基于荷兰荷丰技术公司的硫磺回收技术组合

硫磺回收工艺介绍

硫磺回收工艺介绍-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

目录 第一章总论 (4) 1.1项目背景 (4) 1.2硫磺性质及用途 (5) 第二章工艺技术选择 (5) 2.1克劳斯工艺 (5) 2.1.1MCRC工艺 (5) 2.1.2CPS硫横回收工艺 (6) 2.1.3超级克劳斯工艺 (7) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (10) 2.2.1碱洗尾气处理工艺 (10) 2.2.2加氢还原吸收工艺 (14) 2.3尾气焚烧部分 (14) 2.4液硫脱气 (15) 第三章超级克劳斯硫磺回收工艺 (16) 3.1工艺方案 (16) 3.2工艺技术特点 (16) 3.3工艺流程叙述 (16) 3.3.1制硫部分 (16) 3.3.2催化反应段 (16) 3.3.3部分氧化反应段 (17) 3.3.4碱洗尾气处理工艺 (18) 3.3.5工艺流程图 (18) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (19) 3.4.3尾气处理系统中 (19) 3.5物料平衡 (20)

3.6克劳斯催化剂 (20) 3.6.1催化剂的发展 (20) 3.6.2催化剂的选择 (21) 3.7主要设备 (22) 3.7.1反应器 (22) 3.7.2硫冷凝器 (22) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (23) 3.7.5废热锅炉 (23) 3.7.6酸性气分液罐 (23) 3.8影响Claus硫磺回收装置操作的主要因素 (24) 3.9影响克劳斯反应的因素 (25) 第四章工艺过程中出现的故障及措施 (27) 4.1酸性气含烃超标 (27) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (29)

低温SCOT硫回收工艺技术及应用_华博

第44卷第3期 辽 宁 化 工 Vol.44,No. 3 2015年3月 Liaoning Chemical Industry May,2015 收稿日期: 2015-01-05 低温SCOT 硫回收工艺技术及应用 华 博 (中电投伊犁能源化工有限责任公司霍城煤制气分公司, 新疆 伊宁 835000) 摘 要:随着以煤为原料的大型现代煤化工的快速发展,新的环保法对煤制甲醇和天然气装置提出了更为严格的要求。综合分析了低温SCOT 硫回收工艺的基本原理、工艺流程、技术特点、液硫脱气技术及应用前景等方面,对硫回收装置的工艺技术优化有着现实意义。 关 键 词:低温SCOT;硫回收;尾气处理;液硫脱气 中图分类号:TQ 530 文献标识码: A 文章编号: 1004-0935(2015)03-0333-04 作为人类主要能源的石油、煤和天然气中含有大量的硫化物,在其加工和产品使用过程中,释放的硫化物是造成环境污染的主要因素。随着国家对环境保护的要求日趋严格,气体脱气、溶剂再生、污水汽提、硫磺回收装置已成为煤气净化厂、炼油厂、大型天然气净化厂、煤炭气化或液化厂必不可少的配套装置。而随着现代煤化工项目的快速发展,煤炭的加工量持续增长,人们将更加关注硫磺回收技术。 SCOT 工艺是Shell 公司开发的尾气处理工艺。主要是将常规Claus 工艺尾气中的SO 2、有机硫、单质硫等所有硫化物经加氢还原转化为H 2S 后,再采用溶剂吸收方法将H 2S 提浓,循环到Claus 装置进行处理。由于其尾气H 2S 含量低,总硫回收率可达99.9%,是目前世界上装置建设较多、发展速度较快、将规模和环境效益与投资效果结合的较好的一种硫回收工艺。 1 基本原理 1.1 克劳斯工艺技术原理 由于克劳斯法工艺技术简单,适用大型化、自动化生产装置,装置效能高,因此已成为从含硫化氢气体中回收元素硫的主要方法。该工艺包括一个高温热反应段和两个催化反应段。 在高温热反应阶段,进料气中三分之一的硫化氢根据以下反应式被燃烧成二氧化硫: 2H 2S + 3O 2 → 2SO 2 + 2H 2O + heat 根据克劳斯平衡反应,二氧化硫和剩余的硫化氢反应生成单质硫: SO 2 + 2H 2S → 1.5 S 2 + 2H 2O - heat 在1 250 ℃的温度条件下,硫磺的转化率为55%~70%。离开燃烧室的混合气体被冷却到180 ℃左右,液体硫磺被冷凝然后分离。 接下来的克劳斯催化反应段将进一步提高硫磺回收率。在反应器中发生如下克劳斯平衡反应: 2H 2S + SO 2 → 3/X S x + 2H 2O + heat 通过使用克劳斯催化剂,克劳斯平衡反应将向生产硫磺的方向进行。从第一和第二反应器出来的单质硫,分别经过冷凝后排出,这样可以保证在下一个催化床层中反应进一步生成硫磺的方向进行。 在高温热反应段中由于副反应会生成的羟基硫和二硫化碳,通过在第一克劳斯反应器中装填钛系克劳斯催化剂可以将这部分有机硫进行水解; COS + H 2O → H 2S + CO 2 CS 2 + 2H 2O → 2H 2S + CO 2 与常规铝系克劳斯催化剂相比,钛系克劳斯催化剂除了具有良好的克劳斯活性外、对有机硫的水解反应具有更好地促进作用,并具有更好地抗结炭性能、耐硫酸盐能力。以上两类催化剂对保证硫回收装置的长周期运行和总硫回收率达标都有极大的帮助。 1.2 低温SCOT 工艺技术原理 (1) 催化加氢段 在加氢反应器中,通过装填钴钼催化剂,在210~260 ℃反应温度及常压下将克劳斯尾气中的硫化物进行加氢还原。 二氧化硫和单质硫的还原反应分别如下: SO 2 + 3H 2 → H 2S + 2H 2O + heat S 8 + 8H 2 → 8 H 2S + heat 通常情况下,克劳斯尾气中已具备有加氢还原 DOI :10.14029/https://www.360docs.net/doc/2c3975384.html,ki.issn1004-0935.2015.03.003 网络出版时间:2015-04-03 17:33网络出版地址:https://www.360docs.net/doc/2c3975384.html,/kcms/detail/21.1200.TQ.20150403.1733.003.html

