以太网变压器设计参考

以太网变压器设计参考
以太网变压器设计参考

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

?以太网电接口采用UTP设计的EMC设计指导书 一、UTP(非屏蔽网线)的介绍 非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。 用来衡量UTP的主要指标有: 1、衰减:就是沿链路的信号损失度量。 2、近端串扰:测量一条UTP链路对另一条的影响。 3、直流电阻。 4、衰减串扰比(ACR)。 5、电缆特性。 二、10/100/1000BASE-T以太网电接口原理图设计 10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。 1、网口变压器未集成在连接器里的网口电路原理图 网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。由电容组成的差模、共模滤波器可以增强EMC性能。在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。电路的右侧四个75Ω的电阻是电路的共模阻抗。 2、网口变压器集成在连接器里的网口电路原理图

网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。中间的电容组成共模、差模滤波器,滤除共模及差模噪声。75Ω的共模电阻也集成在网口连接器的内部。 3、网口指示灯电路原理图 带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。 注意点: 1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。 2)、芯片侧中间抽头需要通过磁珠串接电源,并且注意每一路接一个磁珠,并通过电容0.01-0.1uf接数字地。 3)、点灯部分电路,link和ACT灯走线要加磁珠处理,同时供电电源也要加磁珠处理。但所有显示驱动灯的电源可以共用一个磁珠。 4)、变压器与连接器部分的匹配电阻75欧姆和50欧姆精度可以放低到5%。

以太网接口PCB设计经验分享

以太网口PCB布线经验分享 目前大部分32 位处理器都支持以太网口。从硬件的角度看,以太网接口电路主要由 MAC 控制器和物理层接口(Physical Layer ,PHY )两大部分构成,目前常见的以太网接口 芯片,如LXT971 、RTL8019 、RTL8201、RTL8039、CS8900、DM9008 等,其内部结构也 主要包含这两部分。 一般32 位处理器内部实际上已包含了以太网MAC 控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。 常用的单口10M/100Mbps 高速以太网物理层接口器件主要有RTL8201、LXT971 等,均提供MII 接口和传统7 线制网络接口,可方便的与CPU 接口。以太网物理层接口器件主 要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX 编码/ 解码器和双绞线媒体访问单元等。 下面以RTL8201 为例,详细描述以太网接口的有关布局布线问题。 一、布局 CPU M A RTL8201 TX ± 变 压 RJ45 网口 器 C RX± 1、RJ45和变压器之间的距离应当尽可能的缩短. 2、RTL8201的复位信号Rtset 信号(RTL8201 pin 28 )应当尽可能靠近RTL8021,并且,如果可能的话应当远离TX+/-,RX+/-, 和时钟信号。 3、RTL8201的晶体不应该放置在靠近I/O 端口、电路板边缘和其他的高频设备、走线或磁性 元件周围. 4、RTL8201和变压器之间的距离也应该尽可能的短。为了实际操作的方便,这一点经常被放弃。但是,保持Tx±, Rx±信号走线的对称性是非常重要的,而且RTL8201和变压器之间的距离需要保持在一个合理的范围内,最大约10~12cm。 5、Tx+ and Tx- (Rx+ and Rx-) 信号走线长度差应当保持在2cm之内。 二、布线 1、走线的长度不应当超过该信号的最高次谐波( 大约10th) 波长的1/20 。例如:25M的时钟走线不应该超过30cm,125M信号走线不应该超过12cm (Tx ±, Rx ±) 。 2、电源信号的走线( 退耦电容走线, 电源线, 地线) 应该保持短而宽。退耦电容上的过孔直径 最好稍大一点。 3、每一个电容都应当有一个独立的过孔到地。 4、退耦电容应当放在靠近IC的正端(电源),走线要短。每一个RTL8201 模拟电源端都需要退耦电容(pin 32, 36, 48). 每一个RTL8201 数字电源最好也配一个退耦电容。 5、Tx±, Rx ±布线应当注意以下几点: (1)Tx+, Tx- 应当尽可能的等长,Rx+, Rx- s 应当尽可能的等长; (2) Tx±和Rx±走线之间的距离满足下图: (3) Rx±最好不要有过孔, Rx ±布线在元件侧等。

