KRG锥环无级变速器全解读

KRG锥环无级变速器全解读
KRG锥环无级变速器全解读

KRG锥环式无级变速箱,对于大多数人而言可能是个陌生的名词。不过,这种变速箱可能会成为未来国内小排量车型上的主流变速箱,低成本、高效率、简单的结构和在功能和平顺性上的多重优势值得我们关注,在其正式量产之前,让我们一同来认识一下这台结构新颖的变速箱。

GIF吉孚推出的创新锥环式无级变速箱(KRG)

◆无级变速的基础,滚锥+锥环代替钢带和棘轮

--悠久历史和创新:源于1902年的结构+创新控制机构

KRG变速箱展示模型

我们都知道,传统的CVT无级变速箱的核心变速机构是由可变槽宽的主、从动棘轮和钢带组成的,通过主、从动棘轮V 型槽槽宽的改变来改变钢带的在两个棘轮上转动的周长,进而实现速比的连续变化。

传统的CVT变速箱是通过V型槽宽度可变的主、从动棘轮和钢带来连续调节速比的

而KRG锥环式无级变速箱实现无级变速的主要执行机构则是输入滚锥、输出滚锥和他们之间传递动力的锥环,锥环的平面在两个滚锥上得到的截面圆的周长决定了输入轴和输出轴的速比(当然还有锥环本身的尺寸引起的差异),所以锥环在滚锥上的位置直接决定变速箱的速比,由于锥环可以在滚锥上的左右止点之间任意移动,所以能够提供在一定范围内连续可变的速比。

上面的输入滚锥、下面的输出滚锥加上在两者间传递动力的锥环,构成了锥环变速器的主要机构

变速箱中的滚锥和锥环实体

锥环所在平面对于两个滚锥的截面圆的周长差异决定了输入输出的速比

只要输入滚锥转动,动力便会通过输入滚锥传递到锥环,进而带动输出滚锥做反向转动。据介绍,这套机构早在1902年时已经面世,GIF则将它成功的运用到了汽车变速箱上,并已具备了量产水平。这套机构同样适合在混合动力车型和电动车作为变速机构。

KRG变速箱整体的结构并不复杂,目前的KRG变速箱主要是针对横置发动机设计,动力从发动机出来之后直接连接离合器(KRG可以配置液力变矩器和干式离合器),输入轴与行星齿轮相连,然后便是输入滚锥-锥环-输出滚锥,然后动力就输出至差速器--半轴。

在离合器方面,KRG使用的干式离合器像AMT变速箱一样,采用电子控制,即为人们提供了一只电子左脚。所不同的是,其离合器控制机构不像大多数AMT变速箱那样使用电-液控制系统(由电子泵、液压执行机构等组成的控制系统)来控制离合器的接合与分离,而是采用电机控制离合器,在结构上更加简单,响应速度也更快。当然,其同样可以采用液力变矩器,GRC-吉孚动力技术(中国)的工程师们可以根据厂商的需求进行开发和匹配。

KRG变速箱:离合器--行星齿轮组--输入滚锥--传动锥环--输出滚锥--减速齿轮--差速器--半轴

1-输入滚锥 2-输出滚锥 3-传动锥环 4-胀紧机构

5-锥环定位(速比调节执行)机构 5a-控制架

◆速比的变化调节

--速比的变化调节仅需一个低功率的伺服电机

我们都知道,传统的CVT变速箱需要有一套液压泵机构来推动棘轮,改变其槽宽,进而使速比发生变化。液压控制机构和执行机构的加入让CVT变速箱的结构变得复杂,也直接导致了较高的变速箱成本。在KRG变速箱上,GIF吉孚的工程师们利用锥环本身的机械特性,仅用了一个很简单的模块就实现了速比的转换。

KRG变速箱变速机构的简化模型

我们从俯视图上比较容易理解KRG速比调节机构的原理,由于锥体的特殊形状,当传递动力的锥环平面与滚锥中心线呈垂直状态时,锥环能够保持当前位置不变,即变速箱能够以恒定的速比输出动力;而当锥环平面的与中心线的角度发生变化时,锥环便会随着锥体的转动在锥体上相应的向左或向右移动,这种移动完全是由于“圆锥”的形状特性所导致的,属于完全自发性的运动,而不需要外力推动锥环在滚锥上左右移动。而且,锥环平面与滚锥中心线的夹角越小,其左右移动的速度也就越快。所以,工程师们只需要设计一个可以调节锥环角度的机构,辅以对应的电子控制程序,就能够轻松的实现速比的调节,并且还能控制速比变化的速度。

(唔明啊啊啊啊啊啊啊啊!!~~~~~点解啊!!!!~~~~)

当传递动力的锥环平面与滚锥中心线呈垂直状态时,锥环能

够保持当前位置不变

只需让锥环平面与滚锥中心线呈一定角度

锥环便会顺着滚锥的旋转相应的向左或向右移动

工程师们为锥环设计了一个控制架,控制架下端有一个带有滑轨的限位器(速比调节执行机构),用来控制传动锥环的角度。这个控制架由伺服电机直接驱动,可以在箱体内做一

定角度的转动。当变速箱需要固定速比输出时,这个控制架只需要保持锥环与滚锥轴线保持平行状态即可,当变速箱需要改变速比时,伺服电机驱动控制架,相应改变锥环角度,锥环便会随着滚锥的运动自行移动,到达需要的速比时,控制架将锥环转回垂直角度状态即可。这样的速比调节过程仅仅需要克服锥环和控制架本身的惯量,仅需低功率的电机即可实现。伺服电机设计在变速箱壳体外部,便于维护。KRG 节省了传统CVT复杂且成本较高的液力控制机构,在组装难度、制造成本、控制部件重量和养护便利性方面均超越传统CVT变速箱,并且其响应速度也要比液力控制机构具有优势。

整体可旋转的控制架,限位器可沿着滑轨自由滑动

对锥环的角度控制就像我们转动自行车把一样,非常轻松,仅需要低功率的伺服电机

变速箱实体模型当中的控制架和锥环,还可以看到控制架的滑轨和限位器

这里面就是控制架的伺服电机

◆传动效率保障:胀紧机构、变速箱润滑

--机械式自胀紧机构,摩擦传动部分使用特殊润滑油

锥环式的动力传输结构与CVT一样,都不是使用传统的齿轮或链条等连接方式传递动力,而是依靠接触摩擦来传递动

力,所以需要胀紧机构为接触部分提供压力,以避免接触摩擦部位打滑而造成的动力流失。

工程师们在输出滚锥的轴承上设计了一套自胀紧结构,当锥环带动输出滚锥转动时,与轮端相连的输出轴端的阻力使胀紧机构发生扭转,这种扭转力使胀紧机构内的滚珠沿着斜槽运动,将胀紧机构推开,迫使输出滚锥向右侧移动,这样一来其与输入滚锥的间隙变小,锥环所承受的压力增加,提升锥环和滚锥之间的摩擦力,保证动力传输效率。据了解,目前的KRG样机变速箱的传动效率可以接近90%左右,可承受的发动机扭矩为180牛米左右,并且主要是针对横置引擎前驱车开发。工程师表示可以承受400牛米扭矩的KRG变速箱目前也在研发当中。

