RLC串联谐振法测电感

RLC串联谐振法测电感
RLC串联谐振法测电感

RLC串联谐振法测电容

摘要: 电容、电感元件在交流电路中的阻抗是随着电源频率的改变而改变。将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随之变化,这称作电路的稳态特性。利用这特性,当电源频率满足一定条件时,电源和电阻上的相位差为0,即两波形重叠,回路就发生了谐振现象。此时回路

f=。本实验研究了用示波器观察波形,

成纯电阻性,此时的电源频率

找出频率点测电容大小的方法即RLC谐振法测电容,用这种方法测量未知电容,并就实验原理、实验操作、实验误差进行分析。

关键词:电容,电感,相位,示波器,RLC谐振频率阻抗

一.实验目的

1.了解容抗和感抗随频率变化情况

2. 利用示波器测量给定电容的大小。

3.、加深理解电路发生谐振的条件、特点。

二、实验仪器

DH4503型RLC电路实验仪、电容、导线、UTD2062C数字示波器。

三、实验原理

1.RLC谐振

由RLC组成的电路在周期性交变电源的激励下,将产生受追形式的的交流振荡,其振荡幅度随交变电源频率的改变而变化,当电源频率满足一定条件时,回路的振荡幅度达到最大值,即回路发生谐振。

2.测RLC 谐振频率

通过逐点改变加在(直接或间接)RLC 谐振回路上信号频率来找到最大输

出时的频率点,并把这一频点定义为RLC 谐振频率。

3..RLC 串联电路如图5.1所示:

在图5.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。取电阻R 上的电压

U0作为响应,当输入电压U 维持不变时,在不同信号频率的激励下,测出U0

之值,然后以f 为横坐标,以U0/U 为纵坐标,绘出光滑的曲线,此即为幅频特

性,亦称谐振曲线,如图5.2所示。

图中所加交流电压U (有效值)的角频率为w ,则电路的的复阻抗为:1Z R j WL WC ??=+- ???

复阻抗的模为:

2

21Z R WL WC ??=

+- ??? 复阻抗的幅角: 图5.1 RLC 串联电路 图5.2 谐振曲线

1arctan

WL WC R

?-= 即该电路电流滞后于总电压的位差值,回路中的电流I (有效值)为:

221I R WL WC =??+- ???。

上面三式中,,Z I ?均为频率f (或角频率W )的函数,当回路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。

图2(a )(b )(c )分别为RLC 串联电路的阻抗,相位差,电流随频率的变化曲线。

其中(b )图f ?-曲线称为相频特性曲线;(c )图i f -曲线称为幅频特性曲线。

由曲线图可以看出,存在一个特殊的频率0f 特点为:

<1>当

0f f <时,0?<,电流相位超前于电压,整个电路呈电容性。 <2>当0f f >0时,0?>,电流相位滞后于电压,整个电路呈电感性。

<3>当10WL WC -=时,即0W LC =或02f LC

π=,整个电路呈纯电阻性。

<4>随f 偏离0f 越远,阻抗越大,而电路越大。

由于电容随频率的增大,阻抗变小;电阻处于理想状态,不随频率而改变;电感随频率的增大,阻抗增大。所以当10WL WC

-=时,感抗和容抗相等,相互抵消,此时就处于谐振状态,而随频率的增大呈电感性,随频率的减少呈电容性。

5.电容的测量

对于所研究的电路,保持信号源输出电压幅度一定时,以上各参数都将随信

号源频率W 的改变而变化,由电路的复阻抗公式不难看出,当信号源的频率W 满足10WL WC

-=条件时,电路总阻抗Z R =为最小,电流U I Z =则达到最大值。易知,只要调节,,f L C 中的任意一个量,电路都能达到谐振。

则调节输出电压的频率,测出电阻两端的电压,然后根据LC 谐振回路的谐振

频率f =

或2T π=,可求得 22014C f L π=。

四、实验步骤

1.按图5.1连接好仪器。

设10,200,2L mH R U V ==Ω=

2.接通电源,开机预热2分钟,把函数信号发射器输出端与示波器Y 轴通过探头

连接在一起。

3.打开示波器,调整好波形图后,置零然后按测量键后再按F5键两次,然后再

按CH2看需要的数据。(CH1接输入电压端,CH2接输出电压端)