以太网电接口EMC设计指导书

以太网电接口采用UTP的EMC设计指导书

目录 前言 (4) 1范围和简介 (5) 1.1范围 (5) 1.2简介 (5) 1.3关键词 (5) 2规范性引用文件 (5) 3术语和定义 (6) 4UTP(非屏蔽网线)的介绍 (6) 510/100BASE-T、1000BASE-T以太网电接口的共模噪声 (7) 610/100/1000BASE-T以太网电接口电路设计 (7) 6.110/100/1000BASE-T以太网电接口原理图设计 (7) 6.1.1网口变压器集成在连接器里的网口电路原理图 (8) 6.1.2网口变压器集成在连接器里的网口电路原理图 (8) 6.1.3网口指示灯电路原理图 (9) 6.1.4带滤波的10/100BaseT以太网口电路原理图 (10) 6.1.5带滤波的1000BaseT以太网口电路原理图 (11) 6.210/100/1000BASE-T以太网电接口PCB布局、布线 (12) 6.2.1网口变压器没有集成在连接器里的网口电路PCB布局、布线规则 12 6.2.2采用一体化连接器的网口电路PCB布局、布线规则 (15) 6.2.3其它的布局、布线建议 (16) 7实际测试案例: (19)

8结论: (22) 9附录: (24) 10参考文献 (26)

前言 本规范的其他系列规范:无 与对应的国际标准或其他文件的一致性程度:无 规范代替或作废的全部或部分其他文件:无 与其他规范或文件的关系:无 与规范前一版本相比的升级更改的内容: 如果是升级规范,则一定要在此处详细描述本版本相对于上一版本更改的内容,如果是第一次制定,则填写“第一版,无升级更改信息”。 本规范由XX部门提出。 本规范主要起草和解释部门: 本规范主要起草专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......) 本规范主要评审专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......) 本规范批准部门:XX部门 本规范所替代的历次修订情况和修订专家为: 规范号主要起草专家主要评审专家 姓名(工号)、姓名(工号)姓名(工号)、姓名(工号) 姓名(工号)、姓名(工号)姓名(工号)、姓名(工号)

以太网PHY无变压器设计原理

以太网PHY 无变压器 设计方法与原理 目录 1 引言......................................... 2. 2 工作原理..................................... 2... 3 硬件设计及相关参数计算....................... 3.. 3.1 隔直电容的选择 (3) 3.2 地平面的处理 (3) 3.3 单板布局布线要求 (3) 4 参考资料..................................... 4...

1引言 在传统的以太网交换产品设计中,以太网PHY后面通常会接一个1:1的变压器,主要用于信号隔离、阻抗匹配、抑制干扰等,但是由于以太网变压器的体积较大,并且会增加系统的总成本,而采用电容耦合的方式则会给设计者带来很多好处,本文主要讨论以太网PHY中采用电容耦合方式的工作原理及设计注意事项等。 2 工作原理 通常情况下,信号的耦合方式可分为直流耦合和交流耦合,但是,由于以太 网PHY出来的信号为差分信号,两个以太网PHY芯片的地可能没有连在一起,存在一定的电位差,为了降低两个以太网PHY之间的共模电压差对整个系统造 成的影响,采用直流耦合方式显然不合适,因此一般采用交流耦合。 目前通用的以太网PHY芯片驱动方式主要分为两种:电流型、电压型,如果采用电压型驱动方式,则不需外部馈电给PHY内部的驱动器,如果采用电流 型驱动,贝嚅外部馈电,具体是哪种驱动方式,需要仔细阅读芯片手册。 以BCM53118和BCM5464为例,BCM53118的内部PHY采用电压驱动方式,而BCM5464的内部PHY采用电流驱动方式,因此,当两个PHY对联时,BCM5464 需要外部馈电给内部的驱动器,即通过外部上拉电阻提供电流到内部驱动器,详细连接图见图一所示; All fcMC*-bt TMS4 HF B-吕—曰沪3 ? PC ?TW4 7 IK 图一:BCM53118与BCM5464连接图