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

硫磺回收工艺介绍

目录 第一章总论................................................................ 项目背景.............................................................. 硫磺性质及用途 ........................................................ 第二章工艺技术选择 ........................................................ 克劳斯工艺 ............................................................ 工艺.............................................................. 硫横回收工艺 .................................................... 超级克劳斯工艺 .................................................. 三级克劳斯工艺 ................................................ 尾气处理工艺 .......................................................... 碱洗尾气处理工艺 .................................................. 加氢还原吸收工艺 .................................................. 尾气焚烧部分 .......................................................... 液硫脱气.............................................................. 第三章超级克劳斯硫磺回收工艺 ........................................... 工艺方案.............................................................. 工艺技术特点 .......................................................... 工艺流程叙述 .......................................................... 制硫部分.......................................................... 催化反应段 ........................................................ 部分氧化反应段 .................................................... 碱洗尾气处理工艺 .................................................. 工艺流程图 ........................................................ 反应原理.............................................................. 制硫部分一、二级转化器内发生的反应: ............................... 尾气处理系统中 ................................................ 物料平衡..............................................................

克劳斯硫磺回收技术的基本原理讲解

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导, H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气

硫磺回收装置操作手册

文件编号 MZYC-AS-ZY.013-2007(A/0) 受控状态受控 发放编号——————————————— 硫磺回收装置 操作手册 中国神华煤制油有限公司煤制油厂 二〇〇七年

操作手册编审表 编制: 车间审核: 车间主任: 汇审 消防气防队: 技术监督部: 机动部: 安全生产部: 审批:

目录 第1章装置正常开工方案 (1) 1.1开工准备及注意事项 (2) 1.2装置吹扫、贯通、气密 (2) 1.3系统的烘干 (10) 1.4催化剂及其填料填装 (13) 1.5装置投料步骤及关键操作 (15) 1.6装置正常开车步骤及其说明 (19) 1.7装置正常开工盲板表 (20) 第2章装置停工方案 (20) 2.1正常停工方案 (21) 2.2非正常停工方案(紧急停工方案) (28) 第3章事故处理预案 (29) 3.1事故处理的原则 (30) 3.2原料、燃料中断事故处理 (30) 3.3停水事故处理 (32) 3.4停电及晃电 (34) 3.5净化风中断 (36) 3.6其它 (37) 3.7DCS故障处理 (39) 3.8关键设备停运(风机) (40) 第4章装置冬季防冻凝方案 (40) 4.1伴热线流程及现场编号 (41) 4.2防冻凝方案 (41) 4.3相关物料及带水物料管线冬季防冻凝措施 (41) 4.4间断输送物料的管线防冻凝措施 (42) 第5章岗位操作法 (42) 5.1正常及异常操作法 (43) 5.2单体设备操作法 (54) 5.3高温掺合阀操作法 (63) 5.4制硫燃烧燃烧器的操作 (64) 附表一硫磺装置盲板一览表 (68) 附图―硫磺回收装置伴热流程图 (70)

