直线电机产生推力波动危害及测试技巧

直线电机产生推力波动危害及测试技巧
直线电机产生推力波动危害及测试技巧

直线电机产生推力波动危害及测试方法

直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。直线电机对外输出的量主要是推力,这也是直线电机和旋转电机的重要的不同点之一。推力对于直线电机的重要性可以与力矩对于旋转电机的重要性相媲美。由于直线电机的理论、设计、制造和负载及干扰等诸多方面的原因,直线电机必然存在推力波动。推力波动能够反映直线电机的运行是否平稳,因此,推力波动是直线电机检测的关键指标参数,下面本文主要介绍推力波动测试方法。

一、直线电机产生的推力波动危害

直线电机产生的推力波动是其应用方面的主要缺陷之一。推力波动会引起震动和噪声,在低速运行时,电机可能发生共振,运行特性恶化。

纹波扰动、摩擦扰动、负载阻力变化、端部效应、负载阻力变化、电流时滞谐波、磁阻推力波动等都是直线电机产生推力波动的重要因素。因此,对直线电机的推力波动特性进行精准测试时非常重要的。

二、直线电机推力波动测试方法

1.常规直线电机推力波动测试方法的不足

常见的推力波动测试系统是使用由滚珠丝杠和直线电机分别拖动的拖板,共轴对拖来测试推力波动。这种旋转电机通过滚珠丝杠连接直线电机的方法,使机械连接机构的干扰也不可避免的进入了波动的检测结果中,导致试验结果往往与预期的有可观的偏差。

2.新型直线电机推力波动测试解决方案

新型波动测试解决方案是同一导轨上采用两个同型号直线电机互为负载,通过对合适条件下所采集的推力信号进行数据处理,最终得到被测直线电机的推力特性。

由于被测直线电机与陪试直线电机的电气性能和机械性能相同,此方法避免了旋转电机运行时引入的转矩波动,而且用简单的连接装置替代滚珠丝杠,很大程度上见笑了机械连接部分的不确定性和扰动,提升了传递效率。通过运用合适的控制检测方法,使两个电机叠加后的波动处于相同相位下,进而得到被测电机的推力波动。

检测系统主要由被测直线电机、陪试直线电机、驱动系统、位置速度检测装置、力特性检测装置以及数据采集处理模块组成,其主要组成拓扑图如下图所示:

图示:直线电机测试系统拓扑图

试验中通过固定与连接机构调节两个直线电机到达待测位置(合适的相对位置,推力呈现比较明显的正弦波形),在直线电机的电枢中通电,陪试电机设定为速度环模式,拉动被测电机运行一段距离。通过力传感器就可以计算对应的位置和速度条件下直线电机所对应的推力,此时推力波动为两个直线电机推力的叠加。通过对采集的推力数据进行分析处理,可以得到被测直线电机的推力波形,从而求得推力平均值以及推力波动百分比。

最大静推力检测:设定被测电机工作于电流环,对其中两相绕组用恒流源依次输入递增的直流,使陪试电机匀速拖动被测电机,在力传感器测得的波形中找出最大的峰值点。对不同电流下的峰值描点,依次连线即为推力波动峰值曲线。

霍尔传感器直线电机位置检测

电流检测部分 本控制系统中永磁直线电机的两相电枢电流通过霍尔电流传感器得到,另外一相电流通过计算得到。电流传感器采用LEM公司生产的LTSR -6-NP型电流传感器,该产品具有高精度,高线性度,高响应速度,高频率带宽,高电流过载能力,低温漂,低接入损耗,以及对外部信号的高抗干扰能力,非常适合在永磁电机伺服系统中使用。根据选择不同的引脚接法,该产品可以提供三种不同的额定采样电流值,分别为2A、3A和6A电流有效值,对应的最大采样电流值分别为6.4A,9.6A 和19.2A。由于该传感器输出电压范围为0.5~4.5V,而 TMS320LF240DSP的AD输入信号只能在0V—+3.3V之间,所以需要将传感器的输出电压经过运放电路处理后,再输入DSP的AD口,具体电路如图4—10所示.