4.调节输出电压的频率由1KHZ 连续变化,观察电阻两端电压的变化及示波器的

波形变化,当调至某一频率时(调节过程中应保持信号发生器的输出电压不变),电压达到最大,然后记录下所调的频率及对应的电压值U ,信号的周期,所得的

图形是从低变高再变低。

5.保持R ,L ,U 不变,调节频率并将对应R 上的电压值计入表中。

6.根据数据画出U f -图,然后根据图读出最大电压的频率。将此时的频率代入到2

2014c f L

π=中求C ,即可。 五、数据记录及处理

测量RLC 谐振频率

10L mH = 200R =Ω U=2V

频率f(KHz

)

3.3

4.2

5.0 5.5

6.0 6.3 6.5

7.2

8.4

9.6 R 上电压

U (V)

1.73 1.75 1.80 1.84 1.79 1.77 1.75 1.71 1.69 1.65

由图得: 5.5f KHZ = 则由公式22014c f L

π=得: 226310.084 3.14 5.5101010c uf -=

=?????

六、实验分析

1.选取的频率组数据不够多,电压最大值时的频率数据不够精确。

2.电压不稳定,使结果有误差。

3.图中得出的数据不够精确,使结果有误差。

4.连接电容没接好导致的误差。

5.仪器本身存在的误差。

6.操作时间过长,时电阻 ,电容,电感的温度上身导致的误差。

7.操作的次数少,数据少引起的误差。

七、注意事项

1.连接电容时,线头接紧,使操作时不宜掉出。

2.计算时注意单位换算。

3.到接近电压达最大值,要慢慢调,小幅度的改变频率,这样可以增大测量精确度。

七、实验体会

我选择了RLC 谐振频率的方法测电容的大小,然而在本次示波器测电容的实验中,刚开始我测不出我想要的数据,示波器的使用也不熟,但经过老师和同学的指导,我才发现电路图连接有问题,调整电路后,我的实验才得以改善。

在这次实验中,要细心观察,慢慢记录数据,这就要求我们有耐心。

这次的设计性实验,不仅很好的锻炼了我的学习思维能力和独立思考能力,充分利用资源的能力,调查资料的能力,还加强了我们的动手能力和探索能力,对错误不断的思考然后去寻找正确的方法,同时我也明白了实验对我们的学习是多么的重要,并且有很大的促进作用。让我更好运用以前所学到的知识。让自己找到自己不足的地方。

参考文献

[1] 慧媛等.普通物理实验指导(电磁学部分)[M].:大学,1989

[2] 述武.普通物理实验(电磁学部分)[M].:高等教育,1991

[3] 丽华等. 新编大学物理实验[M]. :大学,2007

[4] 曾天海,徐加琴,路平.用示波器粗测电容电感值[J].1996

RLC并联谐振电路

电路课程设计举例: 以RLC 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 )1(111L C j R L j C j R Y ωωωω-+=++= 发生谐振时满足L C ω ω0 1 = ,则RLC 并联谐振角频率 ω 和谐振频率 f 分别是 LC LC f πω21, 10 0= = RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小 G B G Y =+= 2 2 . (2)若外施电流 I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等, I I S R = .

(4)谐振时 0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流 I s 和流经R 的电流 I R ,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为,电容C 为50uf,电阻R 为200Ω。 由LC f π210 = 计算得, Hz f 1.1570 = 按上图进行EWB 的仿真,得到下图。

流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为,几乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

串联谐振实验报告

实验报告 一、实验名称 串联谐振电路 二、实验原理 1、电路图如图所示,改变电路参数L,C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率的函数: 2、谐振曲线 电路中的电压与电流随频率变化的特性为频率特性,随频率变化的曲线就是频率曲线。如下图:

图中可以看出:Q值愈大,曲线尖峰值愈陡,其选择性越好,但通频带越窄。 只有当Q>时,Uc和Ul曲线才出现最大值,否则Uc将单调下降趋于0,Ul将单调上升趋于Us。 三、实验方法 测量电路谐振频率 1、将电路连接如实验原理中的电路图,将电源由函数信号发生器产生,将电阻两端接入示波器中,调节信号源的频率由大到小,观察示波器上的电阻电压的大小,当电阻电压值变为最大值时所对应的频率值则为电路的谐振频率。 2、用Multism仿真连接串联谐振电路,连接在电阻两端的XBP所显示的波特图,观察电阻两端电压增益最大时所对应的频率,则所对应的频率为电路发生谐振是的谐振频率。四、实验步骤 电路板上: 连接原理图的电路,给电源接上函数发生器,调节为五伏的方波,频率从调到,间隔,设置29个点,将电阻两端连入示波器,观察示波器上电阻的阻值并记录数据 接着将同样电容与电感的两端接入示波器,观察同样频率下对应的电容与电感的电压值,同样记录实验数据 将实验数据整理并绘制折线图,观察不同电源角频率电路响应的谐振曲线,对比实验原理中的图并作分析