硫磺回收问答题答案

A 1、影响硫回收率的基本因素可能有哪些? 答:1)尾气中H2S和SO2之比大于或小于4:12)克劳斯反应器床层温度偏高或偏低3)克劳斯催化剂活性下降4)硫捕集网效率低5)硫冷凝器后过程气温度高6)装置负荷偏低或偏高7)装置酸性气浓度低 2、为什么液硫管线要用0.4MPa蒸汽伴热? 答:根据液硫的粘温特性,液硫在130-160℃时粘度小,且流动性最好,而饱和蒸汽压为0.4MPa的蒸汽其对应的温度正好为145℃左右,因此液硫管线用0.4MPa蒸汽伴热, 3、尾气单元急冷水PH值迅速下降,如何处理? 答:原因:1)克劳斯尾气SO2含量多。2)尾气中携带硫单质进入急冷塔。3)还原气体含量不足。4)加氢反应器入口温度低或Cat活性下降,造成SO2穿透。 处理:1)加强Claus单元操作,控制H2S:SO2为4:1 2)控制好三级硫冷器温度,检查液硫管线是否畅通。3)适当提高加氢反应器入口温度,若Cat活性无法恢复,应择机更换Cat。4)调整加氢炉操作,提高还原气体含量。5)加强急冷水更换,必要时应注氨。 4、CLAUS转化器催化剂活性下降现象? 1)床层的温升变小。2)床层的阻力降增大。3)转化率下降。4)有机硫水解明显下降。 B 1、急冷塔压降异常是由什么原因造成的?如何处理? 原因:1)系统杂质多,开工前清洗不彻底。2)急冷塔入口过程气SO2含量多。3)尾气中携带单质硫进入急冷塔。4)急冷水过滤效果差。 处理方法1)加强急冷水的置换,加强过滤。2)加强克劳斯操作,控制硫化氢与二氧化硫比值达到4;调整还原气体含量、反应器温度至正常范围。3)控制好克劳斯三级硫冷器温度,检查液硫线是否畅通。4)即时清洗或更换过滤器(SR-401)过滤网。5)如果堵塞严重,以上处理措施无法消除应停工处理。 2、尾气单元紧急停车按扭启动后,哪些阀门动作? 答:关闭主燃料气第一切断阀XV40106,打开主燃料气放空阀XV40108,关闭主燃料气第二切断阀 XV40109,关闭燃烧空气切断阀XV40125,关闭燃烧空气控制阀xv40124,关闭蒸气控制阀FV40102,关闭蒸气切断阀XV40103,关闭蒸汽控制阀FV40103,关闭CLAUS尾气去加氢炉控制阀HV31007A,打开 CLAUS尾气去尾炉控制阀HV31007B. 3、克劳斯反应器入口温度对装置有何影响? 答:从反应器来的过程气在反应器床层催化剂作用使硫化氢和二氧化硫发生反应,该反应是放热反应,温度越低越有利,但温度低于硫的露点温度会造成液流析出而使催化剂失去活性,这样会造成硫转化率下降。另外要使装置得到高的硫转化率,必须在催化剂的作用使COS 和CS2发生水解,而该水解

