奥数之五年级解方程

合集下载

奥数-五年级解方程练习题及解题思路

奥数-五年级解方程练习题及解题思路

奥数-五年级解方程练习题及解题思路奥数五年级解方程练习题及解题思路在五年级的数学学习中,解方程是一个重要的知识点。

为了帮助同学们更好地掌握解方程,下面为大家准备了一些练习题,并详细讲解解题思路。

一、简单的一元一次方程1、 2x + 5 = 17解题思路:首先,我们要把含有未知数的项留在等式左边,常数项移到等式右边。

所以将 5 移到等式右边得到 2x = 17 5 ,即 2x = 12 。

然后,等式两边同时除以 2 ,得到 x = 6 。

2、 3x 8 = 10解题思路:将-8 移到等式右边,得到 3x = 10 + 8 ,即 3x = 18 。

接着两边同时除以 3 ,解得 x = 6 。

二、含有括号的方程1、 2(x + 3) = 16解题思路:先使用乘法分配律将括号展开,得到 2x + 6 = 16 。

然后将 6 移到等式右边,得到 2x = 16 6 ,即 2x = 10 。

最后两边同时除以 2 ,得出 x = 5 。

2、 3(2x 1) = 15解题思路:同样先展开括号,得到 6x 3 = 15 。

将-3 移到等式右边,得到 6x = 15 + 3 ,即 6x = 18 。

两边同时除以 6 ,解得 x = 3 。

三、稍复杂的方程1、 4x + 3x = 21解题思路:先合并同类项,左边得到7x ,所以方程变为7x =21 。

两边同时除以 7 ,解得 x = 3 。

2、 5x 2x = 18解题思路:合并同类项,左边变为 3x ,即 3x = 18 。

两边同时除以 3 ,得到 x = 6 。

四、需要移项变号的方程1、 20 3x = 8解题思路:首先将-3x 移到等式右边,8 移到等式左边,得到 208 = 3x ,即 12 = 3x 。

然后两边同时除以 3 ,解得 x = 4 。

2、 15 + 4x = 27解题思路:将 4x 移到等式右边,27 移到等式左边,得到 15 27 =-4x ,即-12 =-4x 。

五年级解方程练习题 奥数

五年级解方程练习题 奥数

五年级解方程练习题奥数解方程是数学中的重要概念之一,对于五年级学生来说,通过解方程练习题可以加深对这个概念的理解,并提升解题能力。

本文将为五年级学生准备了一些奥数风格的解方程练习题,希望能够帮助大家更好地掌握解方程的方法和技巧。

练习题1:小明和小华一起参加了一场长跑比赛,假设小明的速度是v,小华的速度是2v,他们同时出发,并以相同的速度跑。

如果小华比小明多跑了100米,那么这场比赛的距离是多少?解答:设比赛的距离为d,根据题目中的条件,可以列出以下方程:小华跑的距离 = 小明跑的距离 + 1002v * t = v * t + 100化简方程,得:v * t = 100根据速度和时间的关系式,以及之前得到的方程,可以得到:2v * t = 2v * (100/v) = 200所以,这场比赛的距离是200米。

练习题2:某城市有两个火车站,站点A与站点B之间的距离为200公里。

一辆火车从A站出发,速度为x km/h;另一辆火车从B站出发,速度为(x+20) km/h。

如果两辆火车同时出发,并且以恒定的速度行驶,那么它们相遇需要的时间是多少?解答:设两辆火车相遇所需要的时间为t,根据题目中的条件,可以列出以下方程:火车A的行驶时间 = 火车B的行驶时间200/x = 200/(x+20)化简方程,得:x = (x+20)/2解方程,得:x = 20代入得到的速度,可以得到:火车A和火车B相遇所需要的时间:200/20 = 10小时练习题3:某商场举办了一次“全场5折”促销活动,小明在这次活动中购买了一件原价为120元的衣服。

小明付了100元后,还欠商场多少钱?解答:设小明还欠商场的钱为x,根据题目中的条件,可以列出以下方程:120 - x = 100解方程,得:x = 120 - 100 = 20所以,小明还欠商场20元。