Multism仿真: 电路仿真连接如下的图 将XFG调节为,占空比为30%,脉冲幅度为5V的方波电压信号 观察XBP输出的波特图: 可知:该电路图的谐振频率约为 将仿真图中的电阻与电容互换位置,显示电容的波特图: 可知:在频率小于谐振频率时Uc出现最大

谐振法测电感数据处理

姓名:吴孟杰班级:光信科0902班学号:0120914430215 谐振法测电感数据处理 一.并联法测电感 平uF 频率的平均值:f0平=∑f0i/6=(1.90+2.15+2.25+2.32+2.40+2.46)/6=2.25 kHz 电感的平均值:L平=∑Li/6=(7.02+7.06+6.88+6.93+6.97+6.98)/6=6.98 mH A类不确定度: A=∑(Li-L平)^2∕(n-1)/n]^0.5 ={[(7.02-6.98)^2+(7.06-6.98)^2+(6.98-6.88)+(6.98-6.93)^2 +(6.98-6.87)^2+(6.98-6.98)^2]/30}^0.5 =0.07mH 拓展不确定度:S=2*A=0.14mH (K=2) 则电感为L= L平±S=6.98±0.14mH 误差计算W=(6.98-7)/7*100%=-0.28% 二.串联法测电感 平 频率的平均值:f0平=∑f0i/6=(1.98+2.23+2.35+2.47+2.39+2.53)/6=2.33 kHz 电感的平均值:L平=∑Li/6=(6.94+7.02+6.87+6.96+6.98+6.80)/6=6.94 mH A类不确定度:A={[∑(Li-L平)^2∕(n-1)/n]^}0.5= =[(6.94-6.94)^2+(7.02-6.98)^2+(6.87-6.94)^2+ (6.96-6.94)^2+(6.98-6.94)^2+(6.80-6.94)^2]/30}^0.5 =0.14mH 拓展不确定度:S=A*2=0.14*2=0.28mH (K=2)

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

交流谐振电路-实验报告

University of Science and Technology of China 96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China 交流谐振电路 李方勇 PB05210284 0510 第29组2号(周五下午) 实验题目 交流谐振电路 实验目的 研究RLC 串联电路的交流谐振现象,学习测量谐振曲线的方法,学习并掌握电路品质因素Q 的测量 方法及其物理意义。 实验仪器 电阻箱,电容器,电感,低频信号发生器以及双踪示波器。 实验原理 1. RLC 交流电路 由交流电源S ,电阻R ,电容C 和电感L 等组成 交流电物理量的三角函数表述和复数表述 ()() φ?φ?+=+=t j Ee t E e cos 式中的e 可以是电动势、电压、电流、阻抗等交流电物理量,?为圆频率,φ 为初始相角。电阻R 、电容C 和电感串联电路 电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π 。 电阻阻抗的复数表达式为 R Z R = 模R Z =

电容阻抗的复数表达式为 C j e C Z j C? ? π1 1 2= =- 模C Z C? 1 = 电感阻抗的复数表达式为 L j Le Z j L ? ? π = =2 模 L Z L ? = 电路总阻抗为三者的矢量和。由图,电容阻抗与电路总阻抗方向相反,如果满足 L c ? ? = 1 , 则电路总阻抗为R,达到最小值。这时电流最大,形成所谓“电流谐振”。调节交流电源(函数发生器)的频率,用示波器观察电阻上的电压,当它达到最大时的频率即为谐振频率。电路如下图。 电路参数–电动势电压,电流,功率,频率 元件参数–电阻,电容,电感 实验内容 1.观测RLC串联谐振电路的特性 (1)按照上图连接线路,注意保持信号源的电压峰峰值不变,蒋Vi和Vr接入双踪示波器的CH1和CH2(注意共地) (2)测量I-f曲线,计算Q值 (3)对测得的实验数据,作如下分析处理: 1)作谐振曲线I-f,由曲线测出通频带宽 2)由公式计算除fo的理论值,并与测得的值进行比较,求出相对误差。