一种低成本的线性霍尔位置检测方法在永磁直线电机伺服控制系统中,无论采用何种控制方式,都需要准确检测出电机动子位置。可以说,位置检测部分是伺服控制系统中非常关键的组成部分,直接影响着电机控制精度和系统运行性能。目前,在直线运动控制系统中,最常见的位置检测方法是采用直线光栅,但是光栅的成本很高,对安装要求也很高;也有增加额外机械结构,将直线运动转变成旋转运动,然后用旋转编码器进行位置检测的方法,显然该方法在成本和精度上都存在缺点;还有采用无位置检测的方法,但是目前所有无位置检测方法的在电机低速段效果都不是很理想,而直线电机恰恰需要频繁的起动和停止,采用无位置检测方法获得理想的效果难度较大,尚未有实用的解决方案提出。因此,本节将介绍一种低成本的利用线性霍尔元件对永磁直线电机进行位置检 测的方法。 §4.6.1线性霍尔位置检测方法的基本原理 线性霍尔元件可以用来检测磁通密度,在一定磁场强度范围内,其输出电压与被检磁场磁通密度成线性关系.永磁直线同步电机气隙磁场为正弦分布,因此很容易通过检测气隙磁场磁通密度的方法来确定电机动子的位置。本节以空心式圆筒型永磁直线电机为例,具体介绍该方法。电机及霍尔元件的安装位置示意图如图4—18所示.因为电机只沿Z轴方向做运动,所以只需要检测电机动子在z轴上的位置。在第三章中,已经分析了该电机气隙磁密Br,沿Z轴基本成正弦分布,在一对极范围内,也就是一个周期内,Br不是Z的单值函数,因此不

如何进行直线电机选型

如何进行直线电机选型

————————————————————————————————作者:————————————————————————————————日期:

直线电机选型 ——最大推力和持续推力计算

目录 直线电机选型 (3) ——最大推力和持续推力计算 (3) 概述 (5) 三角模式 (5) 梯形模式 (5) 持续推力 (6) 计算公式 (6) 例子 (7)

概述 直线电机的选型包括最大推力和持续推力需求的计算。 最大推力由移动负载质量和最大加速度大小决定。 推力= 总质量x 加速度+ 摩擦力+ 外界应力 例子:当移动负载是2.5千克(包含动子),所需加速度为30m/s2时,那么,电机将产生75N 的力(假设,摩擦力和外界应力忽略不计)。 通常,我们不知道实际加速度需求,但是,我们有电机运行实际要求。给定的运行行程距离和所需要的行程时间,由此可以计算出所需要的加速度。一般来说,对于短行程,推荐使用三角形速度模式,即无匀速运动,长行程的话,梯形速度模式更有效率。在三角形速度模式中,电机的运动是没有匀速段的。 三角模式 加速度为Acceleration = 4 x Distance / Travel_Time2 梯形模式 需要提前设置匀速的速度值,由此可以推算出加速度。 加速度= 匀速/ (运动时间–位移/ 匀速)

同理,减速度的计算与加速度的计算是类似的,特殊情况是存在一个不平衡的力(例如重力)作用在电机上。 通常情况下,为了维持匀速过程和停滞阶段,摩擦力和外界应力也要考虑进来,为了维持匀速,电机会对抗摩擦力和外界应力,电机停止时则会对抗外界应力。 持续推力 计算公式 持续推力的计算公式如下: RMSForce = 持续推力 Fa = 加速度力 Fc = 匀速段力 Fd = 减速度力 Fw = 停滞力 Ta = 加速时间 Tc = 匀速时间 Td = 减速时间 Tw = 停滞时间 又最大推力和持续推力进行电机的选择。一般情况下,应该将安全系数设置为20~30%,从而抵消外界应力和摩擦力。

直线电机运用

直线电机主要应用于三个方面: 一是应用于自动控制系统,这类应用场合比较多; 二是作为长期连续运行的驱动电机; 三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。 本期讨论直线电机的运用 Linear motor: 直线伺服电机应用 昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me 工业之美

