视力检查法

视力检查法
视力检查法

1. 一般检查视力的距离为5米,视力表的1.0行与受检者的眼睛位于同一高度。

2. 照明充足,两眼分别检查,一般是先右后左(先检查裸眼视力,后检查矫正视力)。检查一眼时,须以遮眼板将另一眼完全遮住。但注意勿压迫眼球。

3. 检查时,让被检者先看清最大一行标记,如能辨认,则自上而下,由大至小,逐级将较小标记指给被检者看,直至查出能清楚辨认的最小一行标记。受检者读出每个视标的时间不得超过5秒。如估计患者视力尚佳,则不必由最大一行标记查起,可酌情由较小字行开始。

4. 如果被检者仅能辨认表上最大的“0.1”行E字缺口方向,就记录视力为“0.1”;如果能辨认“0.2”行E字缺口方向,、则记录为“0.2”;如此类推。能认清“1.0”行或更小的行次者,即为正常视力。倘若对某行标记部分能够看对,部分认不出,如“0.8”行有三个字不能辨认,则记录“0.8-3”,如该行只能认出三个字,则记录为“0.7+3”,余类推。或0.1~0.4每行有一个看不清则记录为上一行的视力。0.5~0.8每行允许看错一个,如果看错两个记为上一行的视力。1.0~1.2每行允许看错两个,视力在1.5以上每行允许看错三个。

5. 如被检者在5米距离不能辩认出表上任何字标时,可让被检者走近视力表,直到能辨认表上“0.1”行标记为止。此时的计算方法为:视力=0.1×被检者所在距离(米)/5(米).举例;如4米处能辨别出0.1的开口方向,则记录“0.08”(0.1×4/5=0.08);同样如在2米处辨别出0.1的开口方向,则为“0.04”(0.1×2/5=0.04 )。

6. 如被检者在1米处尚不能看清“0.1”行标记,则让其背光数医生手指,记录能清的最远距离,例如在30cm 处能看清指数,则记录为“30cm指数”或“CF/30cm”。如果将医生手指移至最近距离仍不能辨认指数,可让其辨认是否有手在眼前摇动,记录其能看清手动的最远距离,如在10cm 处可以看到,即记录为“手动10cm”或“HM/10cm”。

7. 对于不能辨认眼前手动的被检者,应测验有无光感。光感的检查是在5米长的暗室内进行,先用手巾或手指遮盖一眼,不得透光。检者持一烛光或手电在被检者的眼前方,时亮时灭,让其辨认是否有光。如5米处不能辩认时,将光移近,记录能够辨认光感的最远距离。无光感者说明视力消失,临床上记录为“无光感”。有光感者,为进一步了解视网膜机能,尚须检查光定位,方法是嘱被检者注视正前方,在眼前1米远处,分别将烛光置于正前上、中、下,颞侧上、中、下,鼻侧上、中、下共9个方向,嘱被检者指出烛光的方向,并记录之,能辨明者记“+”,不能辩出者记“-”其记录法为

,并注明眼鼻、颞侧。

现在我国比较通用的近视力表是耶格(Jaeger)近视力表和标准视力表(许广第)。前者表上有大小不同的8行字,每行字的侧面有号数,后者式样同远视力表(国际视力表)。检查时光源照在表上,但应避免反光,让被检者手持近视力表放在眼前,随便前后移动,直到找出自己能看到的最小号字。若能看清1号字或1.0时,则让其渐渐移近,直到字迹开始模糊。在尚未模糊以前能看清之处,为近点,近点与角膜之距离即为近点距离,记录时以厘米为单位,例如J1/10厘米或1.0/10厘米,若看不清1号字或1.0,只记录其看到的最小字号,不再测量其距离。