练习题4:一辆机车以每小时60公里的速度行驶,行驶6小时后与一辆以每小时90公里的速度行驶的汽车相遇。

五年级解方程奥数练习题

五年级解方程奥数练习题

五年级解方程奥数练习题解方程是数学中的基础知识之一,它在五年级阶段的奥数训练中也非常重要。

本文将为你提供一些适合五年级学生的解方程奥数练习题,帮助你巩固和提高解方程的能力。

1. 题目一:解一元一次方程解方程:3x + 4 = 19解题步骤:1. 将方程转化为简单形式:3x = 19 - 42. 计算得出结果:3x = 153. 求解未知数:x = 15 ÷ 34. 得出最终答案:x = 52. 题目二:解一元一次方程解方程:2(x - 3) = 10解题步骤:1. 将方程转化为简单形式:2x - 6 = 102. 将方程调整为标准形式:2x = 10 + 63. 计算得出结果:2x = 164. 求解未知数:x = 16 ÷ 25. 得出最终答案:x = 83. 题目三:解一元二次方程解方程:x^2 - 5x + 6 = 0解题步骤:1. 将方程因式分解:(x - 2)(x - 3) = 02. 得出两个解:x - 2 = 0 或 x - 3 = 03. 求解未知数:x = 2 或 x = 34. 得出最终答案:x = 2 或 x = 34. 题目四:解一元二次方程解方程:x^2 + 7x + 12 = 0解题步骤:1. 将方程因式分解:(x + 3)(x + 4) = 02. 有两个解:x + 3 = 0 或 x + 4 = 03. 求解未知数:x = -3 或 x = -44. 得出最终答案:x = -3 或 x = -45. 题目五:解一元一次方程组解方程组:2x + y = 10x - y = 2解题步骤:1. 通过消元法,将方程组转化为简单形式:- 通过第二条方程得到 x = y + 22. 将 x 替换到第一条方程中,得到 2(y + 2) + y = 103. 计算得出结果:2y + 4 + y = 104. 求解未知数:y = 65. 将 y 的值代入第二条方程得到 x = 6 + 2 = 86. 得出最终答案:x = 8,y = 6通过以上五道题目的练习,你可以更好地掌握五年级阶段解方程的技巧和方法。

完整版)五年级奥数:列方程解应用题

完整版)五年级奥数:列方程解应用题

完整版)五年级奥数:列方程解应用题XXX教育:列方程解应用题(一)列方程解应用题是小学数学的一项重要内容,它是一种新的解题方法,不同于传统的算术方法。

算术方法要求通过四则运算,逐步求出未知量,而列方程解应用题则是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。

这样做的优点是可以使未知数直接参加运算。

列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。

而找出等量关系,又在于熟练运用数量之间的各种已知条件。

掌握了这两点,就能正确地列出方程。

列方程解应用题的一般步骤如下:1.确定未知数及其表示方法;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案。

下面是几个例题及其解法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数。

解:设这个数为x,则方程为5x+10=7x-6,解得x=8.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。

这两块地各有多少公顷?解:设第一块地为x公顷,则第二块地为(100-x)公顷。

由已知条件可得:4x=3(100-x)+120,解得x=60,第一块地为60公顷,第二块地为40公顷。

例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。

三个班各有多少人?解:设三个班的人数分别为x、y、z,则由已知条件可得:x=1.12zy=z-3x+y+z=153代入第三个式子得:1.12z+z-3+1.12z+z-3=153,解得z=50,y=47,x=56.例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。

求原来的被除数和除数。

解:设除数为x,则被除数为98-x。

由已知条件可得:98-x-9=x-9,解得x=29,被除数为69,除数为29.练与思考:1.列方程解应用题,有时需要求的未知数有两个或两个以上,此时应视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。

(完整版)奥数-五年级解方程练习题

(完整版)奥数-五年级解方程练习题

五年级一、解方程:0.96χ-0.75χ=0.42 1.5×4+3.2χ=143(8+χ)÷2=18 12-χ÷2=812χ=18×1.1+9χ 1.8×1.5-0.5χ=0.4χ2、解方程:3.2x-9=23 3(5x-4)=45 3x+24=5x-12 58-5x=43 x=2x+15 5(2x+3)=203(8+x)÷2=18 1.5x+2x=2.88.4-4(X-2)=7.6+2.4 5X-1.8+1.2=6.46.8+1.2÷X=10.8 X÷10+2X÷10X=0.06X+3二、根据题意,写出等量关系式,再列出方程1. 两列火车同时从相距260千米的两地相向而行,甲车每小时行46千米,乙车每小时行58千米,几小时后两车还相距52千米?解:设列方程:2. 甲乙两个码头之间的路程是3200米,A、B两艘渡轮分别从这两个码头开出,相向而行。