什么是直线电机特点 1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及 其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子 加速器、制造武器等。2.直线电机是如何工作的 下面简单介绍直线电机类型 和他们与旋转电机的不同,最 常用的直线电机类型是平板式, U型槽式和管式。线圈的典型组 成是三相,有霍尔元件实现无刷 换相,直线电机用HALL换相的 相序和相电流。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固 定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度) 和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙 (airgap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋 转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直 线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 3.直线电机分类 管状直线电机 圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以 增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力 线圈是圆柱形的,沿磁棒上下运动。 U型直线电机 U型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统 支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。 非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空 气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通 泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害 平板直线电机 有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选 择时需要根据对应用要求的理解。无槽无铁芯平板电机是一系列coils安装在一个铝板上。由 于FOCER没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有 助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度 平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨 具有高的磁通泄露。 无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片 结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸 力和电机产生的推力成正比,迭片结构导致接头力产生。 无槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。 铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可 以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。 加工产品对比

直线电机产生推力波动危害及测试技巧

直线电机产生推力波动危害及测试方法 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。直线电机对外输出的量主要是推力,这也是直线电机和旋转电机的重要的不同点之一。推力对于直线电机的重要性可以与力矩对于旋转电机的重要性相媲美。由于直线电机的理论、设计、制造和负载及干扰等诸多方面的原因,直线电机必然存在推力波动。推力波动能够反映直线电机的运行是否平稳,因此,推力波动是直线电机检测的关键指标参数,下面本文主要介绍推力波动测试方法。 一、直线电机产生的推力波动危害 直线电机产生的推力波动是其应用方面的主要缺陷之一。推力波动会引起震动和噪声,在低速运行时,电机可能发生共振,运行特性恶化。 纹波扰动、摩擦扰动、负载阻力变化、端部效应、负载阻力变化、电流时滞谐波、磁阻推力波动等都是直线电机产生推力波动的重要因素。因此,对直线电机的推力波动特性进行精准测试时非常重要的。 二、直线电机推力波动测试方法 1.常规直线电机推力波动测试方法的不足

常见的推力波动测试系统是使用由滚珠丝杠和直线电机分别拖动的拖板,共轴对拖来测试推力波动。这种旋转电机通过滚珠丝杠连接直线电机的方法,使机械连接机构的干扰也不可避免的进入了波动的检测结果中,导致试验结果往往与预期的有可观的偏差。 2.新型直线电机推力波动测试解决方案 新型波动测试解决方案是同一导轨上采用两个同型号直线电机互为负载,通过对合适条件下所采集的推力信号进行数据处理,最终得到被测直线电机的推力特性。 由于被测直线电机与陪试直线电机的电气性能和机械性能相同,此方法避免了旋转电机运行时引入的转矩波动,而且用简单的连接装置替代滚珠丝杠,很大程度上见笑了机械连接部分的不确定性和扰动,提升了传递效率。通过运用合适的控制检测方法,使两个电机叠加后的波动处于相同相位下,进而得到被测电机的推力波动。 检测系统主要由被测直线电机、陪试直线电机、驱动系统、位置速度检测装置、力特性检测装置以及数据采集处理模块组成,其主要组成拓扑图如下图所示:

直线电机位置控制算法及仿真

直线电机位置控制算法及仿真 1 绪论 1.1 研究背景及意义 随着工业机械自动化程度的不断升级,有力的带动了上游直线电机在中国的快速成长,国外品牌纷纷加大对中国市场的投入力度,永磁同步直线电机是一种将电能直接转化是动能的转化装置,省去了中间的转换机构,消除了机械转动链的影响,具有速度快,推力大,精度高等诸多优点,因此,广泛应用于精密和高速运行等领域。但是永磁同步直线电机是一个典型的非线性多变量系统,许多非线性因素的存在都会影响到永磁同步直线电机系统的控制性能,如没有知的负载和摩擦等。传统的PID控制方法已经不能满足于永磁机电动机的高精度场合,因此如何设计高性能的直线电机位置控制算法一直以来都是控制领域的热点问题之一。 因此,在传统PID控制方式下,针对多变量、非线性、强耦合的永磁同步直线电机系统设计了一种滑模位置控制器,弥补了常规PID控制跟踪精度不高的缺点。滑模控制具有控制精度高、抗干扰能力强、适用范围广的等优点,因此滑模控制方法已经成是永磁同步直线电机领域重点关注问题,相关研究人员对此进行了深入研究。 1.2 国内外研究现状 直线电机的研究现状 1840年Wheatsone开始提出与制作了略具雏形的直线电机。从那时至今,在160多年的历史记载中,直线电机经历了三个时期。 1840-1955年是探索实验时期: 从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确的提到直线电机文章的是1890年美国匹兹堡市的市长,在