计算机视觉第二次作业实验报告

大学计算机视觉实验报告 摄像机标定 :振强 学号:451 时间:2016.11.23

一、实验目的 学习使用OpenCV并利用OpenCV进行摄像机标定,编程实现,给出实验结果和分析。 二、实验原理 2.1摄像机标定的作用 在计算机视觉应用问题中,有时需要利用二位图像还原三维空间中的物体,从二维图像信息出发计算三维空间物体的几何信息的过程中,三维空间中某点的位置与二维图像中对应点之间的相互关系是由摄像机的几何模型决定的,这些几何模型的参数就是摄像机参数,而这些参数通常是未知的,摄像机标定实验的作用就是通过计算确定摄像机的几何、光学参数,摄像机相对于世界坐标系的方位。 2.2摄像机标定的基本原理 2.2.1摄像机成像模型 摄像机成像模型是摄像机标定的基础,确定了成像模型才能确定摄像机外参数的个数和求解的方法。计算机视觉研究中,三维空间中的物体到像平面的投影关系即为成像模型,理想的投影成像模型是光学中的中心投影,也称为针孔模型。实际摄像系统由透镜和透镜组组成,可以由针孔模型近似模拟摄像机成像模型。 图2.1 针孔成像 2.2.2坐标变换 在实际摄像机的使用过程中,为方便计算人们常常设置多个坐标系,因此空间点的成像过程必然涉及到许多坐标系之间的相互转化,下面主要阐述几个重要坐标系之间的转换关系。

2.2.2.1世界坐标系--摄像机坐标系 图2.2 世界坐标系与摄像机坐标系空间关系 世界坐标系与摄像机坐标系之间的转换关系为: ????? ? ????????????=???? ????????111w w w T c c c Z Y X O T R Z Y X R 和T 分别是从世界坐标系到摄像机坐标系的旋转变换和平移变换系数,反映的是世界坐标系和摄像机坐标系之间的关系,因此称为外参数。 2.2.2.2物理坐标系--像素坐标系 图2.3 像素坐标系

计算机视觉测量与导航_张正友法相机标定 _结课实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 计算机视觉测量与导航 实验报告 院系:航天学院 学科:控制科学与工程 姓名:TSX 学号: 任课教师:张永安卢鸿谦 日期:2014.05.13

摘要 人类视觉过程可看成是一个复杂的从感觉到知觉的过程,也就是指三维世界投影得到二维图像,再由二维图像认知三维世界的内容和含义的过程。信号处理理论与计算机出现以后,人们用摄像机等获取环境图像并转换成数字信号,完成对视觉信息的获取和传输过程,用计算机实现对视觉信息的处理、存储和理解等过程,形成了计算机视觉这门新兴学科。其中从二维图像恢复三维物体可见表面的几何结构的工作就叫做三维重建。随着计算机硬件、软件、图像采集、处理技术的迅速发展,三维重建的理论和技术已被广泛应用于航空航天、机器人技术、文字识别、工业检测、军事侦察、地理勘察、现场测量和虚拟植物可视化等领域。相机标定是三维重建必不可少的步骤,它包括对诸如主点坐标、焦距等与相机内部结构有关的内部参数的确定和对相机的旋转、平移这些外部参数的确定。价格低廉的实验器材、简单的实验环境、快捷的标定速度和较高的标定精度是现在相机标定研究追求的几大方向。数码相机的标定就是研究的热点之一。本次报告介绍了基于棋盘格模板标定的基本原理和算法,利用MATLAB的相机标定工具箱,使用张征友算法对相机进行了标定,记录了标定的过程,并给出结果,最后对影响标定精度的因素进行了分析。 关键词:相机标定张正友角点提取内外参