胀紧机构能够减小两个滚锥之间的间隙,增加二者间锥环的

接触压力,保证动力传递效率

输出滚锥的被动旋转和来自轮端的阻力使胀紧机构发生扭转,滚珠沿着斜槽运动,将胀紧块推开

为了进一步保证摩擦界面的动力传导效率,工程师专门为变速箱的锥环变速机构设计了独立的密封腔室(下图绿色部分),滚锥和变速箱的其它轴承、齿轮使用的都是普通变速箱油,而在该腔室内则使用的是特殊开发的润滑油--“牵引油”,在腔室中,将输出滚锥浸在牵引油中采用飞溅润滑方式进行摩擦部位的润滑。相比普通的CVT变速箱油,这种“牵引油”增加了50%的摩擦以确保动力传输效率。

红色部分使用普通变速箱油,绿色部分则使用特别配方的润滑油--“牵引油”

在提供润滑的同时保证接触摩擦部件有效的动力传递。另外,绿色部分为飞溅润滑

用户可能关心的问题:变速箱是否为免维护设计?变速箱油(尤其“牵引油”)是否价格高昂?

据GRC吉孚动力(中国)的总经理吴力先生介绍,他们使用的牵引油只是在配方上与传统变速箱油有所差别,但是成本上并不高,甚至比有些自动变速箱油还要便宜。并且他们的KRG变速箱本身为免维护设计,也就是说在设计寿命内是不需要更换新变速箱油的。所以未来国内的用户不需要担心在后期使用成本方面的问题。

◆挡位控制机构与传统CVT相似

--行星齿轮切换前进/倒退/空挡

KRG锥环式无级变速箱的挡位切换机构与传统的CVT变速箱一样,是依靠行星齿轮机构来完成。发动机的动力经离合器传入变速箱的输入轴,输入轴连接行星齿轮结构的太阳轮,后端的输入滚锥则与行星齿轮结构的齿圈相连。

行星齿轮的太阳轮连接变速箱输入轴,而行星齿轮之后的输入滚锥与行星齿轮的齿圈相连

不过,它并没像当前的大多数CVT变速箱那样依靠多片式离合器来对行星齿轮的齿圈、行星架进行分别控制,而是采用了一套拨叉控制的花键套来控制行星齿轮架和齿圈。在“D”挡下,拨叉移动花键套,将行星齿轮架和外齿圈锁死,整个行星齿轮组成为一个整体,输入轴与输入滚锥同步旋转;在“R”挡下,花键套在拨叉的作用下仅锁止行星齿轮架,在行星齿轮的作用下,太阳轮驱动齿圈反向旋转,输入滚锥与变速箱输入轴便反向旋转,实现倒档的功能;而在“N”挡下,花键完全释放齿圈和行星架,太阳轮只能带动行星齿轮架空转,无法将动力传递到齿圈上。

◆KRG变速箱体验:整体感受与CVT相当

笔者短暂的体验了从欧洲运来的KRG变速箱验证车,这是一辆第五代的福特嘉年华车型,GIF的工程师们更换了车辆的变速箱,变速箱的TCU被安置在副驾驶位置之下。但是驾驶者的操作端并没有变化,坐进车内,排挡杆依旧是熟悉的手自一体变速箱样式,验证车辆的KRG变速箱提供了模拟7速的手动换挡功能,在中控台上还增加了显示变速箱工况的液晶显示屏幕。据工程师介绍,KRG变速箱的重量介于AMT(在手动变速箱基础上增加电控机构和TCU的机械式自动变速箱)和AT(使用液力变矩器和行星齿轮组的传统自动变速箱)之间,在车辆的整备质量上较AT车型有优势。

此次体验的KRG变速箱的技术验证车辆是一款第五代的福特嘉年华车型

据工程师介绍,KRG变速箱的重量在AMT和AT之间

变速箱控制端面板依旧是原车样式,变速箱的操作方式并没有特别之处

中控台安置了额外的显示屏,显示当前速比、工作模式、挡位、牵引油

和变速箱油温度等信息

副驾座位下方是KRG变速箱的TCU-变速箱控制模块

启动车辆,松开制动踏板,装备了干式离合器的KRG变速箱自动将离合器切换至半联动状态,实现了起步和倒车时的“蠕行”功能,这样的功能在国内的一些AMT车型上也已经实现,相比使用液力变矩器的CVT或AT车型,这种半联动的感觉还是有些生涩,前面已经提到,KRG变速箱可以根据厂商的要求匹配液力变矩器,但是这样一来在经济性方面就会损失一些优势。

轻油门踏板起步,你会看到车速不断提升,而发动机转速始终维持在稳定的转速上--就像我们熟悉的CVT车型一样。整个行车过程平顺而舒适,这是AMT变速箱甚至是一些齿比较疏的AT变速箱(这其中不乏5速或6速的AT)所不能比拟的。手动模式下加减挡的响应速度也与CVT变速箱相当,超

菱锥式无级变速器结构设计

菱锥式无级变速器结构设计 摘要 菱锥式无级变速器是摩擦式无级变速器的一种,其运动的传递主要是依靠摩擦力来实现的。 在本设计中,中间传动元件是菱形的锥轮。在传递运动时,菱锥式无级变速器是通过改变两锥轮的瞬时接触半径以改变传动比,从而实现输出轴的输出扭矩和转速可以任意变化。在本设计中详细的分析了在传动运动过程中变速器的输入轴、输出轴、主动轮、加压装置、菱锥、从动轮和从动外环的工作原理以及在传动过程中各零部件的受力关系;对于菱锥锥轮式无级变速器设计时所需要用的计算公式,在本文中进行了详细的推导与证明;并对给定参数进行计算,校核设计参数;最后将菱锥锥轮式无级变速器的装配图和变速器上的主要传动元件(例如菱锥,输入轴和输出轴等)的零件图按照计算校核所得数值进行绘制,从而将此菱锥式无级变速器的工艺和结构等方面的要求表现的更为清楚。由于菱锥式无级变速器绝在传递运动和扭矩时是依靠菱锥与主动轮和从动外环之间的摩擦力,所以,只要摩擦力足够大既可以避免打滑现象的产生。从而可以满足的传动比要求。但是,如果传动的过程中存在震动、冲击和过载情况,则会导致传动比的不准确性。因此在使用菱锥式无级变速器的场合应该尽量避免上述情况的发生。 虽然,菱锥式无级变速器在传动过程中可能存在传动比不准确的缺点。但是,菱锥式无级变速器具有良好的结构和优越的性能。由于可实现大范围的无级变速。因此,菱锥式无级变速器在实际生产中具有很强的实用价值。完全可以在对传动比要求不是非常准确,却又需要能进行无级变速的场合起到重要作用。 关键词无级变速器;摩擦式;菱锥式 - I -