他写的一篇文章中,首先明确的提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却没有能获得成功。 至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作是导弹发射装置,但其发展并没有超出模型阶段。 至此,从1930-1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。 从1940-1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW的直线电动机是动力,成功的用4.1s的时间将一架重4535kg的喷气式飞机在165m的行程内由静止加速的188km/h的速度,它的试验成功,使直线电动机可靠性好等的优点受到了应有的重视,随后,美国利用直线电机制成的、用作抽汲钾、钠等液态金属的电磁泵,是的是核动力中的需要。1954年,英国皇家飞机制造公司利用双边扁平型直流直线电机制成了发射导弹的装置,其速度可达1600km/h。在这个阶段中,尤需值得一提的是,直线电机作是高速列车的驱动装置得到了各国的高度重视并计划予以实施。 在1840-1955年期间,是直线电机探索实验和部分实验应用时期,在直线电机与旋转电机的相互竞争中,由于直线电机的成本和效率方面没有能够战胜旋转电机,或者说,直线电机还没能找到它的专属领域,以及直线电机在设计方面也没有突破性的成功,所以直线电机在这一时期始终没有能得到有效的推广。 1956-1970年是开发应用时期: 自1955年以来,直线电机进入了全面的开发阶段,特别是该时期的控制技术和材料的惊人发展,更加助长了这种势头。在这段时期,申请直线机的专利件数也开始急速增加,该时期直线电机专利的增长率超过了所有其他技术领域的平

手持指针式推拉力计操作规程

手持指针式推拉力计操作规程 (ISO45001-2018/ISO9001-2015) 1.0目的: 确保仪器的正确使用、避免仪器和产品因使用不当而造成的损坏,提高产品测试数据的有效性、真实性、准确性。 2.0范围: 2.1该操作规范适用于公司型号为SN系列手持指针式推拉力计的使用。 2.2该仪器适用于公司产品的推拉负荷值测试. 3.0职责与权限: 3.1使用部门:使用人员负责日常仪器的点检;使用人员严格按此规范正确操作。 3.2质量中心:负责仪器的校验计划安排和实施校验. 4.0测试前准备: 选择合适的测试用接头夹具,安装到推拉力计上. 4.1拉力(PULL)测试:将附属的拉力用夹具安装到标示拉[PULL]端的中心棒上. 4.2推力(PUSH)测试:从附属的推力夹具中,选择合适的测试用夹具,安装到标示[PUSH]端的中心棒上. 4.3延长棒的利用:无法接触到被测物时,利用附属的延长棒来安装夹具.注意:使用延长棒测试时,被测物与推拉力计需在同一直线上,假如不在一直线上时,将无法测得正确的荷重值. 4.4切换旋钮的确认及操作方法 4.4.1荷重峰值[PEAK]—连续荷重[TRACK]的切换

将切换旋钮轻轻的往下压后同时往左方向回转,使旋钮的“·”标记在连续荷重[TRACK]位置上. 4.4.2连续荷重[TRACK]--荷重峰值[PEAK]的切换 将切换旋钮往右方向回转,此时旋钮弹出,旋钮的“·”标记在荷重峰值[PEAK]位置上. 4.4.3测试后的注意事项 测试完成后切换旋钮的“·”标记,请置于荷重峰值[PEAK]的位置.如果切换旋钮长期置于连续荷重[TRACK]位置的话,则内部置零弹簧片使用寿命将会变短. 4.5刻度盘调整 4.5.1请确认指针是否对准刻度盘的[0].如果没有对准,请旋转刻度调整圈,刻度盘会一起动作,使指针对准[0]位. 4.5.2本仪器垂直旋转使用时,特别在安装有夹具的情况下,即使没有施加负载,指针也会偏向一边,这是因为本仪器及夹具的自重原因.旋转刻度调整圈使刻度盘的[0]与指针对准,这对测试结果的准确性无影响. 注意:如经常对本仪器施加超过最大测试荷重范围的负载时,荷重检出机构的弹性力将会逐渐劣化,导致无法检出正确的荷重值.使用时请注意不要施加超过最大荷重范围的负载,以维护本仪器的使用寿命. 5.0测试 测试时请用双手牢固地握住推拉力计或将推拉力计安装于合适的机台做测试.测试时请将被测试物和推拉力计置成一直线再执行测试,被测试物和推拉力计若没有成一直线,则测试时将无法得到正确的荷重值. 6.0切换旋钮的活用和指针的动作