A渡轮先行了380米后,B渡轮再开出。

A渡轮平均每分钟行了190米,B渡轮平均每分钟行了210米,B渡轮经过多少时间与A渡轮在途中相遇?解:设列方程:3. 小胖和小丁丁两家间的路程是2070米,两人同时从家里出发相向而行,途中小胖顺路去银行办了一点事耽误了10分钟,小丁丁15分钟后与小胖在途中相遇,已知小丁丁每分钟行68米,小胖平均每分钟行多少米?解:设列方程:4. 一条铁路全长288千米,两列火车同时从两地开出相向而行,途中一列火车停靠了约0.5小时,结果两列火车4.5小时后相遇,一列火车平均每小时行40千米,另一列火车平均每小时行多少千米?解:设列方程:三、列方程解应用题1. 两列火车从相距400千米的两地相向而行,客车的速度是60千米/时,货车的速度是40千米/时,这两列火车经过几小时还相距100千米?2.一条隧道长230米,两个工程队从两侧开始施工,第一队先挖38米后,第二队才开始挖,第一队平均每天可挖3.9米,第二队平均每天可挖4.1米,多少天后两队可以完成这项工程?3. 甲乙两个城市相距558千米,货车以每小时48千米的速度从乙城开往甲辰,货车开出2小时后,客车才从甲城开往乙城,又经过了6小时两车相遇,求客车的速度。

小学五年级数学思维训练(奥数)《巧解方程》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《巧解方程》讲解及练习题(含答案)

巧解方程专题简析:学习解方程。

首先,我们要对方程进行观察,将能够先计算的部分先计算或合并,使其化简,然后再求出x的值。

例1:解方程:6x+9x-13=17分析与解答方程左边的6x与9x可以合并为15x,因此,可以将原方程转化成15x-13=17,从而顺利地求出方程的解。

解:6x+9x-13=17,15x-13=1715x=30x= 2随堂练习:解方程7.5x-4.1x+1.8=12例2 解方程:8x-16=4x分析与解答方程胡两边都有X,运用等式的性质,我们先将方程两边同时减去4x,然后再方程两边同时加上16变为8x-4x=16.8x-16=4x解:8x-4x=164x= 16x=4随堂练习:解方程10x-7=4.5x+20.5 16-2x=6x例3 解方程:4(4x-11)=3(22-2x)分析与解答第一步先运用乘法分配律去掉括号;第二步,运用等式的性质,便未知数和已知数分别在等号的两边;第三步把等号两边的未知数与数合并;第四步求出方程的解4(4x-11)=3(22-2x)解:16x-44=66-6x 去括号16x+6x=66+44 等式的性质22x=110x=5随堂练习解方程7(2x-6)=84 15(22-x)+2=68x例4 解方程:x÷3=(2x-11) ÷5分析与解答我们先根据等式的性质,在方程的两边同时乘3和5的最小公倍数,然后再运用前面的方法进行求解。

解:x÷3×15=(2x-11)÷5×155x=3(2x-11)5x=6x-33x=33随堂练习:解方程:2x÷3=(2x-5)÷2 (3x-0.5)÷2=2x÷3拓展应用1、解方程5x+0.7x-3x=10-1.92、解方程7(2x-6)=843、解方程5(x-8)=3x4、解方程5.9x-9=4.2x+2.95、解方程9(2x-3)-2=5(2x-1)6、解方程:x÷5+0.5=x÷47、在下面的□内填入相同的数,使等式成立。