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

谐振法测电感

并联谐振法测电感 一、实验要求 设计一个能够测量电感参数的测量电路,该测量电路应具有如下功能 (1)电感L测量仪的量程范围如下:0.1mH—10mH 二、实验目的 培养电路设计能力 熟练掌握multisim仿真软件进行电路仿真和分析 培养对真实电路进行分析调试的能力 三、实验原理 如图所示为并联谐振法测电感的电路,其中C为标准电容,L为被测电感,C o为被测电感的分布电容。测量时,调节信号源频率,使电路谐振,即电压表指示最大,记下此时的信号源频率f,则 由此可见,还需要测出分布电容C o,不接标准电容C,调节信号源的频率,使电路自然谐振,设此频率为f1,则 由上述两式可得 把C o代入L的表达式,即可得到被测电感的感量。 四、实验器材 信号发生器 示波器 电阻 电容若干或可变电容箱一只 待测电感

导线若干 五、实验仿真(以1mH电感为例) 1、测量f

交流小信号分析最高点即为谐振点,读出f=3.5kHz,则 2、测量f1(设C2为L1的分布电容)

交流小信号分析最高点即为谐振点,读出f1=5.013kHz,则

=0.95uF 3、计算L 把C o代入L的表达式,即可得到被测电感的感量。 =1.061mH 六、实验步骤 1、按图焊接电路 按下图所示焊接电路 2、测量谐振频率f 调节节信号发生器频率,使电路谐振,即示波器幅值最大,记下此时的信号源频率f 3、测量L与分布电容C0的谐振频率f1 如图所示,不接标准电容C,调节信号源的频率,使电路自然谐振,即示波器幅值最大,记录此频率f1

4、计算分布电容C0 5、计算L 七、误差分析 1.谐振频率测量不准确 2.实际电容值测量有误差 3.电感的分布电容和电阻 4.导线间的分布电容

关于线圈绕法和电感

关于线圈绕法和电感、品质因素的测量方法 ------01079044 孙哲 1.线圈的绕法 1.1电感线圈的作用 我觉得要知道如何去绕线圈,首先要知道电感线圈的作用。从目的去理解线圈的绕法。 去缠绕一个电感线圈的主要目的是为了使线圈产生一个想要的电感值,应用到电路中去,以实现线圈阻流、调谐选频等作用。而影响电感的主要因素是线圈缠绕的匝数、铜线的电阻、磁芯材质导磁率以及匝间距离。 基于此,在缠绕线圈的时候应该重点注意关系到影响因素的步骤。 2.2电感线圈的缠绕方法 1)根据需要得到的电感进行匝数、铜线、磁芯材料的选取。根据空心线圈电感量计算公式: 2 0.01D N L L 0.44D ??=+ 其中:线圈电感量 L 单位: 微亨 线圈直径 D 单位: cm 线圈匝数 N 单位: 匝 线圈长度 L 单位: cm 根据实际材料情况,我们估计出缠绕此线圈需要的匝数、线圈长度。 2)根据得到的大体数据进行线圈的缠绕。不论是密绕或间绕,最好先把铜线烘热,戴上手套或用布片裹住铜线再绕。这样,铜线冷却后就箍紧线圈管,不致松脱。 对于密绕线圈,我们需要从开始紧密缠绕,最末一圈要和其他圈数离开2到3公厘,以便在校准时可以逐圈向末圈拨拢,达到减少电感量的目的。 对于间绕线圈的线径等于线距的0.5倍时,可以用两根同样粗细的铜线相互靠紧后平行绕上去,绕好后拆掉一根,就成为很整齐的间绕线圈了。如果线

经是线距的0.7倍时,要用一根较间隔略粗的棉线或麻线和铜线平行绕上去;若用细铜线做间隔,绕好后会嵌在相邻两铜线下面抽不出来。如果能在线圈管上用旋床族一条浅的螺旋形槽,可以绕任何样式的间距线圈,如图1。 图 1 线圈常见缠绕方法 当线圈初步成型之后,由于经验公式并不精确,所以需要通过测量该线圈电感,对线圈进行微调。下面讨论电感测量方法。 2.电感的测量方法 在实验室已有条件下,通过搭建RL 电路,测量电压的方法,计算得出未知电感。做电路图如下: 图 2 电感测量示意图 根据图像以及已有公式,得到电感公式为: L = 根据测得电容量变的电压L U 以及交流电源的电压0U 和频率f 。根据公式既 a)密绕法 b)间绕法 c)脱胎法 d)蜂房法 e)多层分段绕法

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

RLC并联谐振电路

RLC 并联谐振电路

电路课程设计举例:?以R L C并联谐振电路 1.电路课程设计目的 (1)验证屉C并联电路谐振条件及谐振电路的待点; (2)学习使用EWB仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的屉C串联电路图如下图所示。 图1屉C并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足0()C =」一,则RLC并联谐振角频率0°和谐振频率/[分别是RLC并联谐振电路的待点如下。 (1)谐振时Y二G,电路呈电阻性,导纳的模最小|丫卜J G'+ J B'G? (2)若外施电流人一定,谐振时,电压为最大,[J丄,且与外施电流同相。 G (3)电阻中的电流也达到最大,且与外施电流相等,W (4)谐振时// +/c = 0,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有儿种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流人和流经R的电流人,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R的电流波形,两者同相即为并联谐振。