直线电机参数计算详解

直线电机参数计算 直线电机业专家------内最齐全的产品线-------上舜直线电机模组。 1.直线电机的选型包括最大推力和持续推力需求的计算以及加速度的相关计算。 2.最大推力由移动负载质量和最大加速度大小决定。 推力=总质量*加速度+摩擦力+外界应力 例子:(假定摩擦力和外界应力忽略不计)当移动负载是2.5千克(包括动子),所需加速度为30m/s2时,那么电机将产生75N的力。 3.通常,我们不知道实际加速度需求。但是,我们有直线电机运行时间要求。给定运动行程距离和所需行程时间,便可以此计算出所需的加速度。一般,对于短行程来说,我们推荐使用三角型速度模式(无匀速),长行程的话,梯形速度模式会更有效率。在三角型速度模式中,电机的运动无匀速段。 4.三角模式,加速度为A = 4 * S/ T2 5.梯形模式,预设匀速度可以帮助决定加速度。 加速度=匀速/(运动时间--位移/匀速) 6.相类似的,计算减速度大小与计算加速度相类似。除非存在一个不平衡的力(重力)作用在直线电机上。 7.通常为了要维持匀速过程 (cruising)和停滞阶段 (dwelling),摩擦力和外界应力的施力也需要计算。注:为了维持匀速,直线电机会对抗摩擦力和外界应力。直线电机上伺服停滞时则会对抗外界应力。 8.计算持续推力公式如下:

RMSForce=持续推力 Fa = 加速度力 Fc = 匀速段力 Fd = 减速度力 Fw =停滞力 Ta = 加速时间 Tc = 匀速时间 Td = 减速时间 Tw = 停滞时间 9.根据最大推力和持续推力选择一个电机。客户应该将安全系数设为20-30%以便将摩擦力和外界应力抵消为0,即总值正常应*1.3来保证安全性。 10.举个例子,一个应用中,直线电机需要在三角模式下让电机在0.2秒内,让4KG的负载移动0.3米。直线电机在同行程中返程前停滞时间为0.15秒。假设摩擦力和其他不平衡力不存在。 加速度=减速度=4*0.3、(0.2)^2=30m/s2 最大推力=加速度力=减速度力=负载*加速度=4*30=120N 持续推力= 假如安全缓冲系数设为30%,通过选型,合适的直线电机电机就可以选出来了 11.电机选型软件自动计算处理过程。

直线电机参数教程文件

直线电机参数

介绍直线电机参数和选型 1.最大电压( max. voltage ph-ph) ———最大供电线电压,主要与电机绝缘能力有关;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 2.最大推力(Peak Force) ———电机的峰值推力,短时,秒级,取决于电机电磁结构的安全极限能力;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 3.最大电流(Peak Current) ———最大工作电流,与最大推力想对应,低于电机的退磁电流; 4.最大连续消耗功率(Max. Continuous Power Loss) ———确定温升条件和散热条件下,电机可连续运行的上限发热损耗,反映电机的热设计水准; 5.最大速度(Maximum speed) ———在确定供电线电压下的最高运行速度,取决于电机的反电势线数,反映电机电磁设计的结果; 6.马达力常数(Motor Force Constant) ———电机的推力电流比,单位N/A或 KN/A,反映电机电磁设计的结果,在某种意义上也可以反映电磁设计水平; 7.反向电动势(Back EMF) ———电机反电势(系数),单位Vs/m,反映电机电磁设计的结果,影响电机在确定供电电压下的最高运行速度; 8.马达常数(Motor Constant) ———电机推力与功耗的平方根的比值,单位N/√W,是电机电磁设计和热设计水平的综合体现;