关于硫回收工艺总结

当前硫回收方法主要有湿法和干法脱硫,干法又分为:传统克劳斯法、亚露点类克劳斯工艺,还原吸收类工艺、直接氧化类克劳斯工艺、富氧克劳斯工艺、和氧化吸收类克劳斯工艺;湿法主要有鲁奇的低、高温冷凝工艺、托普索的WSA工艺。 1 干法脱硫 1.1 常规克劳斯(Claus)法 克劳斯法是一种比较成熟的多单元处理技术,是目前应用最为广泛的硫回收工艺。其工艺过程为:含有硫化氢的酸性气体在克劳斯炉内燃烧,使部分硫化氢氧化为二氧化硫,二氧化硫再与剩余的未反应的硫化氢在催化剂上反应生成硫磺。传统克劳斯法的特征为:1)控制n(O2):n(H2S)=1:2,若氧气含量过高有SO2溢出,过低则降低H2S的脱除效率;2)需要安装除雾器脱除气流中的硫以提高硫回收量;3)克劳斯法硫总回收率为94%-96%;4)对含可燃性成分的气体如煤气,或当硫质量分数低于40%时不宜用克劳斯法。 1.2亚露点类克劳斯工艺 所谓的亚露点工艺是以在低于硫露点的温度下进行克劳斯反应为主要特征的工艺。主要包括Sulfreen、Hydrosulfreen、Carbonsulfreen、Oxysulfreen、CBA、ULTRA、MCRC、Clauspol 1500、Clauspol 300、Clisulf SDP、ER Claus、Maxisulf等工艺。 1.3

还原吸收类工艺 还原吸收类工艺由于将有机硫及SO2等转化为H2S再行吸收,故总硫回收率可达99.5%以上。主要有SCOT、Super-SCOT、LS-SCOT、BSR/Amine、BSR/Wet Oxidation、Resulf、AGE/Dual Solve、HCR、Parsons/BOC Recycle、Sulfcycle和ELSE工艺。 1.4 直接氧化类工艺 直接氧化是指H2S在固体催化剂上直接氧化成硫,实际上乃是克劳斯原型工艺的新发展。直接氧化法工艺技术的关键是研制出选择性好、对H2O 和过量O2不敏感的高活性催化剂,目前用铁基金属氧化物的不同混合物制备。选择性催化氧化硫回收技术主要有:主要有Seleclox、BSR/Selectox、BSR/Hi-Activity claus、MODOP、Superclaus、Catasulf 和Clinsulf DO等工艺。 以超级克劳斯(Superclaus)工艺为例进行简单介绍。超级克劳斯工艺有2种类型:Super Claus-99型和Super Claus-99.5型。超级克劳斯工艺中气体不必脱水,选择性氧化时,可配入过量氧而对选择性无明显影响。该工艺方法简单,操作容易。过程连续无需周期切换,硫回收率高,投资省,能耗及原材料费用低,且应用规模不限,使用范围广。 1.5 富氧克劳斯工艺 以富氧空气乃至纯氧代替空气用于克莱斯装置,可以相应地减少惰性组分N2的量,进而提高装置的处理能力。已经工业化的富氧克劳斯工艺

[VIP专享]硫磺回收装置技术问答

目录: 问答题: 1.仪表风中断如何进行处理? 如有动力风,先改入动力风,联系调度查明原因,尽快处理;仪表方面:风开阀改现场副线阀控制,风关阀改上下游阀控制。 2.硫磺回收装置循环水中断如何进行处理? 如有新鲜水,将机泵冷却水改用新鲜水;停循环水,只对急冷塔有影响;若停水时间长,可将SCOT临时停工。 3.硫磺回收装置停电如何处理? 装置一旦停电,所有机泵停止转动,反应炉和焚烧炉发生联锁自保,酸性气已改放火炬。必须采用如下措施:通知调度,将酸性气改至其他硫磺回收装置;停再生系统热源,酸性气停出装置;克劳斯系统用1.0MPa蒸汽保温;注意各反应器床层温度,若温度高,可用氮气吹扫至烟囱;及时联系有关部门,查明原因,如停电超过15min,则请示后按紧急停工处理。 4.如何处理DCS控制卡件损坏事故? 立即联系仪表人员修理;在更换卡件时,如数据仅为显示点,则对生产无影响,岗位平稳操作即可;对于带控制回路的点,控制回路会自动切至手动进行控制,与外操联系,依据现场仪表或一次表

指示进行手动控制;对于输出锁位的控制阀,应联系外操将控制阀改副线操作。 5.克劳斯反应器超温时如何处理? 克劳斯反应器超温时的原因主要是催化剂吸附的硫接触氧发生着火燃烧;降低配风量,调整硫化氢、二氧化硫的比例;反应器入口注氮气或蒸汽。 6.开车方案应包括哪些内容? 1 开工组织机构; 2 开工的条件确认; 3 开工前的准备条件; 4 开 工的步骤及应注意的问题;5 开工过程中事故预防和处理;6 开工过程中安全分析及防范措施;7 附录,重要的参数和控制点、网络图。 7.停工方案应包括哪些内容? 1 设备运行情况; 2 停工组织机构; 3 停工的条件确认; 4 停工前 的准备条件;5 停工的步骤及应注意的问题;6 停工后的隔绝措施; 7 停工过程中事故预防和处理;8 停工过程中安全分析及防范措 施;9 附录,重要的参数和控制点。 8.什么是设备检查?设备检查的目的是什么? 1 设备检查是指对设备的运行状况、工作性质、磨损腐蚀程度等 方面进行检查和校验; 2 设备检查能够及时查明和消除设备隐患,针对发现的问题提出 解决的措施,有目的地做好维修前的准备工作,以缩短维修时间,提高维修质量。