1基于棋盘格标定的基本原理和算法 1.1基础知识 1.1.1射影几何 当描述一张相机拍摄的图像时,由于其长度、角度、平行关系都可能发生变化,因此无法完全用欧氏几何来处理图像,而射影几何却可以,因为在射影几何中,允许存在包括透视投影的更大一类变换,而不仅仅是欧氏几何的平移和旋转。实际上,欧氏几何是射影几何的一个子集。 1.1.2齐次坐标 设欧氏直线上点p的笛卡尔坐标为(x,y)T,如果x1,x2,x3满足x=x1/x2,y =x2/x3,x3≠0,则称三维向量(x1,x2,x3)T为点P的齐次坐标。当x3= 0时,(x1,x2,0)T规定直线上的无穷远点的齐次坐标。 实际上,齐次坐标是用一个n+ 1维向量来表示原本n维的向量。应用齐次坐标的目的是用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系。形的几何变换主要包括平移、旋转、缩放等。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为P’=R*P+T(R为旋转缩放矩阵,T为平移矩阵,P为原向量,P′为变换后的向量)。当n+1维的齐次坐标中第n+1维为0,则表示n维空间的一个无穷远点。

双眼视功能检查的作用、内容及方法

调节反应,调节滞后和调节超前的测量方法,正常值为+0.25~+0.75D。 1. 综合验光仪内置入被检者远用屈光不正矫正度数,近用瞳距。将FCC视标置于近视标杆40㎝处,将两眼辅助镜片的±0.50转至90o位置(其负散轴位于90o),不需要额外增加照明,让被检者双眼睁开,注视40㎝处的FCC视标。 2. 被检者报告水平线较清晰,说明被检者为调节滞后,在双眼前同时增加正球镜至横竖线条同样清晰,所增加的正球镜即为其调节滞后量。 3. 被检者报告垂直线清晰,说明被检者为调节超前,在双眼前同时增加负球镜至横竖线条同样清晰,所增加的负球镜即为其调节超前量。 4. 若被检者报告水平线和垂直线同样清晰,说明被检者的调节反应量为零。

负相对调节,即在集合保持相对稳定的情况下,双眼所能减少调节的能力,正常值为+2.25~+2.50D。 1. 被检者舒适地坐在综合验光仪后,置于其远用屈光不正矫正度数,近用瞳距,良好照明。 2. 让被检者双眼同时注视40㎝近用视力表最佳视力的上一行视标。 3. 在双眼前同时增加正球镜,直至被检者报告视标开始变模糊,退回前一片。记录增加的正球镜度数,即为其负相对调节(NRA)。 4. 检测值正常说明无调节参与,测得的度数是真实度数; 检测值偏低说明有调节参与,即假性近视,需要散瞳处理; 检测值偏高说明负镜过矫或正镜欠矫。

正相对调节,即在集合保持相对稳定的情况下,双眼所能增加调节的能力,正常值>-2.50D。 1. 被检者舒适地坐在综合验光仪后,置于其远用屈光不正矫正度数,近用瞳距,良好照明。 2. 让被检者双眼同时注视40㎝近用视力表最佳视力的上一行视标。 3. 在双眼前同时增加负球镜,直至被检者报告视标持续模糊。记录增加的负球镜度数,即为其正相对调节(PRA)。 4. 检测值若低于验光测得近视增长的度数,被检者无法接受新眼镜,可通过调节训练; 5. PRA低加上外隐斜,看近必须要戴镜。

计算机视觉实验报告Experiment3

Experiment 3:Edge Detection Class: 电子1203班Student ID: 1210910322 Name: 王影 Ⅰ. Aim The aim of this laboratory session is to learn to deal with image data by Matlab. By the end of this session, you should be able to perform image preprocessing of edge detection in spatial domain and frequency domain. Ⅱ. Knowledge required in the Experiment ⅰ.You are supposed to have learned the basic skills of using Matlab; ⅱ.You need to review Matlab programming language and M-file format. ⅲ. You should have studied edge detection methods. Ⅲ.Experiment Contents Demand: Please show the figure on the left and list the codes on the right respectively bellow each question.(请将运行结果(图片)和程序代码贴在每题下方) ⅰ.Read “car.jpg” file (to do this by imread function), convert the color image into grayscale image, and then perform edge detection using Roterts, Prewitt, Sobel operator separately in spatial domain and display the results in a Matlab window. 程序: clear; im=imread('car.jpg'); I=rgb2gray(im); subplot(3,2,1);imshow(I); title('Gray image'); [Y,X]=size(I); im_edge=zeros(Y,X); T=30; for k=2:Y-1 for kk=2:X-1 im_edge(k,kk)=abs(I(k+1,kk+1)-I(k,kk))+abs(I(k,kk+1)-I(k+1,kk)); if (im_edge(k,kk)>T)