例题:已知电感L为0. 02H,电容C为50uf,电阻R为2000。 由f =一计算得,f = 157.1Hz J 02兀亦」° 按上图进行EWB的仿真,得到下图。 流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为5. 550uF,儿乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

串联谐振电路实验报告

串联谐振电路 学号: 1028401083 姓名:赵静怡 一、实验目的 1、加深对串联谐振电路条件及特性的理解 2、掌握谐振频率的测量方法 3、理解电路品质因数Q和通频带的物理意义及其测量方法 4、测量RLC串联谐振电路的频率特性曲线 5、深刻理解和掌握串联谐振的意义及作用 6、掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表 的使用 7、掌握Multisim软件中的Functionn Generator 、 Voltmeter 、Bode Plotter等仪表的使用以AC Analysis 等SPICE仿真分析方法 8、用Origin绘图软件绘图 二、实验原理 RLC串联电路如图2.6.1所示,改变电路参数L、C或电源频率时,都可以是电路发生谐振。 2.6.1 RLC谐振串联电路

1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块 (3) 低频信号发生器一台 (4) 交流毫伏表一台 (5) 双踪示波器一台 (6) 万用表一只 (7) 可变电阻 (8) 电阻、电感、电容若干(电阻100Ω,电感10mH 、4.7 mH ,电容100nF )

RLC串联谐振法测电感

RLC串联谐振法测电容 摘要: 电容、电感元件在交流电路中的阻抗是随着电源频率的改变而改变。将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随之变化,这称作电路的稳态特性。利用这特性,当电源频率满足一定条件时,电源和电阻上的相位差为0,即两波形重叠,回路就发生了谐振现象。此时回路 f=。本实验研究了用示波器观察波形, 成纯电阻性,此时的电源频率 找出频率点测电容大小的方法即RLC谐振法测电容,用这种方法测量未知电容,并就实验原理、实验操作、实验误差进行分析。 关键词:电容,电感,相位,示波器,RLC谐振频率阻抗 一.实验目的 1.了解容抗和感抗随频率变化情况 2. 利用示波器测量给定电容的大小。 3.、加深理解电路发生谐振的条件、特点。 二、实验仪器 DH4503型RLC电路实验仪、电容、导线、UTD2062C数字示波器。 三、实验原理 1.RLC谐振 由RLC组成的电路在周期性交变电源的激励下,将产生受追形式的的交流振荡,其振荡幅度随交变电源频率的改变而变化,当电源频率满足一定条件时,回路的振荡幅度达到最大值,即回路发生谐振。

2.测RLC 谐振频率 通过逐点改变加在(直接或间接)RLC 谐振回路上信号频率来找到最大输 出时的频率点,并把这一频点定义为RLC 谐振频率。 3..RLC 串联电路如图5.1所示: 在图5.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。取电阻R 上的电压 U0作为响应,当输入电压U 维持不变时,在不同信号频率的激励下,测出U0 之值,然后以f 为横坐标,以U0/U 为纵坐标,绘出光滑的曲线,此即为幅频特 性,亦称谐振曲线,如图5.2所示。 图中所加交流电压U (有效值)的角频率为w ,则电路的的复阻抗为:1Z R j WL WC ??=+- ??? 复阻抗的模为: 2 21Z R WL WC ??= +- ??? 复阻抗的幅角: 图5.1 RLC 串联电路 图5.2 谐振曲线

串联谐振电路实验报告

串联谐振电路实验报告 课程安排分为八院和非八院的,由于八院同学部分课程内容安排在了前导课,所以电路分析基础实验课程正式内容中不再重复讲授。 非八院的实验内容安排如下(相关顺序可能会根据教学安排适当调整): 1、常用测量仪器的使用(一) 2、元器件的识别与测量 3、常用测量仪器的使用(二) 4、直流电路测量 5、动态电路测量 6、正弦电路测量 7、RLC串联电路测量

8、RLC并联电路测量 9、考试 八院的实验内容安排如下(相关顺序可能会根据教学安排适当调整): 1、元器件识别及其特性测试点电压法测量二极管的特性曲线 2、直流电路测量 3、一阶动态电路 4、外特性测量法测量信号源内阻及二阶RLC串联电路的阶跃响应测量 5、正弦电路 6、电感、电容大小的测量 7、RLC串联谐振电路设计