9.磁极节距NN(Magnet Pitch) ————电机次级永磁体的磁极间隔距离,基本不反映电机设计水平,驱动器需据此由反馈系统分辨率解算矢量控制所需的电机电角度; 10.绕组电阻/每相(Resistance per phase)———电机的相电阻,下给出的往往是线电阻,即Ph-Ph,与电机发热关系较大,在意义下可以反映电磁设计水平;11.绕组电感/每相(Induction per phase) ———电机的相电感,下给出的往往是线电感,即Ph-Ph,与电机反电势有关系,在意义下可以反映电磁设计水平; 12.电气时间常数(Electrical time constant) ———电机电感与电阻的比值,L/R; 13.热阻抗(Thermal Resistance) ———与电机的散热能力有关,反映电机的散热设计水平; 14.马达引力(Motor Attraction Force) ———平板式有铁心结构直线电机,尤其是永磁式电机,次极永磁体对初级铁心的法向吸引力,高于电机额定推力一个数量级,直接决定采用直线电机的直线运动轴的支撑导轨的承载能力和选型。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 直线电机的选型首选推力速度,然后看连续消耗功率、热阻和散热方式和条件等,再次看供电电压和电流,对快速性有要求还要看电气时间常数。个人意见,最最反映直线电机性能水平的是推力平稳性、电机常数和热阻,不过推力平稳性指标多数厂家未必会直接给出。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》

直线电机的PID控制器设计

基于MATLAB的直线电机PID控制器设计 摘要 随着现代工业的飞快发展,控制对象日益复杂,对其的性能控制要求也不断提高,致使人们寻找更好的控制方法,其中以改进PID控制最为典型。PID控制器具有结构简单、容易实现、控制效果好、鲁棒性强等特点,是目前最稳定的控制方法之一。它所涉及的参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。 直线电机是近年来国内外积极研究发展的新型电机之一,凭借自身的特性在以直线运动的工业控制中,有比旋转电机巨大的优越性。可广泛应用于交通运输、起重搬运、物流传输装置、国防及煤矿运输、车床进给等方面,发展前景十分广阔。 传统的比例积分微分( PID) 控制器参数往往因整定不良、性能欠佳,对运行状况的适应性很差。简单的控制又不能很好地适应对象系统特性变化时的最佳控制要求。因此,鉴于控制方法目前仍有广泛应用,对参数整定方法的研究将具有很好的应用价值。本文根据稳定边界法则及Ziegler-Nichol算法,以直线电机控制模型为例介绍如何在MATLAB 工具帮助下整定并验证PID 控制器参数,使参数的整定变得简单、易行,使整定效果更优化。 关键词:直线电机PID控制 MATLAB 控制系统参数整定系统仿真

Abstract: With the fast development of modern industry, more complicated control object, its performance control requirements improve continuously, cause people looking for better control method, which to improve PID control is the most typical example. The PID (Proportional-Integral-Derivative) control is one of the most common control methods at present. Its structure is simple and easy to implement, however, the control effect is perfect and it has a strong robust characteristics. The physical parameters is, meaning of ,theoretical analysis of system is integrity, and it is familiar by the engineering sector, which in the industrial process control has been widely used. Linear motor is one of the studied new motor. Because of its peculiarity, the linear motor performed better than rotary motor in the control systems when the moving route is linear. Its application range extends widely and widely. And it has been applied in many fields. However, the traditional parameter adaptability of proportion-integral-differential (PID) controller to the operating situation is very bad sometimes because the reduction and performance isn't good. Simple control and can't well adapt to changes in the system characteristics of the object of optimal control requirements. Therefore, in view of the control method is currently there are still widely used, to the study of the method of parameter setting will have a good application value. According to the stable boundary principle and Ziegler-Nichol algorithm, this paper introduces how to reduce and validate the PID controller parameter with the help of MATLAB tool taking the linear motor control model as an example. Making the parameters set becomes simple, easy to operate, and make the setting effect more optimization. Key words:Linear motor,PID control, Matlab, Control system, Parameters setting, System simulation

直线电机概述120125145

河南机电高等专科学校 先进制造技术课程论文 论文题目:直线电机概述 系部:机械工程系 专业:起重运输机械设计与制造 班级:起机121 学生姓名:吴燚 学号:120125145 指导教师:安林超 2014年10月20日