Kopp-K mechanical structure design Abstract Kopp-K is a kind of frictional stepless transmission, the movement of the transmission is mainly rely on the friction. In this design, transmission element is diamond cone wheel in the middle. When passing movement, Kopp-K is by changing the two cone wheel radius of instantaneous contact to change the transmission ratio, so as to realize the output torque and rotational speed of the output shaft can be arbitrarily change. In this design, the detailed analysis in the process of transmission movement transmission input shaft and output shaft, driving wheel, pressure device, ling cone, driven wheel and the driven work principle of the outer ring and in the process of driving force of parts of relationship; For ling cone wheel to stepless transmission design calculation formula, in this article has carried on the detailed derivation and proof; And for a given parameter to calculate, check the design parameters; Finally to ling cone wheel type stepless transmission on the assembly drawing and the transmission of the main transmission components (such as ling cone, the input shaft and output shaft, etc.) of the part drawing shall be carried out in accordance with the calculated from numerical mapping, thus the Kopp-K process and structure performance requirements more clearly. Because Kopp-K off when transfer movement and torque is rely on ling cone with the driving wheel and driven friction between the outer ring, so as long as the friction force is big enough can avoid skid phenomenon. Thus can satisfy the transmission ratio requirements. If, however, exist in the process of transmission - II -

双锥面同步器简介解读

双锥同步器与单锥同步器的同步性能 比较及设计计算 摘要: 本文以原微发技术开发部测绘开发的两轴式前置前驱动变速器DABS13-2为例,对双锥面齿环式同步器和单锥面齿环式同步器的同步性能进行了推理和计算,并通过对二种同步器的比较,说明双锥(多锥)齿环式同步器同步性能上的优点。 关键词:变速器、同步器、双锥面 一.前言 同步器是改善汽车机械式变速器换档性能的主要零部件,它能够使换档操纵轻便快捷,减轻驾驶员的劳动强度;可以保证换档时变速器齿轮啮合不受冲击,消除噪音,提高齿轮及传动系统的平均使用寿命;并对提高汽车行驶安全性和乘坐舒适性,改善汽车起步时的加速性和燃料经济性起着极其重要的作用。 在微发生产的变速器BS09、BS10及BS13等系列产品中,所采用的同步器均为单锥面齿环式同步器(以下简称单锥同步器),在合资公司引进的F5M41变速器产品技术中包含了双锥面齿环式同步器(以下简称双锥同步器)技术。目前,在国外的汽车机械式变速器上,双锥(多锥)同步器技术正处于推广应用的阶段,而国内该技术应用的却很少,同档次的发动机上只有即将投产的一汽大宇的发动机变速器采用了该技术。因此,对我们来说这是一项崭新且很有意义的课题。由于我们还没有这方面的生产实际经验,因此本文仅仅从性能的角度进行了推理,意在抛砖引玉,供大家参考。本文所示的双锥同步器,是在DABS13-2变速器的同步器基础上改制而成的。通过对改制前后的性能比较,阐明双锥面技术的意义。 由于本人水平有限,难免有不当之处,希望多多指教。 二.同步器的结构型式和工作原理 1.同步器的结构型式 通常同步器分为常压式和惯性锁止式两类。常压式同步器由于不能保证被连接零件完全同步之后再换档,故应用不广泛,现已基本淘汰。现代机械式变速器中广泛应用的是惯性锁止式同步器。 惯性锁止式同步器根据锁止位置的不同又分为:锁块式同步器、锁销式同步器和锁环式同步器。锁环式同步器又分为齿环式同步器和增力环式同步器(Porsche)。而齿环式同步器根据同步锥面的数量不同又可分为:单锥式、双锥式和多锥式几种。

德国SEW机械无级变速器

德国SEW机械无级变速器 简介 SEW生产两种系列的机械变速器:VARILOC?系列宽V带式无级变速器与VARIMOT?系列摩擦盘式无级变速器,结构见下图。变速器与交流鼠笼电动机组合而成调速驱动装置,在SEW模块系统里能套配各种型号(R../F../K../S..)的齿轮减速器构成输出低速、高转矩的无级调速减速电机。也可不经减速器直接驱动工作机。无级调速减速电机样本可向SEW公司函索。 1—可调带轮2—宽V带3—分离式箱体4—电动机5—调节装置6—配接附件7—减速器 1-电动机和调节座2-驱动锥3-摩擦环境和输出轴总成4-传动箱体5-箱罩6-速度控制机构 输出速度可通过手轮或链轮手动调节,也可通过伺服电机遥控。若使用变极电机可以扩大调速范围。机械调速的调节时间约为20~40s,所以这些变速装置只用于不需经常调速的场合。 机械调速传动装置的选择。 在确定所需功率和输出速度的范围之后,可从SEW产品样本中选择变速器。选择时必须注意一些重要因素。 对VARIBLOC?调速传动装置,V带的结构和尺寸是计算功率的决定因素。对VARIMOT ?调速传动装置,摩擦环的接触应力和材料是重要因素。为了能够正确地确定调速传动装置的尺寸,除所需功率和调速范围外,还应知道安装高度,环境温度和工作制。图3给出输出功率P a、效率η、转差率s与调速比i0的关系曲线。其中

机械调速传动装置不仅变换速度,而且变换转矩,因而可根据不同准则来选型。 1 按恒转矩选择 大多数传动装置需要在整个速度范围内输出转矩基本恒定。按此要求调速传动装置能承受的转矩(N·m)按下式计算 式中P amax、n amax-----最大输出功率(kw)和转速(r/min)。 这种情况所连的减速器在整个速度范围内受均匀载荷。变速器只有在最大速度时才会被完全利用,在低速时许用输出功率减小。在速度范围内的最低速度时最小输出功率(KW)按下式计算 式中R—速度范围。 2 按恒功率选择 在整个调节范围内可以利用下式计算出输出功率Pa 式中M amax—最大转矩(N·m)。 这种情况所连的减速器必须能传递合成转矩,这些转矩约比恒转矩设计时的转矩高200%~600%。变速器只有在最低输出速度时才被完全利用。 3 按恒功率和恒转矩选择 在这种情况下,调速性能被最佳利用。选择减速器应保证能够传递所出现的最大输出转矩。在n′a—n amax范围内功率保持不变. 在 n amax—n′a范围内转矩保持不变。 如果不全部利用变速器的可用速度范围,那么,由于效率的原因就使用较高的速度级。实际上,速度级较高时变速器打滑最小,传递功率最大。 SEW带式无级变速器技术数据列于下表。表中符号意义如下: R- 调速范围; R m-电动机功率(KW); n a1-转速下限(r/min); n a2-转速上限(r/min); P a1-转速下限时的输出功率(KW); P a2-转速上限时的输出功率(KW); RZ-小齿轮轴直径(mm)。 如果用户需要无级调速斜齿轮减速电机(R../VU/VZ..DT/DV..)、无级调速斜齿轮-蜗杆减速电机(S..VU/VZ..DT/DV..)、无级调速斜齿轮-锥齿轮减速电机(K..VU/VZ..DT/DV..)的技术数据和外形尺寸,可查阅SEW产品样本。样本可向SEW公司各办事处函索。 VARIBLOC?带式无级变速器技术数据