以太网PHY无变压器设计原理

以太网PHY无变压器 设计方法与原理 目录 1 引言 (2) 2 工作原理 (2) 3 硬件设计及相关参数计算 (3) 3.1 隔直电容的选择 (3) 3.2 地平面的处理 (3) 3.3 单板布局布线要求 (3) 4 参考资料 (4)

1 引言 在传统的以太网交换产品设计中,以太网PHY后面通常会接一个1:1的变压器,主要用于信号隔离、阻抗匹配、抑制干扰等,但是由于以太网变压器的体积较大,并且会增加系统的总成本,而采用电容耦合的方式则会给设计者带来很多好处,本文主要讨论以太网PHY中采用电容耦合方式的工作原理及设计注意事项等。 2 工作原理 通常情况下,信号的耦合方式可分为直流耦合和交流耦合,但是,由于以太网PHY出来的信号为差分信号,两个以太网PHY芯片的地可能没有连在一起,存在一定的电位差,为了降低两个以太网PHY之间的共模电压差对整个系统造成的影响,采用直流耦合方式显然不合适,因此一般采用交流耦合。 目前通用的以太网PHY芯片驱动方式主要分为两种:电流型、电压型,如果采用电压型驱动方式,则不需外部馈电给PHY内部的驱动器,如果采用电流型驱动,则需外部馈电,具体是哪种驱动方式,需要仔细阅读芯片手册。 以BCM53118和BCM5464为例,BCM53118的内部PHY采用电压驱动方式,而BCM5464的内部PHY采用电流驱动方式,因此,当两个PHY对联时,BCM5464需要外部馈电给内部的驱动器,即通过外部上拉电阻提供电流到内部驱动器,详细连接图见图一所示;

图一:BCM53118与BCM5464连接图 对于百兆交换PHY的连接,原理和千兆交换类似,以BCM53202和LXT972为例,BCM53202和LXT972内部的PHY均采用电流驱动的方式,因此需要外部馈电给内部的驱动器,即通过外部上拉电阻提供电流到内部驱动器,详细连接见图二所示: 另外,在实际的电路设计中,最好将其中一片PHY芯片的差分数据发送端直接连接到另外一片PHY的差分数据接收端,这样可以提高两片PHY建立LINK状态的效率,让两片PHY快速进入工作模式。 图二:BCM53202与LXT972连接图 3 硬件设计及相关参数计算 3.1 隔直电容的选择 电容的计算公式:C = 1/(2*pi*F*R),通常情况下,以太网物理层的数据内容频率范围在40KHz以下,按照Broadcom提供的资料,0.1uF的电容是比较合适的,另外,电容在PCB 板上的具体位置没有强制性的要求,即电容位置的改变不会对其信号质量造成影响,在应用中可以根据单板实际情况放置。 3.2 地平面的处理 由于新的连接方式采用电容耦合方式,并且两个PHY之间的参考地为同一个系统地,因此在设计过程中不需要对地进行分割。 3.3 单板布局布线要求 差分信号中的发送和接收信号匹配电阻应靠近PHY芯片; 所有以太网差分信号走线的差分阻抗最好能控制在100Ω±10%; 所有走线应该有完整的参考平面;