视力检查法

1. 一般检查视力的距离为5米,视力表的1.0行与受检者的眼睛位于同一高度。 2. 照明充足,两眼分别检查,一般是先右后左(先检查裸眼视力,后检查矫正视力)。检查一眼时,须以遮眼板将另一眼完全遮住。但注意勿压迫眼球。 3. 检查时,让被检者先看清最大一行标记,如能辨认,则自上而下,由大至小,逐级将较小标记指给被检者看,直至查出能清楚辨认的最小一行标记。受检者读出每个视标的时间不得超过5秒。如估计患者视力尚佳,则不必由最大一行标记查起,可酌情由较小字行开始。 4. 如果被检者仅能辨认表上最大的“0.1”行E字缺口方向,就记录视力为“0.1”;如果能辨认“0.2”行E字缺口方向,、则记录为“0.2”;如此类推。能认清“1.0”行或更小的行次者,即为正常视力。倘若对某行标记部分能够看对,部分认不出,如“0.8”行有三个字不能辨认,则记录“0.8-3”,如该行只能认出三个字,则记录为“0.7+3”,余类推。或0.1~0.4每行有一个看不清则记录为上一行的视力。0.5~0.8每行允许看错一个,如果看错两个记为上一行的视力。1.0~1.2每行允许看错两个,视力在1.5以上每行允许看错三个。 5. 如被检者在5米距离不能辩认出表上任何字标时,可让被检者走近视力表,直到能辨认表上“0.1”行标记为止。此时的计算方法为:视力=0.1×被检者所在距离(米)/5(米).举例;如4米处能辨别出0.1的开口方向,则记录“0.08”(0.1×4/5=0.08);同样如在2米处辨别出0.1的开口方向,则为“0.04”(0.1×2/5=0.04 )。 6. 如被检者在1米处尚不能看清“0.1”行标记,则让其背光数医生手指,记录能清的最远距离,例如在30cm 处能看清指数,则记录为“30cm指数”或“CF/30cm”。如果将医生手指移至最近距离仍不能辨认指数,可让其辨认是否有手在眼前摇动,记录其能看清手动的最远距离,如在10cm 处可以看到,即记录为“手动10cm”或“HM/10cm”。 7. 对于不能辨认眼前手动的被检者,应测验有无光感。光感的检查是在5米长的暗室内进行,先用手巾或手指遮盖一眼,不得透光。检者持一烛光或手电在被检者的眼前方,时亮时灭,让其辨认是否有光。如5米处不能辩认时,将光移近,记录能够辨认光感的最远距离。无光感者说明视力消失,临床上记录为“无光感”。有光感者,为进一步了解视网膜机能,尚须检查光定位,方法是嘱被检者注视正前方,在眼前1米远处,分别将烛光置于正前上、中、下,颞侧上、中、下,鼻侧上、中、下共9个方向,嘱被检者指出烛光的方向,并记录之,能辨明者记“+”,不能辩出者记“-”其记录法为 ,并注明眼鼻、颞侧。

机器视觉实验报告

机器视觉实验报告

目录 一实验名称 (2) 二试验设备 (2) 三实验目的 (2) 四实验内容及工作原理 (2) (一)kinect for windows (2) (二)手持式自定位三维激光扫描仪 (3) (三)柔性三坐标测量仪 (9) (四)双面结构光 (10) 总结与展望 (14) 参考文献 (16)