8、RLC并联谐振电路设计 9、考试 二、成绩评定 1、课程为独立设课,成绩由总评成绩决定。 总评成绩=平时成绩*40%+考试成绩*60% 平时成绩:预习情况、听课态度、做实验的速度、测量数据的准确性、实验报告的撰写。 2、闭卷考试,当场检查电路接线,仪器使用,波形测量,计算相关参数、作图回答问题,时间一小时。 3、无补考,总评不及格需重修。 三、预习要求 1、课前按照实验报告模板要求做好预习,回答预习问题,未按要求

预习者不准进入实验室做实验。 2、课前在面包板上搭建好电路,未搭建好电路者不准进入实验室做实验。(此要求针对八院同学,其他院系同学应在课前来实验室用实验箱预搭建电路。) 3、课前用实验报告纸画好数据表格(记录原始数据用) 4、有条件的同学可以在预习时候用仿真软件完成电路仿真。 四、实验报告要求 1、实验报告第一页写清楚自己的学号、姓名、座位号、课号、专业。

LC 串并联谐振回路特性实验

LC 串并联谐振回路特性实验--(转自高频电子线路实验指导书) 2009-01-09 19:34:22| 分类:电子电路| 标签:|字号大中小订阅 LC 串并联谐振回路特性实验 一、实验目的 1、掌握LC 振荡回路的谐振原理。 2、掌握LC 串并联谐振回路的谐振特性。 3、掌握LC 串并联谐振回路的选频特性。 二、实验内容 测量LC 串并联谐振回路的电压增益和通频带,判断选择性优劣。 三、实验仪器 1、扫频仪一台 2、20MHz 模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 (一)基本原理 在高频电子线路中,用选频网络选出我们所需的频率和滤除不需要的频率成分。通 常,在高频电子线路中应用的选频网络分为两类。第一类是由电感和电容元件组成的振 荡回路(也称谐振回路),它又可以分为单振荡回路以及耦合振荡回路;第二类是各种

滤波器,如LC 滤波器,石英晶体滤波器、陶瓷滤波器和声表面滤波器等。本实验主要 介绍第一类振荡回路。 1、串联谐振回路 信号源与电容和电感串联,就构成串联振荡回路。电感的感抗值( wL )随信号频 率的升高而增大,电容的容抗值( wC 1 )则随信号频率的升高而减小。与感抗或容抗的 变化规律不同,串联振荡回路的阻抗在某一特定频率上具有最小值,而偏离特定频率时 的阻抗将迅速增大,单振荡回路的这种特性为谐振特性,这特定的频率称为谐振频率。 图2-1 所示为电感L、电容C 和外加电压Vs 组成的串联谐振回路。图中R 通常是 电感线圈损耗的等效电阻,电容损耗很小,一般可以忽略。 图2-1 串联振荡回路 保持电路参数R、L、C 值不变,改变外加电压Vs 的频率,或保持Vs 的频率不变, 而改变L 或C 的数值,都能使电路发生谐振(回路中的电流的幅度达到最大值)。

实验报告 R、L、C串联谐振电路的研究

实验报告 祝金华 PB15050984 实验题目:R 、L 、C 串联谐振电路的研究 实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。 2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。 实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。 取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。 2. 在f =fo = LC 21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =Xc ,电路呈纯阻性,电路阻抗的模为最小。在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式Q = o C U U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q= o L U U 测定) 。另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q U m ax 02 U max 0U 0 102 L C R o i 图 1

= 1 2f f f O -求出Q 值。式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最 大值的2/1 (=0.707)倍时的上、下频率点。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 预习思考题 1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。 L=30mH fo =LC π21=1/(2×π6 31001.01030--???)=9188.81Hz 2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值? 改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。 3. 如何判别电路是否发生谐振?测试谐振点的方案有哪些? 判断:电容与电感的电压相等时,电路此时发生谐振;U i 与U 0相位相同时此时发生谐振;U i 与U 0大小相等时电路发生谐振。 测量:理论计算,f=1/(2π√LC ); 仪表测量此时电流频率。 4. 电路发生串联谐振时,为什么输入电压不能太大, 如果信号源给出3V 的电压,电路谐振时,用交流毫伏表测U L 和U C ,应该选择用多大的量限? 输入电压过大,L 、C 器件两端的电压远高于信号源电压;应该选用最大量程 。 4. 要提高R 、L 、C 串联电路的品质因数,电路参数应如何改变? 减小R,增大L ,同时等比例缩小C 。 5. 本实验在谐振时,对应的U L 与U C 是否相等?如有差异,原因何在? U L ,U C 大小相等,方向相反,因为在谐振点L,C 的阻抗相等,二者阻抗方向相反。 实验设备 低频函数信号发生器,交流毫伏表,双踪示波器,频率计,谐振电路实验电路板 实验内容 1. 利用HE-15实验箱上的“R 、L 、C 串联谐振电路”,按图3组成监视、测量电路。选C 1=0.01μF 。用交流毫伏表测电压, 用示波器监视信号源输出。令信号源输出电压U i =3V ,并