液压机械无级变速器设计与试验分析

液压机械无级变速器设计与试验分析 摘要:液压机械无级变速器(HMCVT)兼具机械传动高效和液压传动无级调速的特点,适应了大功率拖拉机的传动要求。功率经分流机构分流,液压调速机构中的变量泵驱动定量马达,在正、反向最大速度间无级调速,液压调速机构与机械变速机构相配合,经汇流机构汇合,实现档位内微调,通过换挡机构实现档位间粗调,最终实现车辆的无级变速。 关键词:单行星齿轮;液压机械无级变速器;设计 对大马力拖拉机进行动力学和运动学分析,根据性能参数,设计一种单行星排汇流液压机械无级变速器(HMCVT),包括发动机、液压调速机构和离合器的选择,单行星齿轮、换挡机构齿轮传动比的设计。 一、变速器总体设计方案 1.变速器用途和选材。设计一种用于时速-10~30 km/h大马力拖拉机的单行星排汇流液压机械无级变速器。变速器由纯液压起步、后退档,液压机械4个前进档位和2个后退档位构成。液压调速机构选择SAUER90系列055型变量泵、定量马达及附件,采用电气排量控制(EDC)构成闭环回路。选择潍柴WP4.165柴油机作为变速器配套发动机,最大输出功率Pemax=120 kW,全负荷最低燃油消耗率gemin=190 g/kW·h,额定转速nemax=2 300 r/min,最大转矩Temax=600 N·m。汇流机构选用2K-H行星排,行星排特性参数k定义为行星排齿圈齿数与太阳轮齿数之比,取k=3.7。太阳轮、行星架材料选用20crmnti,齿圈材料选用40cr。模数为3,实际中心距为57 mm,太阳轮与行星架采用角度变位,行星架与齿圈采用高度变位。太阳轮轴连接液压调速机构可使系统增速减矩,并充分利用液压元件特性,以提高使用寿命。 2.变速器设计方案。液压机械无级变速器设计方案如图1。变速器输入轴、输出轴和液压动力输入轴成“品”字型布局,行星排通过离合器与机械动力输入轴和液压机械输出轴相连。 1.机械动力输入轴2.输入轴3.前进后退档接合套4.变量泵5.定量马达6.液压机械输出轴7.液压动力输入轴8.输出轴 图1 液压机械无级变速器结构图 离合器L1、L2由比例压力阀控制,结合平稳,起主离合器作用,其它离合器采用电磁换向阀控制,以降低成本;变速器起步和制动为纯液压传动,此时,离合器L8接合;L1~L4是行星排同步离合器,L5~L7是换挡机构离合器。所有离合器由补油泵供油,采用蓄能器减小离合器动作时的油压波动,采用大排量低压齿轮泵供油冷却润滑油路。 二、HMCVT试验台设计 HMCVT试验台用于HMCVT性能试验,试验内容包括空载损耗特性试验、无级调速特性试验、传动效率特性试验和自动调速特性试验。空载损耗试验用于考查HMCVT输出轴不加载状态下变速器功率消耗随变速器速比变化情况;无级调速特性试验用于考查发动机工作在最佳工作点下HMCVT的无级调速范围;传动效率特性试验用于考查HMCVT在不同速比下的传动效率,验证HMVCT传动的高效率特性;自动调速特性试验用于考查负载连续变化时HMCVT速比对发动机最

KRG锥环无级变速器全解读

KRG锥环式无级变速箱,对于大多数人而言可能是个陌生的名词。不过,这种变速箱可能会成为未来国内小排量车型上的主流变速箱,低成本、高效率、简单的结构和在功能和平顺性上的多重优势值得我们关注,在其正式量产之前,让我们一同来认识一下这台结构新颖的变速箱。 GIF吉孚推出的创新锥环式无级变速箱(KRG)

◆无级变速的基础,滚锥+锥环代替钢带和棘轮 --悠久历史和创新:源于1902年的结构+创新控制机构 KRG变速箱展示模型 我们都知道,传统的CVT无级变速箱的核心变速机构是由可变槽宽的主、从动棘轮和钢带组成的,通过主、从动棘轮V 型槽槽宽的改变来改变钢带的在两个棘轮上转动的周长,进而实现速比的连续变化。

传统的CVT变速箱是通过V型槽宽度可变的主、从动棘轮和钢带来连续调节速比的 而KRG锥环式无级变速箱实现无级变速的主要执行机构则是输入滚锥、输出滚锥和他们之间传递动力的锥环,锥环的平面在两个滚锥上得到的截面圆的周长决定了输入轴和输出轴的速比(当然还有锥环本身的尺寸引起的差异),所以锥环在滚锥上的位置直接决定变速箱的速比,由于锥环可以在滚锥上的左右止点之间任意移动,所以能够提供在一定范围内连续可变的速比。

上面的输入滚锥、下面的输出滚锥加上在两者间传递动力的锥环,构成了锥环变速器的主要机构 变速箱中的滚锥和锥环实体

锥环所在平面对于两个滚锥的截面圆的周长差异决定了输入输出的速比 只要输入滚锥转动,动力便会通过输入滚锥传递到锥环,进而带动输出滚锥做反向转动。据介绍,这套机构早在1902年时已经面世,GIF则将它成功的运用到了汽车变速箱上,并已具备了量产水平。这套机构同样适合在混合动力车型和电动车作为变速机构。 KRG变速箱整体的结构并不复杂,目前的KRG变速箱主要是针对横置发动机设计,动力从发动机出来之后直接连接离合器(KRG可以配置液力变矩器和干式离合器),输入轴与行星齿轮相连,然后便是输入滚锥-锥环-输出滚锥,然后动力就输出至差速器--半轴。

汽车无级变速箱控制器TCU的研究

汽车无级变速箱控制器TCU的研究 来源:中国电源网/王旭东闫维新张仁海樊春梅2006-01-18 为了跟踪世界汽车技术,发展我国汽车工业,“九五”期间,汽车电于控制技术被列为科技攻关项目。车辆自动变速是汽车电控技术的一个重要组成部分。采用计算机和电力电子驱动技术实现车辆自动变速,能消除驾驶员换档技术的差异,减轻驾驶员的劳动强度,提高行车安全性,提高车辆的动力性和经济性。汽车的无级变速系统一般是由无级变速箱 CVT(Continuously Variable Transmission) 和无级变速箱控制器 TCU(Transmission Control Unit)组成。 1 CVT的基本结构 汽车的无级变速系统主要有以下几种形式:(1)液力机械AT—HMT(Hydrodynamic Mechanical Transmission)广泛应用于轿车、公共汽车、重型车辆、商用车和工程车辆上。 (2)机械式AT—AMT(Automated Mechanical Transmission)在通常机械式变速器基础上加上微机控制电液伺服操纵自动换档机构组成,目前它应用于部分低档轿车、局部卡车和商用车上。(3)无级式AT—CVT(Continuously Variable Transmission)是目前在小排气量轿车中使用最多的一种。它的主要结构和工作原理如图l所示。