五年级解方程练习题 奥数

五年级解方程练习题 奥数

五年级解方程练习题奥数五年级解方程练习题1. 问题描述:小明是五年级学生奥数班的一员,他正在学习解一元一次方程。

请帮助小明解答以下的练习题。

2. 题目一:4x + 3 = 19 - 2x解答过程:首先,我们可以将方程中的变量移到一边,常数移到另一边,得到:4x + 2x = 19 - 36x = 16接下来,我们可以通过除以系数6来解得x的值:x = 16 ÷ 6x ≈ 2.67所以,题目一的解为x ≈ 2.67。

3. 题目二:2(x + 3) = 3(x - 1)解答过程:首先,我们可以将方程中的括号展开,得到:2x + 6 = 3x - 3然后,我们将方程中的变量移到一边,常数移到另一边,得到:2x - 3x = -3 - 6-x = -9接下来,我们可以通过乘以-1来解得x的值:x = -9 × (-1)x = 9所以,题目二的解为x = 9。

4. 题目三:3(2x + 1) = 4(3x - 2)解答过程:首先,我们可以将方程中的括号展开,得到:6x + 3 = 12x - 8然后,我们将方程中的变量移到一边,常数移到另一边,得到:6x - 12x = -8 - 3-6x = -11接下来,我们可以通过除以系数-6来解得x的值:x = (-11) ÷ (-6)x ≈ 1.83所以,题目三的解为x ≈ 1.83。

5. 题目四:5(3 - 4x) = 2(6x + 1)解答过程:首先,我们可以将方程中的括号展开,得到:15 - 20x = 12x + 2然后,我们将方程中的变量移到一边,常数移到另一边,得到:-20x - 12x = 2 - 15-32x = -13接下来,我们可以通过除以系数-32来解得x的值:x = (-13) ÷ (-32)x ≈ 0.41所以,题目四的解为x ≈ 0.41。

6. 题目五:4(x + 2) - 2(x - 3) = 6x + 1解答过程:首先,我们可以将方程中的括号展开,得到:4x + 8 - 2x + 6 = 6x + 1然后,我们将方程中的变量移到一边,常数移到另一边,得到:4x - 2x - 6x = 1 - 8 - 6-4x = -13接下来,我们可以通过除以系数-4来解得x的值:x = (-13) ÷ (-4)x ≈ 3.25所以,题目五的解为x ≈ 3.25。

五年级奥数之列方程解决难题

五年级奥数之列方程解决难题

五年级奥数之列方程解决难题介绍本文档将介绍如何解决五年级奥数中的列方程难题。

通过掌握以下方法和技巧,学生们可以更好地应对这类问题,并在奥数考试中获得更好的成绩。

步骤1. 理解问题理解问题在解决列方程问题之前,首先要确保对问题的要求和条件有一个清晰的理解。

仔细阅读问题,并提炼出关键信息,理解方程中的变量和关系。

2. 归类信息归类信息将问题中给出的信息逐步归类,可以帮助我们更好地组织思路。

将已知信息与未知量分开,以便于建立方程。

3. 建立方程建立方程利用已知信息和问题要求,建立代数方程。

根据情况选择合适的变量和关系表达式,并建立方程。

4. 解方程解方程通过运用数学方法,解方程以求得变量的值。

可以利用消元法、代入法或逆运算等方法来求解。

5. 验证答案验证答案解得的方程的解是否符合原问题要求。

将解代入原方程中,验证方程两边是否相等。

只有在验证通过的情况下,我们的答案才是正确的。

技巧以下是一些解决列方程难题的技巧和策略:- 画图辅助画图辅助对于一些较为复杂的列方程问题,可以使用画图来辅助理解。

通过将问题转化为图形,我们可以更直观地看到问题中的关系,更容易建立方程。

- 模拟推理模拟推理对于一些不确定的情况,可以通过模拟推理来解决问题。

通过尝试不同的数值或假设,在不破坏问题本身的前提下,验证不同情况下的结果。

- 实际应用实际应用了解列方程在实际生活中的应用场景,有助于对问题的理解和解题思路的形成。

通过与实际情境的联系,我们可以更好地理解问题,并更容易建立方程和解决问题。

总结通过理解问题、建立方程、解方程和验证答案的步骤,以及使用画图辅助、模拟推理和实际应用的技巧,五年级学生可以更好地解决列方程难题。

通过不断练和应用这些方法和技巧,他们可以提高奥数成绩,并在数学研究中取得更好的进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档