《机器视觉》实验报告 一、实验名称 对kinect for windows、三维激光扫描仪、柔性三坐标测量仪和双面结构光等设备结构功能的认识。 二、实验设备 kinect for windows、三维激光扫描仪、柔性三坐标测量仪、双面结构光。 三、实验目的 让同学们对机器视觉平时所使用的仪器设备以及机器视觉在实际运用中的具体实现过程有一定的了解。熟悉各种设备的结构功能和操作方法,以便于进行二次开发。其次,深化同学们对机器视觉系统的认识,拓宽同学们的知识面,以便于同学们后续的学习。 四、实验内容及工作原理 (一)kinect for windows 1.Kinect简介 Kinectfor Xbox 360,简称Kinect,是由微软开发,应用于Xbox 360 主机的周边设备。它让玩家不需要手持或踩踏控制器,而是使用语音指令或手势来操作Xbox360 的系统界面。它也能捕捉玩家全身上下的动作,用身体来进行游戏,带给玩家“免控制器的游戏与娱乐体验”。2012年2月1日,微软正式发布面向Windows系统的Kinect版本“Kinect for Windows”。 2.硬件组成 Kinect有三个镜头[1],如图1-1所示。中间的镜头是RGB 彩色摄影机,用来采集彩色图像。左右两边镜头则分别为红外线发射器和红外线CMOS 摄影机所构成的3D结构光深度感应器,用来采集深度数据(场景中物体到摄像头的距离)。彩色摄像头最大支持1280*960分辨率成像,红外摄像头最大支持640*480成像。Kinect还搭配了追焦技术,底座马达会随着对焦物体移动跟着转动。Kinect也内建阵列式麦克风,由四个麦克风同时收音,比对后消除杂音,并通过其采集声音进行语音识别和声源定位[2][3]。

视力检查技术操作规范

视力检查技术操作规范 第一节远视力检查 【适应证】 1.眼科就诊及其他科室要求会诊的患者。 2.健康体检者。 【禁忌证】 1.全身状况不允许检查者。 2.因精神或智力状态不能配合检查者。 【操作方法及程序】 1.可选用对数视力表、国际标准视力表、ETDRS (早期治疗糖尿病性视网膜病变研究)视力表。前两种视力表的检查距离为5m,后者的检查距离是4m。视力表的1.0一行应与被检眼同高。视力表的照明应均匀,无眩光,可采用自然照明。如用人工照明,照明强度为300-500lux。 2.两眼分别检查,常规先查右眼,后查左眼。检查时用挡眼板遮盖非受检眼。如受检者戴镜,应先查裸眼视力,再查戴镜视力。

3.下面以国际标准视力表为例叙述远视力检查方法。该表分12行,能看清第1行者视力为0.1,第10行为1.0,第12行为1.5。若能辨认第8行全部视标,同时辨认第9行半数以下视标时则记0.8+;如能辨认第8行全部视标,同时辨认第9行半数以上视标时则记0.9-。 4.如被检者不能辨认表上最大视标时,可嘱被检者向视力表靠近,直至看清第1行视标(0.1),记录的视力为:01×被检者与视力表的距离(m)/5,例如在2m处能看清0.1,视力为0.1×2/5=0.040 5.如在1m处不能辨认最大视标,则检查数指(counting finger,CF)。嘱受检者背光而坐,检查者伸手指让被检者辨认手指数目,记录其能辨认指数的最远距离,如数指/30cm 或CF/30cm。如果在眼前5 cm处仍不能辨认指数,则检查者在受试前摆手,记录能辨认手动(hand motions, HM)的最远距离,如手动/30cm或HM/30cm。 6.对只能辨认指数或手动的受检者,应在暗室中进一步检查光感(light per-ception, IT)及光定位(light