简单电感测量电路

简单电感量测量装置 在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理 电路原理如图1(a)所示。 图1 简单电感测量装置电路图 该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。 BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。电路谐振频率:f0 = 1/2π所以L X = 1/4π2 f02C 式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。 为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。 附表

串联谐振电路实验的心得体会

串联谐振电路实验的心得体会 篇一:实验九串联谐振电路实验 实验九 串联谐振电路实验 一、实验目的 1.测量RLC串联电路的谐振曲线,通过实验进一步掌握串联谐振的条件和特点。 2.研究电路参数对谐振特性的影响。 二、原理 1.RLC串联电路在图9-1所示的,RLC串联电路中,若取电阻R两端的电压为输出电压,则该电路输出电压与输入电压之比为: U2R ??U1R?j(?L?1) ?C ?L tg?1 R 1 图9-1 图9-2

2.幅频特性 电路网络输出电压与输入电压的振幅比随ω变化的性质,称为该网络的幅频特性,如图9-2所示。 3.谐振条件二阶带通网络的幅频特性出现尖峰的频率f0称为中心频率或谐振频率。此时,电路的电抗为零,阻抗值最小,等于电路中的电阻,电路成为纯电阻性电路,串联电路中的电流达到最大值。 电流与输入电压同相位。我们把电路的这种工作状态称为串联谐振状态。电路达到谐振状态的条件是: 1 ?0L=或 ?0 ?0C4.通频带宽 改变角频率ω时,振幅比随之变化,当振幅比下降到最大值的1/角频率ω1、ω2叫做3分贝角频率,相应的频率两个f1和f2称为3分贝频率。两个角频率之 差称为该网络的通频带宽: R BW??2-?1= L RLC串联电路幅频特性可以用品质因数Q来描述: ??L1Q?0?0 BWR?0CR

三、实验仪器和器材 1.函数信号发生器 2.示波器 3.电阻 4.电感5.电容 6.实验电路板 7.短接线 8.导线 四、实验内容及步骤 1.连接实验电路 按图9-3所示连接电路。其中,电感L= 33mH,电容C=μF,电阻R分别取620Ω和Ω,图中r为电感线圈本身的电阻。 图9-3 2.测绘谐振曲线 测量结果填入表9-1中。 表9-1 R=620Ω的谐振特性 3.研究电路参数对谐振曲线的影响 将图9-3中电阻改为Ω,重复2中步骤,结果填入表9-2中。 表9-2 R=Ω的谐振特性 4.计算通频带宽BW和品质因数Q 将计算结果填入表9-3中。 表9-3 通频带宽BW和品质因数Q 五、思考题 1. 实验中怎么样判断电路已经处于谐振状态?

串联谐振和并联谐振LC电路操作

串联谐振和并联谐振LC电路操作具有L,C元素的电路由于其频率特性(如频率Vs电流,电压和阻抗)而具有特殊的特性。这些特性在特定频率下可能具有明显的最小值或最大值。这些电路的应用主要涉及发射机,无线电接收机和电视接收机。考虑一个LC电路,其中电容器和电感器都在电源上串联连接。该电路的连接具有在称为谐振频率的精确频率下谐振的独特特性。本文讨论什么是LC电路,简单串联和并联LC电路的谐振操作。 什么是LC电路? LC电路也称为储能电路,调谐电路或共振电路,是一个电路与由字母“C”和表示的电容器内置的电感器由连接在一起的字母“L”表示。这些电路用于产生特定频率的信号或从特定频率的复合信号中接收信号。LC电路是各种电子设备中的基本电子组件,尤其是在调谐器,滤波器,混频器和振荡器等电路中使用的无线电设备中。LC电路的主要功能通常是在最小阻振荡。