绪论 直线电机也称线性电机,线性马达,直线马达,推杆马达在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同。最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相。 直线电机动子(forcer,rotor)是用环氧材料把线圈压成的。磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。 相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。

直线电机的使用与维护

直线电机的使用与维护 概述 直线电机也称线性电机,线性马达,直线马达,推杆马达。最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换。 工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。随着自动控制技术与微计算机技术的发展,直线电机的控制方法越来越多。 对直线电机控制技术的研究基本上可以分为三个方面:一是

传统控制技术,二是现代控制技术,三是智能控制技术。传统的控制技术如PID反馈控制、解耦控制等在交流伺服系统中得到了广泛的应用。其中PID控制蕴涵动态控制过程中的信息,具有较强的鲁棒性,是交流伺服电机驱动系统中最基本的控制方式。为了提高控制效果,往往采用解耦控制和矢量控制技术。在对象模型确定、不变化且是线性的以及操作条件、运行环境是确定不变的条件下,采用传统控制技术是简单有效的。但是在高精度微进给的高性能场合,就必须考虑对象结构与参数的变化。各种非线性的影响,运行环境的改变及环境干扰等时变和不确定因素,才能得到满意的控制效果。因此,现代控制技术在直线伺服电机控制的研究中引起了很大的重视。常用控制方法有:自适应控制、滑模变结构控制、鲁棒控制及智能控制。主要是将模糊逻辑、神经网络与PID、H∞控制等现有的成熟的控制方法相结合,取长补短,以获得更好的控制性能。 应用 直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,世界许多国家都在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。 直线电机与旋转电机相比,主要有如下几个特点:一是

直线电机缺点

直线电机的缺点 以下专业资料由精密丝杆供应商:雷研精密传动设备有限公司提供。 很多机械制造行业的技术人员想迫切了解直线电机能否完全替代滚珠丝杠,就目前来说,只能说是一个很好的发展方向,但尚有很多技术不是很成熟,直线电机的缺点,主要有以下方面: (1)伺服控制难度大直线电机传动的控制只能是全闭环控制。这样,工作台的负荷(工件重盆、切削力等)及其变化,对一个稳定系统来说就是外界干扰,若自动调节不好会使系统失稳而展荡。而回转电机传动可采用半闭环隔离这些干扰。即使采用全闭环,由于存在着滚珠丝杆等这些弹性中间环节,它们既有刚性差而使加速度上不去的负面影响,又有吸收和抑制干扰的正面作用,而使伺服控制难度减小。此外,由于是在高速、高精度下工作,还要求反馈用位置检测元件具备调速数据采集和响应能力和较高的分辨率。 (2)应用于垂直行程部件时,由于存在着重力加速度,故要求采取复杂的平衡措施,否则会造成电机过热。由于是在高速、高精度下工作,要求快速响应,往往不是简单加平衡重锤所能解决的,而需在电机和伺服驱动电路上采取措施。断电时的自锁措施也比回转电机传动复杂。回转电机传动一般可在联轴节处装简单的超越离合器来解决自锁问题。 (3) 往往要采取冷却措施凡是电机都要发热的。回转电机一般安装在机床的周边位置,有较好的散热条件, 远离构件, 难以造成构件的热变形, 因而一般不采取冷却措施。而直线电机因安装在机床腹部,根据具体情况, 有时须采取风冷(自然风或压缩空气)或循环水冷的措施。这时, 气管或水管还必须随工作台一起作高速运动。 (4) 装配和防护难度加大回转电机的磁场是闭式的, 而直线电机的是开式的。特别是同步式, 定件上要安装一排或多排强磁的永久磁钢, 而床身等构件和装配用工具又都是磁性材料, 动不动就会被吸住,尘埃中的磁性物质, 钢铁等切屑都难抗拒强磁的吸力, 一旦尘屑堵 住了不大的气隙, 电机就不能工作. 1直线电机工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件