图1 无级式AT—CVT主要结构和工作原理 CVT技术的发展,已经有了一百多年的历史。德国奔驰公司是在汽车上采用CVT技术的鼻祖,早在1886年就将V型橡胶带式CVT安装在该公司生产的汽油机汽车上。但由于结构设计和选材等方面的问题,该传动机构体积过大,传动比过小,无法满足汽车行驶的要求。这些缺点限制了它的应用。直到1979年,通过结构的改进和特殊钢带的使用,CVT的传动比明显提高,具备了在车辆上广泛应用的前提条件。从那时起,福特、菲亚特和日产等公司的车型都曾采用过这种变速传动机构。 CVT采用的V形承推钢带由安装在挠性马氏体时效钢圈上的多片楔形钢片构成。它的动力从主动轮输入,经过V形钢带,由从动轮输出。带轮由可以相对滑动的两部分构成。钢带位于这两部分间的凹槽内。当带轮两部分靠紧时,凹槽较窄,钢带位于带轮外缘,此时带轮的工作直径最大。随着这两部分间的相对滑动,凹槽越来越宽,钢带逐渐靠近带轮中心,即工作直径最小的地方。汽车刚刚起动车速较低时,主动轮工作直径较小,变速器可得到较大的传动比,使汽车获得足够动力克服行驶阻力。随着车速的升高,主动轮工作直径逐渐增大,从动轮工作直径越来越小,变速器传动比也相应减小。由于带轮工作直径可连续变化,因此这种变速器的传动比也是无级、连续变化的,传递动力更平稳,其动力性和经济性远远

专利-环布锥轮无级变速装置

说明书摘要 本发明公开了一种环布锥轮无级变速装置,包括一从动轴和布置在从动轴周围的主动轴,从动轴上设有一个可以轴向移动的柱形摩擦轮,所述柱形摩擦轮还与一位置控制装置相连接;每根主动轴上设有一个锥形摩擦轮,所述锥形摩擦轮内侧的锥面与柱形摩擦轮的柱面平行接触,形成摩擦传动面。本发明利用锥形摩擦轮与柱形摩擦轮之间的摩擦传动面进行传动,可以在使用转速范围内传递较高的扭矩。当无级地改变柱形摩擦轮的位置时,锥形摩擦轮与柱形摩擦轮之间的传动比也会相应地无级变化,从而实现无级变速。本发明具有结构简单、紧凑,性能可靠,成本低等优势。

摘要附图

权利要求书 1.一种环布锥轮无级变速装置,其特征是:包括一从动轴(6)和布置在从动轴周围的主动 轴(10),从动轴(6)上设有一个可以轴向移动的柱形摩擦轮(5),所述柱形摩擦轮(5)还与一位置控制装置相连接;每根主动轴(10)上设有一个锥形摩擦轮(9),所述锥形摩擦轮(9)内侧的锥面与柱形摩擦轮(5)的柱面平行接触,形成摩擦传动面。 2.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述主动轴(10)沿环形均布 在从动轴(6)的周围。 3.根据权利要求1或2所述的环布锥轮无级变速装置,其特征是:所述主动轴(10)和从动 轴(6)的轴心线全部相交于一点。 4.根据权利要求3所述的环布锥轮无级变速装置,其特征是:各主动轴(10)与从动轴(6) 成相同的夹角,该夹角等于锥形摩擦轮(9)锥顶角的一半。 5.根据权利要求1所述的环布锥轮无级变速装置,其特征是:还包括有基座(1,11),所述 从动轴(6)、主动轴(10)的两端均通过轴承支撑在基座(1,11)上。 6.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述从动轴(6)的一端设有 输出齿轮(12)。 7.根据权利要求6所述的环布锥轮无级变速装置,其特征是:所述各主动轴(10)都与一输 入轴(4)通过锥齿轮传动连接。 8.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述柱形摩擦轮(5)与从动 轴(6)之间通过花键相配合,所述位置控制装置是一个可以沿从动轴轴向滑动的拨叉(13),所述柱形摩擦轮(5)位于拨叉(13)内。 9.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述锥形摩擦轮(9)还与压 力调节机构相连接。 10.根据权利要求9所述的环布锥轮无级变速装置,其特征是:所述锥形摩擦轮(9)与主动 轴(10)之间通过花键相配合,锥形摩擦轮(9)与主动轴(10)之间可以轴向滑动,所述压力调节机构包括一个套在主动轴(10)上的调节螺母(7)和一个弹簧(8),弹簧(8)位于调节螺母(7)和锥形摩擦轮(9)的大端之间。

环型锥盘滚轮牵引式无级变速器

目前生产的无级变速器CVT(Continuously Variable Transmission)大多数采用金属带形式。例如奥迪A6的multitronic无级/手动一体式变速器,核心组件是两组带轮,通过改变驱动轮与从动轮金属带的接触半径进行变速。无级变速器的传动效率高且稳定,传动效率可高达95%,变速范围可达5~6。 还有一种已经投入使用的无级变速器IVT(Infinitely Variable Transmission),核心部分由输入传动盘、输出传动盘和Variator传动盘组成。两个输入传动盘分别位于两端,输出传动盘只有1个位于中间位置,Variato传动盘则夹于输入传动盘和输出传动盘中间,它们之间的接触点以润滑油做介质,金属之间不接触,通过改变Variato装置的角度变化而实现传动比的连续而无限的变化。 环型锥盘滚轮牵引式无级变速器与金属带式无级变速器相比可以传递更大的功率,适合较大排量的车辆。由变速传动机构、调速机构及加压装置三个主要部分组成,核心部分是变速传动机构。 如示意图所示,变速传动机构 包含三个主要零件(已经拆开): 输入锥盘、输出锥盘和动力滚子。 输入输出锥盘与动力滚子接触的 工作面是回转曲面,母线是一段圆 弧。动力滚子是一个截球台,可以 绕自身轴线转动。 变速传动机构的工作原理如 右下图(只画出上半部分),动力 滚子球台(黑色)两侧球面部分分 别与输入、输出锥盘的环面接触, 运动和动力通过锥盘和滚子间润 滑油膜中的牵引力进行传递。输入 输出锥盘的轴线在同一直线上,从 左往右看,如果输入锥盘顺时针转 动(如图箭头所示),动力滚子受 驱动绕自身轴线逆时针转动(从上 往下看),动力滚子带动输出锥盘