第十四章 硫磺回收装置

第十四章硫磺回收装置 第一节装置概况及特点 一、装置概况 硫磺回收装置是环保装置,它是洛阳分公司500万吨/年炼油工程主体生产装置之一。该装置主要处理液态烃、干气脱硫酸性气及含硫污水汽提酸性气等,其产品是国标优等品工业硫磺。 二、装置组成及规模 硫磺回收(Ⅰ)设计生产能力为3000t/a,1987年8月开工,2001年4月扩能改造至1.0×104t/a;硫磺回收(Ⅱ)设计生产能力为5650t/a,1997年9月开工,2000年3月扩能至1.0×104t/a。 三、工艺流程特点 两套硫磺回收装置均采用常规克劳斯工艺,采用部分燃烧法,即将全部酸性气引入酸性气燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。过程气采用高温外掺合、二级转化、三级冷凝、三级捕集,最终硫回收率达到93%以上。尾气中硫化物及硫经尾气焚烧炉焚烧,70m烟囱排放。 第二节工艺原理及流程说明 一、工艺原理 常用制硫方法中根据酸性气浓度不同,分别采用直接氧化法、分流法和部分燃烧法。本装置采用的是部分燃烧法,即将全部酸性气引入燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。对于硫化氢来说,反应结果炉内约有65%的硫化氢转化为硫,余下35%的硫化氢中有1/3燃烧生成二氧化硫,2/3保持不变。炉内反应剩余的硫化氢、二氧化硫在转化器内催化剂作用下发生反应,进一步生成硫,其主要反应如下: 主要反应: 燃烧炉内:H2S+3/2O2=H2O+SO2+Q 2H2S+ SO2= 2H2O+3/2S2+Q H2S+CO2=COS+ H2O+Q 2H2S+CO2=CS2+2 H2O+Q 反应器内:2H2S+SO2=H2O+3/nSOn+Q COS+ H2O = H2S+CO2-Q CS2+ 2H2O=2H2S+CO2-Q 为获得最大转化率,必须严格控制转化后过程气中硫化氢与二氧化硫的摩尔比为2:1。 二、工艺流程说明

克劳斯硫磺回收技术的基本原理

克劳斯硫磺回收技术的基本原理

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导,H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放

硫磺回收装置操作规程

山东天宏新能源化工有限公司10000T/a硫磺回收装置操作规程

目录 第一章概述-------------------------------------------------(1)第二章工艺原理及流程----------------------------------(2)第一节工艺原理-------------------------------------------(2)第二节工艺流程叙述--------------------------------------(3)第三节主要控制方案--------------------------------------(4)第四节工艺指标--------------------------------------------(5)第五节主要生产控制分析---------------------------------(10)第六节岗位管辖范围与岗位任务综述------------------(10)第三章设备与仪表明细表-----------------------------------(11)第四章装置的开工--------------------------------------------(17)第五章装置的停工--------------------------------------------(23)第六章岗位操作法--------------------------------------------(26)第七章事故预案-----------------------------------------------(34)附:工艺流程图

克劳斯法硫回收工艺实例

克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.360docs.net/doc/2c3975384.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

硫磺装置流程

一、装置规模 装置建成后为连续生产,年开工按8000小时计。硫磺回收单元设计规模为年回收硫磺4t/a,操作弹性:60~110%;胺液再生单元设计规模为140t/h,操作弹性:60~2×10 110%。 1、硫磺回收装置原料为再生酸性气和含氨酸性气,其中再生酸性气来自本装置胺液再生单 元;含氨酸性气来自酸性气汽提装置,其中再生酸性气组成见表2-1;酸性水汽提含氨酸性气组成见表2-2。 表2-1 再生酸性气组成 表2-2 含氨酸性气组成 表2-4 排放尾气组成

尾气处理部分物料平衡表 MDEA(甲基二乙醇胺)