直线电机参数

介绍直线电机参数和选型 1.最大电压( max. voltage ph-ph) ———最大供电线电压,主要与电机绝缘能力有关;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 2.最大推力(Peak Force) ———电机的峰值推力,短时,秒级,取决于电机电磁结构的安全极限能力;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 3.最大电流(Peak Current) ———最大工作电流,与最大推力想对应,低于电机的退磁电流; 4.最大连续消耗功率(Max. Continuous Power Loss) ———确定温升条件和散热条件下,电机可连续运行的上限发热损耗,反映电机的热设计水准; 5.最大速度(Maximum speed) ———在确定供电线电压下的最高运行速度,取决于电机的反电势线数,反映电机电磁设计的结果; 6.马达力常数(Motor Force Constant) ———电机的推力电流比,单位N/A或KN/A,反映电机电磁设计的结果,在某种意义上也可以反映电磁设计水平; 7.反向电动势(Back EMF) ———电机反电势(系数),单位Vs/m,反映电机电磁设计的结果,影响电机在确定供电电压下的最高运行速度; 8.马达常数(Motor Constant) ———电机推力与功耗的平方根的比值,单位N/√W,是电机电磁设计和热设计水平的综合体现; 9.磁极节距NN(Magnet Pitch) ————电机次级永磁体的磁极间隔距离,基本不反映电机设计水平,驱动器需据此由反馈系统分辨率解算矢量控制所需的电机电角度; 10.绕组电阻/每相(Resistance per phase)———电机的相电阻,下给出的往往是线电阻,即Ph -Ph,与电机发热关系较大,在意义下可以反映电磁设计水平; 11.绕组电感/每相(Induction per phase) ———电机的相电感,下给出的往往是线电感,即Ph -Ph,与电机反电势有关系,在意义下可以反映电磁设计水平; 12.电气时间常数(Electrical time constant) ———电机电感与电阻的比值,L/R; 13.热阻抗(Thermal Resistance) ———与电机的散热能力有关,反映电机的散热设计水平; 14.马达引力(Motor Attraction Force) ———平板式有铁心结构直线电机,尤其是永磁式电机,次极永磁体对初级铁心的法向吸引力,高于电机额定推力一个数量级,直接决定采用直线电机的直线运动轴的支撑导轨的承载能力和选型。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 直线电机的选型首选推力速度,然后看连续消耗功率、热阻和散热方式和条件等,再次看供电电压和电流,对快速性有要求还要看电气时间常数。个人意见,最最反映直线电机性能水平的是推力平稳性、电机常数和热阻,不过推力平稳性指标多数厂家未必会直接给出。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 电机的推力系数以出力电流比来标示,比如N/A,Nm/A《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 反电势系数用电压速度比来标示,比如V/(m/s),V/(rpm)等《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》

直线电机的结构及工作原理

直线电机的结构及工作原理 来源:本站整理作者:佚名2010年02月25日 17:43 分享 订阅 [导读]直线电机的结构直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相 关键词:直线电机 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 直线电机的特点 高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 位精度高线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 速度快、加减速过程短 行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。 动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 应用于自动控制系统,这类应用场合比较多; 作为长期连续运行的驱动电机; 应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。

直线电机的工作原理

直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的优缺点介绍

直线电机是一种将电能转化为动能的机械装置,通常应用于工业生产当中。与直线电机相对应的一种装置是旋转电机,两者的工作原理类似。但是直线电机是进行直线运动的电机,而旋转电机是进行旋转运动的电机。直线电机可以直接将电能转化为动能,而不需要中间装置。 直线电机的优点 直线电机一般有平板式、U型式、管式几种。直线电机的工作系统是通过内部直线导轨来完成工作,用环保材料将线圈压缩成电路板的动子和电热调节器连接,然后在稀土磁铁的磁轨上进行动力推动,不需要像旋转电机一样,将动子固定在旋转轴承的支撑架上来保证相

对运动部分的稳定,通过直接反馈位置的直线编码器装置,就可以直接测量负载位置,从而保证负载位置的精确度。 由上看出,直线电机因为不需要中间转换装置,所以操作简单,非常适合进行非离心力的运动。直线电机的优势主要有以下几点: 首先,结构简洁。直线电机直接产生直线运动,位置精确度高,更为节省成本、稳定可靠、操作和维护简便。 第二,运动效率高。直线电机的气垫和磁垫中间存在缝隙,在运动时,不会出现机械接触,也不会出现摩擦和噪音,对零部件的损伤较小,从而具有较高的工作效率,可以进行高速直线运动。

相关文档
最新文档