浅析同步器锥环装配的选配工艺

科技论坛 浅析同步器锥环装配的选配工艺 林志广 高绍斌 (山东上汽汽车变速器有限公司,山东烟台265500) 在汽车中最常用的结构就是同步器,同时对于同步器也是十分重要的零件之一,对于现代手动机械在进行换挡操作过程中,同步器也就得到十分广泛的运用,同时由于各个齿轮之间设置的同步器的要求,也更好的保证了齿轮之间的灵活性,对换挡时产生的噪音可以有效的消除,增加齿轮使用的寿命,也进一步提高了汽车的动力和燃油的使用效益,可以更好的保证同步器的制造和装配精度直接影响着整个变速器的使用性能及寿命。 1同步器设计要求分析 对于同步器具有较好的耐磨的能力,在使用的时候可以有效的提高使用的效果,同步环主要就是青铜制作而成,这都是由于滑动轴承的使用的铜材进行设置,同步器上面的环也是通过青铜材料制成,对于环齿轮之间的联系比较融合,因此对同步器齿轮也是由铜材制成,齿轮之间的锥面联合相对比较联合,具有较高的耐磨性能,可以同步完成相应的工作,并且有效的保证使用的效果。对于锁环锥面的利用十分的广泛,很大程度上提升了变速器的使用寿命,为了保证使用的具体效果,需要对使用的材料进行有效的处理,在使用同步器制作的时候也就降低了耐磨性,轻易可以进行齿轮的胶合,对于这种金属的时候之间没有进行亲和处理,国外相关技术在不断的发展,重要的表现在这两个方面:需要采用的新型的材料,比方新型铜合金资料、铜基双金属资料、钢质及双金属资料与复合资料等;采用新型成型工艺装备,也更好的提高了使用的精确程度,保证使用的整体效果。几年来,对于海内的很多生产厂家也不断的研究通过钢来代替铜的生产方法,但因为钢材的磨擦机能不迭铜材。对于我国大部分的变速器使用的时候,一般都是引进的很薄的同步器,同时还需要在上面采用一层较好的一层铝,对于铝层的厚度也有一定的请求,在喷铝后不必要进行有效的加工,在使用铝面的时候有一定的要求,对于我国现阶段的程度还要进行一段时间的实验。 2工艺分析和解决方案 其中主要就是采用的以下三种锥环面,对于同步器外面的效果磨损坏之后,需要对使用的精度进行提高,对于使用的同步器其中的摩擦具有较高的精度,外联系统精度为±0.04mm。在磨擦环三件套装配完成后,其构成的装配高度精度:±(0.10+0.10+0.04+0.04)mm=±0.28mm。 对于使用计划相对较为符合的条件之间,需要保证累计计算的数字的准确性,不能达到有效的使用的同步器需要分成计划在±0.2mm公役的要求。另外,还要根据现实生产的实际情况,面对不同的同步器表里锥环进行整体的加工,对于粘接工艺的难度相对较大,为了能够更好的保证同步器之间的摩擦系数,在内环需要设置碳纤维布,保证预计的要求。通过相应论证,终极能包管的磨损后备量精度为±0.48mm,重大超出了图样请求精度,不能及时保证同步器总成一次装配合格率,必需对上面的问题进行处理。为保证使用同步器总成一次装配合格率,其装配精度只能从两方面动手。 2.1进步整机加工精度,打消终极装配偏差要想更好的提高设备的精度,也就需要在加工的时候对产品加工提高精度的偏差,对于其中的本身的薄壁设置相应的使用件,其中精度表现为精度的使用面,外锥面的精度±0.04mm,同时通过对加工过程的改造,可以有效的提高内摩擦环对产品制造的要求,提高产品使用的效率,同时对于内外的摩擦基本设置为为±0.10mm。由于两种整机为薄壁件,加工难度大,进步精度难度大;碳布厚度(0.55±0.1)mm,精度也很难进步;终极装配构成的磨损后备量精度 为±0.48mm,无奈满意计划请求。 2.2分类选配 对于外面的摩擦环和内摩擦环加工精度之间进行相应环境的使用,在对装置进行配置的时候,对于不同的加工精度的要求相对不同,要取消出现的偏差,在对摩擦环三件套装配完成之后,对于其使用的结构的精度要求较高,需要达到±0.20mm。 3同步器锥环装配的选配工艺应用采纳选配法,装配时间接包管±0.20mm。首先需要对选定的整体配套外摩擦环和内摩擦环,通过有效的分析之间出现的尺寸的要求进行等级的分类,一般主要分为四级:A级精度规模-0.20~-0.10mm;B级精度规模-0.10~0mm;C级精度规模0~0.10mm;D级精度规模0.10~0.20mm。对于这四种登记要求就是保证具体性的要求,其中使用的效果就是对摩擦之间的要求进行分析,外磨擦环B级配内磨擦环A级,以此类推。对于相同的精度品级对摩擦环的配套需要进行综合研究,摩擦环使用的时候尽量的减少偏差,保证使用的准确效果。比如,A级外磨擦环与A级内磨擦环其锥面精度都是-0.20~-0.10,内磨擦环的外锥面实体减小,外磨擦环的内锥面实体增大,终极装配精度为两精度偏差之和,即±0.10mm。 在使用的同步器都是对齿轮之间的变动进行分析,需要对汽车换挡过程进行及时的处理,之间会出现很多的偏差,也就需要我们正确的认识同步器的具体性能,再生产的时候可以通过对这些内容的分析提高使用的效果,防止出现损伤,也是对汽车换挡时对汽车的性能的保护,在对着一定转速的具体考虑中,要降低打击的概率。对于现在变速器使用上都是通过齿轮进行分析,这个布局可以确保转速之间的具体配套的性能,需要对挂挡系统进行处理,对于简单的同步器,字面上的意思就是同步齿轮之间的转速,实际变速就是提高整体齿轮的使用次效益。但是值得注意的是一样平常家用车倒档没有同步器,需要我们在完全停稳后能力挂入。 对于同步器使用过程中出现效果的形式有很多,其中需要确定的就是对于同步器应用的磨损程度,以及使用的冷热加工性能,在对材料商选择的时候,不能使用比较贵重的金属,防止成本的增加,但是作为同步环咱们也不克不及一味的寻求高机能,高寿命,如果各个整机的寿命都充足到达,如许能够节俭本钱,充足应用也是这项技巧的另一层的寄义。对于轿车的高速行驶的安全性来说,对于同步器的要求也就较高,在我国很多的汽车都是引进的,变速器材料也是被判定的,在中国市场来看,有一半都是本国生产,对于产品的质量还赶不上国际水平,对于变速器的生产也需要不断的提高加工技术,使中国不再变速器上面落后。 4结论 通过对上面的装置的选择,同步器在生产中需要通过相应的实验,对于一些较小的批量验证,需要保证同步器对设计的满足要求,保证同步器的装置的合格,保证使用的效果,对于大量的工艺进行有效的要求,在相应的同类生产中提高使用的效率。 参考文献 [1]任书坤.我国汽车变速器的发展同步环用材料的现状与发展趋势[J].机床与液压,2011(8). [2]曾晓蕾.汽车同步环用摩擦材料的应用现状[J].汽齿科技,2010(2).[3]李二宁.汽车变速器同步环喷铝工艺探讨[J].汽车工艺与材料,2009(1). 摘要:同步器锥环需粘接一种耐磨材料,粘接的牢固程度直接决定同步器产品的质量,因此在同步器锥环基体锥面必须做表面喷 砂处理。通过试验证明,锥环表面处理越均匀、粗糙度一致性越好,粘接出的零件性能就越可靠,同步器寿命就越长,同时表面质量处理的前提是零件尺寸需控制在一定范围,粗糙度太大或太小都不能满足产品要求。 关键词:同步器锥环装配;选配工艺;设计79··