一、流程简述 1、制硫部分 自胺液再生装置来酸性气经酸性气缓冲罐(D-2411)脱液,自酸性水汽提装置来的含氨酸性气经含氨酸性气分液罐(D-2410)脱液后,混合进入制硫燃烧炉(F-2411)进行高温转化反应,根据制硫反应需要氧量,严格控制进炉空气量,在炉内酸性气中的烃类等有机物全部分解,约65%(V)的H2S进行高温克劳斯反应转化为硫,余下的H2S中有 1/3转化为SO2,燃烧时所需空气由制硫炉鼓风机(K-2411/1、2)供给。自F-2411排出的高温过程气一小部分通过高温掺合阀(TV-4110)调节一级转化器(R-2411)的入口温度,其余部分进入制硫余热锅炉(ER-2411)冷却至约350℃,制硫余热锅炉壳程发生1.1MPa饱和蒸汽回收余热。从制硫余热锅炉出来的过程气进入一级冷凝冷却器(E-2411),过程气被冷却至160℃,一、二、三级冷凝冷却器壳程发生0.4MPa低压蒸汽,在E-2411管程出口,冷凝下来的液体硫磺与过程气分离,自底部进入硫封罐(D-2413),顶部出来的过程气经过高温掺合阀调节至277℃进入一级转化器(R-2411),在催化剂的作用下进行反应,过程气中的H2S和SO2进一步转化为元素硫。反应后的气体先进过程气换热器(E-2414)管程回收部分余热,温度降至270℃,再进入二级冷凝冷却器(E-2412)被冷却至160℃,E-2412冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐(D-2413),顶部出来的过程气再经过程气换热器(E-2414)壳程加热至230℃进入二级转化器(R-2412),在催化剂的作用下继续进行反应,使过程气中剩余的H2S和SO2进一步发生催化转化,反应后的气体进入三级冷凝冷却器(E-2413),过程气温度自253℃被冷却至160℃,在E-2413管程出口,被冷凝下来的液体硫磺与过程气分离自底部流出进入硫封罐(D-2413),顶部出来的制硫尾气进入制硫尾气分液罐(D-2412)分出携带的液硫后至尾气处理部分。汇入硫封罐的液硫自流进入液硫池(T-2411),在NH3气的作用下,液硫中的有毒气体被分出,送至尾气焚烧炉焚烧。脱气后的液硫用液硫提升泵(P-2412/1、2)送至液硫成型部分,进行造粒成型包装,或进入液硫储罐(D-2419)液硫装车出厂。 2尾气处理部分 尾气至D-2412顶部出来,进入尾气加热器(E-2421),与蒸汽过热器(E-2423)出口的高温烟气换热,温度升到300℃,混氢后进入加氢反应器(R-2421),在加氢催化剂的作用下进行加氢、水解反应,使尾气中的SO2、S2、COS、CS2还原、水解为H2S。反应后的高温气体进入蒸汽发生器(E-2422)后在进入尾气急冷塔(C-2421)下部,与急冷水逆流接触、水洗冷却至40℃。尾气急冷塔使用的急冷水,用急冷水循环泵(P-2421/1,2)自C-2421底部抽出,经急冷水冷却器(E-2424)冷却至40℃后返C-2421循环使用,为了防止设备腐蚀,需在急冷水中注入NH3,以调节其PH值保持在7~8。急冷降温后的尾气自急冷塔顶出来进入尾气吸收塔(C-2422)。自胺液再生系统来的MDEA贫胺液(30%的MDEA液)进入尾气吸收塔(C-2422)上部,与尾气急冷塔来的尾气逆流接触,尾气中的H2S被吸收。吸收H2S后的MDEA富液,经富液泵(P-2422/1,2)送返胺液再生系统进行再生。自吸收塔顶出来的净化尾气(总硫≤300ppm)进入尾气焚烧炉(F-2421),在600℃左右高温下,将净化尾气中残留的硫化物焚烧生成SO2,焚烧后的高温烟气进入蒸汽过热器(E-2423)中回收余热,使来自制硫余热锅炉(ER-2411)的1.1MPa蒸汽过热至250℃,出口烟气温度降至约520℃,再进入尾气加热器(E-2421)加热制硫尾气,出口烟气温度降至378℃,掺入冷空气使温度降至360℃以下,由烟囱(S-2421)排入大气。

