |d k <∞(1) 则称J (t )为一个基本小波或母小波(M other Wav elet). 小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小 第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences Vol.18 No.4 Dec.2006

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强 专业:通信工程姓名:李厚福指导教师:王建华 摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论 1.1课题研究的意义 图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。 图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。 图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

matlab中图像小波变换的应用实例

matlab中图像小波变换的应用实例如下: 1 一维小波变换的Matlab 实现 (1) dwt 函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D) 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组Lo_D、Hi_D 对信号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L) X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量cA 和细节分量cD 经小波反变换重构原始信号X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器Lo_R 和Hi_R 经小波反变换重构原始信号X 。 X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号X 中心附近的L 个点。 2 二维小波变换的Matlab 实现 二维小波变换的函数 ------------------------------------------------- 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换

基于小波变换的图像处理综述

Value Engineering 1小波变换的定义 小波分析是对Fourier 分析的一个重要补充和完善。因此,小波变换的定义应该是尽可能的由少数几个函数生成的;而理想的小波基应该是类似于Fourier 分析的。小波分析主要可以分为两个变换,即连续小波变换和离散小波变换。 2小波分析处理图像的发展 小波分析是一个不断发展的过程,经历“应用-理论-应用”的循环过程。小波分析是多学科交叉理论的结晶,包含泛函数分析、数值分析、分形理论、信息论、调和理论以及逼近论和时频分析等。并提出一种自适应的时-频局部化方法,可在时-频域任意转换,可聚焦任意信号的时段和频段,称为数学中的“望远镜”和“显微镜”。小波变换是Fourier 变换的深层次发展,是近年来工程领域关注的热点,将小波分析用于无损检测、医学CT 、构件探伤等。小波起源就与信号处理密不可分,1984年,法国工程师J.Morlet 和Grossman 对地质信号的分界提出了伸缩、平移的概念,首次提出”Wavelets ”一词。1985年,法国大数学家Meyer 提出光滑正交小波的理念,证明一维小波的存在性,构造出小波函数,是小波数学理论的先驱。随后与他的学生Lemarie 提出多尺度分析的思想。1988年,比利时数学家Ingrid Daubechies 构造出具有紧支撑的有限光滑小波函数,并撰写的《小波十讲(Ten Lectures on Wavelets )》为小波研究和应用领域的专家学者提供了系统的小波理论讲解。1989年,Mallat 在多分辨的基础上,构造mallat 算法进行分解和重构,打开了小波应用的大门。1990年,Latto 和Tenenbaum 将小波分析用于偏微分方程求解,为小波分析的普及、发展及应用提供了动力。 3小波在图像处理中的主要应用:3.1图像变换小波变换具有捕获点奇异性的能力, 而一维信号中的奇异性主要表现为点奇异性,因此,利用小波变换处理一维信号可以取得很好的效果。图像变换相当于是对数字图像阵列的预处理。因为图像阵列维数相对较大,能够直接进行处理复杂度高、计算繁复,就需要一种算法将它变换,减少计算量,小波变换亦能达到良好去除冗余度的效果。 3.2图像压缩 数字图像的压缩目的即减少图像所需的比特数,经小波变换,通过时间域压缩图像的压缩比比传统的压缩方法高,速度快,而压缩后要能够保持信号与图像的特征基本是不变的,这也是一种有损压缩,但是在传递中抗干扰能力相对较强。Shappro 推倒出离散正交小波变换,提出“嵌入”式的“零树”小波编码图像压缩方法,相比于其它图像编码方法压缩比高、无方块效应。目前,基于小波变换的基础发展起来的图像编码方法称为新的静止图像压缩标准。而基于小波变换分析的压缩方法比较成功的是格型矢量量化小波系数编码,小波包最优基方法,多级树集合分裂算法(SPIHT ),小波域多尺度ARMA 模型纹理方法等。 3.3图像增强与恢复 图像去噪方法分空域滤波、频域滤波和最优线性滤波法。Donoho 和Johnstone 在高斯噪声模型下,应用多维独立正态变量决策理论,提出了小波阈值去噪方法和改进的信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink 阈值公式及SureShrink 阈值公式,从理论上证明该阈值是渐进最优的。Weaver 等人通过分析小波变换高频、低频系数的相关特性,提出基于小波变换域内高、低系数相关的去噪方法。图像复原即利用模糊理论、粗糙集理论等去模糊,研究表明,模糊图像是由降质函数与清晰图像卷积得到,通过分析使图像模糊的因素,如高斯噪声、脉冲噪声、白噪声等,建立图像退化模型,根据采集图像提供的资料恢复清晰的图像。 3.4图像分割 —————————————————————— —作者简介:黄奎(1990-),男,重庆人,硕士,研究方向为水工结构工程。 基于小波变换的图像处理综述 Overview of Image Processing Based on Wavelet Transform 黄奎HUANG Kui (重庆交通大学, 重庆400074)(Chongqing Jiaotong University ,Chongqing 400074,China ) 摘要:小波分析主要广泛应用在科学研究和工程技术中。虽然在现阶段的小波理论相对成熟,近些年关于小波理论的应用和研 究也在不断的发展和更新。小波变化在图像处理领域中的应用也囊括图像与处理的所有方面。本文通过介绍小波变换的起源,将小波 应用在图像处理中的压缩、还原图像、边缘检测和图像分割,宏观剖析小波的研究现状历史、发展动向及优势。 Abstract:The wavelet analysis is widely used in scientific research and engineering technology.Although the wavelet theory is relatively mature at this stage,the application and researches on the wavelet theory in recent years is also in constant development and renewal.The application of wavelet transform in image processing covers all aspects of image processing.Through the introduction of the origin of wavelet transform,and by applying wavelet in image compression,image restoration,edge detection and image segmentation,this article analyzes the research situation,development trend and advantage of wavelet. 关键词:小波分析;图像;应用;边缘检测;宏观剖析Key words:wavelet analysis ;image ;application ;edge detection ;macro analysis 中图分类号:TP391文献标识码:A 文章编号:1006-4311(2015)08-0255-02·255· DOI:10.14018/https://www.360docs.net/doc/2711547471.html,13-1085/n.2015.08.143

相关文档
最新文档