机械无级变速传动例题讲解

1. 推导BUS 型机械无级变速器的滑动率ε。 解:BUS 的滑动率求解主要求出*i ,要根据有滑移存在时的几何尺寸来计算,方法同无滑移时一样,关键是找出几何关系,可求出BUS 的滑动率。 图1 BUS 变速器运动分析简图(主要几何尺寸) 由图1可知BUS 型变速器的传动原理属于3K 型行星传动,a,b,e 为中心论,H 为转臂,V 为行星锥。当中心轮e 固定不动时,中心轮b 和a 之间的传动比为: H ae H be e ba i i i --=11 (1) 上式中H ae i 是转臂H 固定不动时,a 和e 的传动比,由下图 2 图2 BUS 变速器运动分析简图(角速度矢量图) 可知它应为:

r R r R r R R r i a e e e a H ae 11-=?- = 而H be i 是转臂不动时,b 和e 的传动比为: r R r R r R R r i b e e e b H be 11-=?- = 将H ae i 和H be i 代入式(1)中,得到: 1 1r R R r r R R r i b e b e e ba +- = 由于外环e 实际是固定不动的,其角速度0=e ω,所以: a b e a e b e ba i ωωωωωω= --= 由此可知e ae i 实际上就是变速器的传动比,并且等于输出轴角速度b ω与输入轴a ω角速度的比值。把变速器的传动比e ba i 简写为i ,则: 1 1 r R R r r R R r i b e b e a b +- = =ωω (2) (2)式可进一步简化为: 1 1 r R R r r r i a e +-= (3) 又由锥体半径之间的关系:当βα,被确定后,外环的摩擦半径e R ,主动锥的大端半径a R 和行星锥打断半径1r 之间有下述唯一确定的关系: ()()β βαβαsin sin sin 1 r R R a e =-=+ 则式(3)可简化为

无级变速器开题报告

本科生毕业设计(论文)开题报告论文题目:无级变速器 学院:机械工程学院 专业班级:车辆工程1103班 学生姓名:孙燕燕 指导教师: 开题时间:2015 年 3 月日

1.本课题研究的目的、意义 无级变速器是汽车理想的传动系统, 自汽车诞生以来, 它一直是人们追求的目标。无级变速传动(Constant Variable Transmission , 简称CV T)具有普通有级变速传动无法相比的优点, 它可以控制汽车发动机始终运行在最佳目标运行区, 显著提高汽车的经济性, 改善汽车的动力性, 既可减少汽车的换挡冲击, 也可减轻驾驶员的劳动强度。 2.无级变速器的基本原理 目前, 广泛应用于轿车的自动变速器是将液力变矩器和行星齿轮系统组合使用, 这种组合方式的传动比不连续, 自动变速器只能在若干段范围内实现无级变速;其次, 为增加变速器挡数, 扩大传动比的变化范围, 必须采用多个执行元件(离合器或制动器)控制行星齿轮系统的动力传递路线, 造成自动变速器零件数量过多及结构复杂, 发生故障的可能性增加, 并给保养和维修带来不便。除此之外, 由于液力传动效率较低, 不能使自动变速器百分之百发挥效率, 影响汽车的总体工作性能。为此, 许多汽车制造厂开始研究新的自动变速技术,CV T 就是其中最有发展前景的一种。CVT 的突出特点是不使用液力变矩器, 而采用传动带和工作直径可变的带轮与普通齿轮式变速器配合传递动力。由于它一般不采用行星齿轮系统,因此也称为非行星齿轮自动变速器。CVT 变速动力系统输出的动力传到金属带式无级变速传动装置的主动锥轮, 通过V 形金属带将动力传输到从动锥轮, 之后经减速器与差速器传递到车轮。带传动装置是其核心部分, 主要由主动锥轮、从动锥轮以及V 形金属带组成。其主、从动轮均为组合结构, 由活动锥轮和固定锥轮组成。主动锥轮的活动锥轮和固定锥轮形成的V 形槽与V 形金属带啮合, 实现动力传递。在工作中,当主、从动锥轮的活动锥轮沿轴向移动时, 可改变金属带在主、从动锥轮上的工作半径, 从而改变无级变速器的传动比。活动锥轮的移动量是根据汽车变速的要求, 通过调节作用在主、从动锥轮油缸内的液压压力来实现的。由于液压压力的调节是连续变化的, 所以可实现无级变速传动。

机械分离锥式无级变速器结构设计

毕业设计说明书 题目:机械分离锥式无级变速器结构设计 专业:机械设计制造及其自动化 学号: 姓名: 指导教师: 完成日期: 20 年5月

目录 摘要.................................................................................. I Abstract ..............................................................................II 第一章绪论 (1) 1.1 机械无级变速器的发展概况 (1) 1.2 机械无级变速器的特征和应用 (1) 1.3 无级变速研究现状 (2) 1.4 机械分离锥式无级变速器的优点 (3) 1.5 本次设计的内容和要求 (4) 第二章机械分离锥式无级变速器总体方案及原理 (4) 2.1 机械分离锥式无级变速器简图 (4) 2.2 机械分离锥式无级变速传动原理 (5) 第三章机械分离锥式无级变速器总体设计计算 (5) 3.1变速器运动学计算 (5) 3.2 变速箱内传动零件的尺寸 (7) 3.3 钢环无级变速器受力分析 (8) 3.4 零件之间初始间隙或过盈 (9) 3.5 强度验算 (10) 3.5.1 恒功率传动情况时 (11) 3.5.2 变速箱恒扭矩传动情况时 (13) 3.5.3 钢环强度校验计算 (14) 第四章机械分离锥式无级变速器各零件的计算 (15) 4.1 计算锥轮的尺寸和参数 (15) 4.2 钢环设计 (18) 4.3 轴系零件设计 (19) 4.4 调速操纵机构设计 (21) 4.4.1 确定齿轮的参数 (21)