《硫磺回收联合装置技术问答》员工需重点掌握的章节目录清单

《硫磺回收联合装置技术问答》 员工需重点掌握的章节目录清单第一章装置基础知识 1.8酸性水汽提单元的生产原理是什么? 1.9污水汽提工艺概况及特点是什么? 1.85气液两相达到平衡后是否能一直保持不变?为什么? 1.86什么叫一次汽化?什么叫一次冷凝? 1.87什么叫渐次汽化?什么叫渐次冷凝? 1.91什么叫饱和蒸汽压?饱和蒸汽压的大小主要与什么因素有关? 1.92什么叫“相”? 1.93什么叫“相平衡”? 1.94什么叫回流比?回流比的大小对塔的操作有何影响? 1.99一个完整的精馏塔应具备什么特征? 1.121精馏塔的操作中应掌握哪三个平衡? 1.129什么是液相负荷? 1.130什么是液面落差? 1.131什么是清液高度? 1.132什么叫冲塔、漏液和干板? 1.138什么是内回流? 1.139什么是回流热? 1.140什么是气相回流? 1.150水的特性有哪些? 1.152什么是谁的pH值? 1.172什么是传质过程? 1.193装置的三大平衡是什么? 1.194在循环水系统中水垢是如何形成的? 1.195循环数系统中常见的水垢有哪几种?污垢有哪几种? 1.197循环水水垢的控制方法有哪些? 第二章装置基本操作知识 2.2 污水汽提操作知识 2.2.1污水汽提工艺如何分类 2.2.2酸性污水中氨氮存在的主要形式是什么? 2.2.3随着气、液相负荷的变动操作上会出现哪些不正常的现象? 2.2.5污水汽提塔的操作条件与设备用途有哪些? 2.2.6污水汽提塔顶温度如何控制? 2.2.7污水汽提塔塔底温度如何控制? 2.2.8污水汽提塔塔顶压力如何控制? 2.2.9污水汽提塔塔底液位如何控制? 2.2.10污水汽提塔冲塔的现象、原因及处理方法是什么?

硫回收工段工艺原理

采用SUPERCLAUS 硫磺回收工艺,是基于硫化氢(H 2S )与受控比的氧气流进行的部分燃烧。O 2与H 2S 的比率将自动维持,以实现所有碳氢化合物的完全氧化以及酸性原料气中H 2S 的部分燃烧。 在SUPERCLAUS 反应器的进口处H 2S 含量为0.7-0.8%(v ),设计值为0.781%(v )。传统的Claus 工艺中,空气与酸气的比例应能保证燃烧后气体中的H 2S 与SO 2的比率刚好为2:1,是Claus 反应的最佳比例。 SUPERCLAUS 工艺中,氧气与酸气的比例将调整到使H 2S 与SO 2的比例大于2:1,以保证在SUPERCALUS 反应器进口H 2S 的浓度要求,从而达到更高的总回收率。控制氧气,使进入SUPERCLAUS 反应器的过程气中的H 2S 浓度处于0.7-0.8%(v )。前端燃烧步骤的操作时基于对H 2S 浓度反馈的控制,而非传统的对H 2S/SO 2(或H 2S-2SO 2)反馈比例的控制。第二级Claus 催化所产生的废气流中的H 2S 浓度将由过程气分析器进行测量。 原理归纳如下: (1)如果进入SUPERCLAUS 反应器的H 2S 浓度太高,需要向燃烧器供给更多的氧气来生成SO 2。 (2)如果进入SUPERCLAUS 反应器的H 2S 浓度太低,则向燃烧器供给相对较少的氧气以生成更少的SO 2。 主要反应: 2H 2S+3O 2→SO 2+H 2O+热量 Claus 反应器之后的冷凝可以使下一级Claus 反应向正反应方向移动,提高硫的回收率。 剩余H 2S 气体中的大部分与SO 2反应生成单质硫: 4H 2S+2SO 2→3S 2+2H 2O-热量(克劳斯反应) Claus 催化阶段 位于下游的Claus 催化阶段将进一步提高硫的总体转化率。在Claus 反应器中将发生以下反应: 热量2x 322x 22++?+O H S SO S H SUPERCLAUS 反应器阶段 来自最后一个Claus 反应器的过程气与空气混合,在SUPERCLAUS 反应器中,使用一种特殊的催化剂来进行H 2S 选择氧化,直接得到单质硫。反应方程式: O H S O S H 2x 22x 121+?+

相关文档
最新文档