RJ45以太网接口EMC设计方案

电磁兼容设计平台(EDP)应用案例——以太网口 以太网接口EMC 设计方案 一、接口概述 RJ45 以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设 计,线缆设计三个方面来设计以太网口的EMC 设计方案。 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 百兆以太网接口2KV 防雷滤波设计 图 1百兆以太网接口2KV 防雷滤波设计 接口电路设计概述: 本方案从 EMC 原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决 EMC 问题; 同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过 IEC61000-4-5 或 GB17626.5 标准,共模 2KV,差摸 1KV 的非屏蔽平衡信号的接口防雷测试。 电路 EMC 设计说明: (1) 电路滤波设计要点: 为了抑制 RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

电磁兼容设计平台(EDP)应用案例——以太网口 图 2带有共模抑制作用的网络变压器 RJ45接口的 NC空余针脚一定要采用 BOB-smith 电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试, BOB-smith 电路能有 10 个 dB 左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF 的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上 C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC 型滤波,抑制电源系统带来的干扰,如电路图上 L1、 C1、 C2、C3, L1 采用磁珠,典型值为600Ω/100MHz ,电容取值0.01 μ F~0.1。μF 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于 EMC 干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加 10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5 或 GB17626.5 标准,共模2KV,差摸 1KV 的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1 可以选择成 本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值 电流要求大于等于 50A;防护器件峰值功率要求大于等于 300 W 。注意选择半导体放电管,要注意 器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV 以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防 护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF 电容相连。

为什么说网络变压器是通信设备以太网口的标配设计

为什么说网络变压器是通信设备以 太网口的标配设计 以太网硬件接口作为以太网网络传输系统中物理层互连组件,在长期以来的硬件系统设计中已经逐步形成了一套标准的接口设计以及规范。网变压器作为其中的关键器件,也有其明确的指标定义要求,在系统板级设计中是和PHY驱动部分紧密相关的。一些不经意的使用上的改变,都有可能造成无法预计的后果。 在我们的通信设备里,网络变压器到底起到了什么作用,是否必须选用。 答案是:少“我”也行,用“我”会更好。从工作原理上,是可以考虑不用,直接联RJ45连接器,也是可工作的。但是,在整机性价比上会大打折扣, 1.传输距离就很受限值,当输入不同电平网口时,也会有影响。 2.来至外部因素对PHY的干扰及直接损坏也很大。 当设备PHY输出信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网线直接和芯片相连的话,来自外部大脉冲电压和静电,很容易造成芯片的损坏。网络变压器把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以设备中传送数据。

网络变压器的共模信号抑制 当差模信号经过网络变压器,当共模信号经过变压器 当共模信号经过网络变压器时,对共模信号呈现高阻抗g,共模信号是指在两输入端输入大小相等极性相同的信号,故不会将共模信号传递至次级线路。但是变压器间的耦合电容Cww为共模信号的传递提供了通路:为了防止变压器上的共模信号通过耦合电容Cww通道耦合到次级,我们在设计使用中心抽头方式,为共模信号的泄放提供通路(在整机设备网口设计上,硬件工程师大部分会采用中心抽头增加滤波电路,或者在网口差分信号走线上预留共模电感的位置): 总结:通信设备网口设计中网络变压器在满足功能(差分信号传输)前提下,不仅能对后端电路起到抗扰防护作用,还能抑制共模辐射噪声。 因此网络变压器是通信设备以太网口的标配设计!

RJ45以太网接口EMC设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计以太网口的EMC设计方案。 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC 问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明: (1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值μF~μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5或标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。注意选择半导体放电管,要注意器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连。

以太网EMC接口电路设计及PCB设计

以太网EMC接口电路设计及PCB设计 我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。 下图1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。 图1 以太网典型应用 1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。 图2 变压器没有集成在网口连接器的电路PCB布局、布线参考

a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去; b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小; c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小; d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil); e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级; f)指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开; g)用于连接GND和PGND的电阻及电容需放置地分割区域。 2.以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点: a)优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里; b)当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%; c)差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射,此电阻有些接电源,有些通过电容接地,这是由PHY芯片决定的; d)差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

相关文档
最新文档