手动变速器自动变速器无级变速器原理

手动变速器、自动变速器、无级变速器 ◆手动变速器(MT) MT是英文Manual Transmission的缩写。手动变速器,也称手动挡,即用手拨动变速杆才能改变变速器内的齿轮啮合位置,改变传动比,从而达到变速的目的。踩下离合时,方可拨得动变速杆。如果驾驶者技术好,装手动变速器的汽车在加速、超车时比自动变速车快,也省油。 ◆自动变速器(AT) AT是英文Automatic Trnsmission的缩写。自动变速器,利用行星齿轮机构进行变速,它能根据油门踏板程度和车速变化,自动地进行变速。而驾驶者只需操纵加速踏板控制车速即可。 一般来讲,汽车上常用的自动变速器有以下几种类型:液力自动变速器、液压传动自动变速器、电力传动自动变速器、有级式机械自动变速器和无级式机械自动变速器等。其中,最常见的是液力自动变速器。液力自动变速器主要是由液压控制的齿轮变速系统构成,主要包含自动离合器和自动变速器两大部分。它能够根据油门的开度和车速的变化,自动地进行换挡。 ◆无级变速器 CVT是英文Continuous Variable Transmission的缩写,意为无极变速传动,相比于普通自动变速器,这种变速器可更好地解决传动系和发动机工况的匹配问题,以提高整车的燃油经济性和动力性 自动变速器与无级变速器的原理不太一样,自动变速器是行星齿轮来变速的,而无级变速器是链带和锥形轮的距离来变速的。 目前来看无级的技术更好一点,(链带)目前我知道的最先进的自动变速器是奔驰公司的七速自动变速器。 无极变速在一定程度上要比自动变速的车开起来更流畅没有从前那种变速器的换档感觉。无极变速车要比自动变速车节油。 无极变速在动力上可能很难满足狂野的男人,因其无法体验到快速加速的快感。 无极变速是新技术,在我国已有若干车以配备了此技术如奥迪,本田飞度(CVT),菲亚特(Speedgear变速器)等。按理说无极变速是经济轿车一种不错的选择是将来汽车变速器的发展方向。 ◆手动/自动变速器 手动/自动变速器由德国保时捷车厂在911车型上首先推出,称为Tiptronic,它可使高性能跑车不必受限于传统的自动挡束缚,让驾驶者也能享受手动换挡的乐趣。此型车在其挡位上设有“+”、“-”选择挡位。在D挡时,可自由变换降挡(-)或加挡(+),如同手动挡一样。

液压机械无级变速器( HMT)原理及应用分析

现在车辆上的传动装置多采用机械式变速器, 1液力机械式变速器(AT)液力机械式变速器由液力变矩器和多挡机械变速箱组成。 2液压机械无级变速器(HMT)及应用分析 3静液压无级变速器(HST)及其应用分析静液压无级变速器(HST)依靠液压变量马达实现纯液压无级变速,效率较AT高,但较齿轮变速器低许多,传递功率不大 4 金属带式无级变速器 为了充分利用发动机大的功率,节约能源以及获得优良的动力性能,最理想的方法是从传统的有级传动发展为无级传动。 目前普遍采用的液力变矩器及其闭锁装置,自动换挡机构等均是为了弥补有级传动的不足而产生的传动模式,但不能实现真正的无级变速。 另外还出现了全液压传动的无级变速器,其操纵方式也由手动液控向电液控制或微电脑控制技术方面发展,并取得了非常好的效果,大大提高了整机的行使平顺性和作业性能,液压传动可以保证车辆具有稳定的行驶速度。但是在液压传动的车辆中传动效率低也是一个不容忽视的问题,按当代的技术水平,纯液压传动中最高效率在80-85%左右,而在车辆使用中,一般只能达到50-60%。此外,适用于重型车辆使用的大功率的液压元件难以加工,也使液压传动的车辆增加了制造成本。另外,这种高油压高转速的变量泵和定量马达的排量越大,即功率越大时,效率和寿命愈难以保证,生产愈困难,在市场上愈难买到。液压传动的低效率直接影响了整机的生产率和经济性,决定了它在车辆上很难有较大的发展空间。 机械液压双功率流则兼有机械传动的高效率和液压无级传动的双重优点,可在较宽的范围内实现可控的无级变速和所需的车速。以小功率的液压元件传递大功率特性,高效率特性,为车辆的经济性和动力性问题的解决找到了理想的道路。 液压机械无级传动是一种双功率流传动系统,分为液压功率和机械功率两路传递,分流机构分流后液压马达在正向和反向最大速度之间来回无级变速。其每一个行程和行星齿轮机构的一种工况相配合,最后两路汇合成由若干无级调速段相衔接并组逐段升高的全程无级输出速度。液压元件只负担最大功率的一部分,其他功率都由机械路传递。这相当于将液压无级变速功率扩大,传动总效率相对于液压传动也显著提高,和液力机械传动相比,装载量最大可提高30%,燃油经济性最大可提高25%。其特点是通过机械传动实现功率转递,通过液压机械相结合实现无级变速。 液压机械无级变速器( HMT)及应用分析 液压机械无级变速器(HMT)由液压调速机构和机械变速机构及分、汇流机构组成,是一种液压功率流与机械功率流并联的传动形式,通过机械传动实现传动高效率,通过液压传动与机械传动相结合实现无级变速。其原理如1所示,输入功率经分流机构分流为两路,一路经液压调速机构流至汇流机构,另一路经机械变速机构传至汇流机构,由于液压调速机构具有无级调速特性(通过控制系统控制变量泵斜盘倾角的变化使排量改变来实现),与机械变速机构经汇流机构汇流后,使HMT实现无级变速。液压调速机构有变量泵-定量马达,定量泵-变量马达,变量泵-变量马达3种形式,第一种应用较多。机械变速机构为自动有级变速器。分、汇流机构为定轴齿轮传动或行星齿轮传动,从成本及实

钢环分离锥式无级变速器设计

目录 第一章绪论 (1) 1.1无级变速器的介绍 (1) 1.2摩擦式无级变速器 (1) 1.3摩擦式无级变速器运动原理 (1) 1.4钢环分离锥式无级变速器的优点 (3) 1.5本次课题设计任务 (3) 第二章钢环分离锥式无级变速器设计方案 (4) 2.1钢环分离锥式无级变速器简图 (4) 2.2传动零件尺寸 (4) 2.3钢环分离锥式无级变速器受力分析 (5) 2.4强度验算 (7) 2.4.1恒功率传动情况时 (8) 2.4.2恒扭矩传动情况时 (10) 2.4.3钢环强度效验计算 (11) 第三章钢环分离锥式无级变速器的计算 (13) 3.1计算锥轮的尺寸和参数 (13) 3.2钢环的设计 (14) 3.3轴系零件设计 (14) 3.4调速操纵机构设计 (16) 3.4.1确定齿轮的参数 (16) 3.4.2确定齿条的参数 (17) 3.4.3计算螺杆 (16) 3.5设计箱体 (18) 第四章强度校核 (19) 4.1刚换强度验算 (19) 4.2校验轴的强度 (20) 设计总结 (22) 致谢 (23) 参考文献 (24)

附录:英文文献翻译及原文 (25) 摘要 钢环分离锥锥轮无级变速器是机械摩擦式的一种变速器,它以钢环为中间原件,以改变主、从动锥轮的工作半径来实现无级变速。它能实现对称变速而且无需再设加压装,结构简单,时常将这种变速器应用在传动系统的高速级。首先查找变速器相关资料,了解其传动原理及设计要求和计算公式,选择材料。通过已知给定参数先求出变速器主要零件钢环和主从锥轮的相关尺寸,再根据已算出的数据和配合关系选定其主要配合原件轴承型号,然后确定锥轮各段长度和大小。再进行轴的设计,通过公式选取轴的最少直径,再结合与锥轮配合关系确定轴的各段长度及选取键和轴键等相关尺寸,根据设计手册选取有关尺寸的配合公差,选取设计调速操作机构,再由已知的零件尺寸和配合关系,根据设计手册确定箱体和端盖的基本尺寸,其后对轴和钢环进行强度校核,以确定尺寸是否满足要求。最后由算出的数据用CAD进行绘图。 关键词:钢环,锥轮,无级变速,齿轮,轴

相关文档
最新文档