系列LC电路谐振 在串联LC电路配置中,电容器“C”和电感器“L”都串联连接,如下电路所示。电容器和电感器两端的电压之和就是开路端子两端的总电压之和。LC电路+ Ve端子中的电流等于通过电感器(L)和电容器(C)的电流 v = v L + v C i = i L = i C 当“XL ”感应电抗幅度增加时,频率也会增加。同样,当“X C ”电容电抗值减小时,频率也减小。

在一个特定的频率上,两个电抗X L和X C大小相同,但符号相反。因此,该频率称为谐振频率,由LC电路表示。 因此,在共振 X L = -X C ωL= 1 /ωC ω=ω0= 1 /√LC

这称为电路的谐振角频率。将角频率变为频率,使用以下公式 f0 =ω0/2π√LC 在串联谐振LC电路配置中,两个谐振X C和X L相互抵消。在实际而不是理想的组件中,电流的流动通常与线圈绕组的电阻相反。因此,提供给电路的电流在谐振时最大。 接收电路的定义是In Lt f and f0最大时,电路的阻抗最小。 对于f >(-X C)。因此,该电路是电感性的

串联谐振电路实验报告

实验三:串联谐振电路 一、实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数及通频带的物理意义和其测定方法。 4.测定RLC 串联谐振电路的频率特性曲线。 二、实验原理: RLC 串联电路如图所示,改变电路参数L 、C 或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数: Z=R+j(ωL-1/ωC) 当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。 谐振角频率ω0 =1/LC ,谐振频率f 0=1/2π LC 。 谐振频率仅与原件L 、C 的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z 0|为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I 0=U S /R 。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 和通频带B 。 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q ,即: Q=U L (ω0)/ U S = U C (ω0)/ U S =ω0L/R=1/R*C L / 回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带,即: B=f 0 /Q 2、谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R 、L 、C 固定的条件下,有 I=U S /22)C 1/-L (ωω+R U R =RI=RU S /22)C 1/-L (ωω+R U C =I/ωC=U S /ωC 22)C 1/-L (ωω+R

用示波器测量电容和电感

学院学生实验报告 成绩:指导教师: 专业:班别:实验时间: 实验人:学号:同组实验人: 实验名称:用示波器测量电容和电感 实验目的: 1用示波器观察李萨如图形,观测两正弦电压信号的相位差 2.学习用示波器测量电容电感的基本方测量法。 实验仪器:标准电容器,示波器,待测电容和待测电感,标准电容箱,标准电感器,导线若干。 1

2 实验原理: 示波法测电容和电感,就是用示波器观察RLC 串联电路谐振现象的方法。测量电路如图38-1所示如果测电容,则C 为待测电容,L 为标准电感,R 为标准电阻,R'为电感的内阻和电容的损耗电阻之和。将RLC 串联电路接在频率为f 可调的信号发生器输出端。串联电路两点的总电压u 和电路中总电流I 之间的相位差为 )' 1arctan(R R C L +-=ωω? (38-1) 把总电压u 和欧姆电阻上的电压k u (因为k u 与I 同相位,所以用它来代表电流信号)分别输入示波器的Y 输入端和X 输入端,即可在示波器上得到反映两者间相位差的李萨如图形,两者的相位差为 )arctan(A B =? (38-2) 当信号频率0f f =时,满足关系式 C L 001ωω= (38-3) 此时,相位差?=0,电路处于谐振状态,示波器上观察到的李萨如图形0ω和0f 称为谐振角频率和谐振频率,得到 L C 21 ω=或L f C 20241π= (38-4) 测量电容时,保持L 不变,调节信号发生器输出信号的频率,同时观察李萨如图形,当李萨如图形由椭圆变为一三象限的一条直线时,电路处于谐振状态,读出此时信号发生器输出信号的频率,即为0f ,由(38-4)即可求得电容器的电容值。同样的方法,也可测量电感L 的值: C C 21ω=或C f C 20241π= (38-5) 【 实验内容与步骤 】 1.测量电容和电感的值,计算测量不确定度 2.讨论影响电路灵敏的的因素 【数据记录与处理】

谐振电路实验报告

竭诚为您提供优质文档/双击可除 谐振电路实验报告 篇一:RLc串联谐振电路的实验报告 RLc串联谐振电路的实验研究 一、摘要: 从RLc串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于multisim仿真软件创建RLc串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的

应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L、电容c和电阻R的串联谐振电路中,需要研究在不同频率正弦激励(:谐振电路实验报告)下响应随频率变化的情况,即频率特性。multisim仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLc串联谐振电路的频率特性曲线。 (2)实验原理: RLc串联电路如图所示,改变电路参数L、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ω

相关文档
最新文档