三种有效的近视检测方法

三种有效的近视检测方法 一、自我检查 用视力表自我检查视力。视力表中的E是眼睛要辨认的目标,叫作视标。视标一共有12行,从上到下逐渐一级一级的缩小。每行视标的左边都有数字标示,表示看清这一行全部E字后所具有的视力。还有对数视力表,又称5分制对数视力表这种表也以E字作为视标,共分14行。能看清第11行的所有E字为标准视力,记作5.0,即1.0。最好的视力为5.3(2.0)。对儿童青少年来讲,低于5.2(1.5)即为不正常;视力5.1(1.2)者为潜伏性近视;5.0(1.0)为临界近视,功能性近视开始;4.9(0.8)为功能性近视和轴性近视开始; 4.8(0.6)~4.6(0.4)为混合性近视(轴性和调节性近视同时存在);视力要是低于4.0(0.1)为高度近视。按5分制继续分,3为指数,即只能看到眼前有几个手指;2为手动,只能看到手在晃动而不能看清有几个手指;1为光感,只能感到光的存在而看不到任何物体;0为无光感,即全盲。 在检查时,先用一纸板或同类物体压在鼻梁上,遮盖一眼而检查另一眼的视力。注意遮挡物不能接触所压眼球,以免影响该眼视力测试的准确性。注意测试视力时要在光线柔和,光源充足的地方,光线过强或过弱都会影响到检测的准确性。要找准距离,高度要合适。1.0(5.0)一行的视标(E)要与被测者的眼睛成水平线。 测试时身体要垂直,不要歪头眯眼,以准确测试到本人的真实视力。检测时,要按从上到下的顺序进行辨认。 首先指着0.1一行的视标让受测人辨认指出E字缺口的方向。 然后顺次向下一行一行的检测,直到辨认不清视标缺口的方向为止。那么这一行左边的数字就是被测眼睛的视力。如果被测眼睛的视力很差,连0。1一行的视标也看不清这时可以缩短距离进行检测。让受测人慢慢走近视力表,直到能看清0.1一行E字的缺口方向为止。然后按照实际测试距离计算其视力:在4米处的视力为0.08;在3米处的视力为0。06;在2米处的视力为0.04;在1米处的视力为0.02(以5米标准视力表为例)。 在检查远视力的同时,也要检查近视力。因为远近物体所发出的光线是不同的。远处物体所发出的光线是平行的,而近处物体所发出的光线是散开的。这两种行进方式不同的光线进入眼睛后所结成的位置不同,所以远视力好的眼睛近视力不一定好。而近视力好的眼睛,其远视力也不一定好,因此视力有远近之分。通常以5米作为区分远视力的标准距离。 检查近视力的时候要用近视力表。3米的远视力表距眼30厘米处也可测得近视力。在充足的照明条件下,检测的标准距离为30厘米。检查的方法和要点与检查近视力时的大致相同。如果不能在30厘米处看清5。0一行的视标,即为远视或弱视。 二、镜片自试法 如果患者的裸眼视力达不到1.0(5.0)者,可以试戴镜片来判断其真假近视。方法是患者先试戴适合自己屈光度的眼镜。戴镜后视力达到1.0~1.2时,马上在原有的基础上把镜片再增加-150度。这时如果患者的视力不变或上升即为真性近视;如果患者的视力下降,则是假性近视。判断真假近视还可以用云雾法测试。所谓云雾法就是近视者戴400度以上

车牌识别综合实验报告大作业

数字图像处理综合实验报告 车牌识别技术(LPR) 组长:__ ******_____ 组员:___ _****** _ ___ _******_____ ____ _*******___ 指导老师:___ *******_____ *****学院****学院 2010年6月10日

实验五车牌识别技术(LPR) 一、实验目的 1、了解车牌识别系统的实现,及车牌识别系统的应用; 2、了解并掌握车牌识别系统如何实现。 二、实验容 1、车牌识别系统的图像预处理、 2、车牌定位、 3、字符分割 4、字符识别 三、实验原理 车辆牌照识别(LPR)系统是一个专用的计算机视觉系统,它能够自动地摄取车辆图像和识别车牌,可应用在公路自动收费、停车场管理、失窃车辆侦察、门卫系统、智能交通系统等不同场合。LPR系统的广泛应用将有助于加快我国交通管理自动化的进程。 1、预处理 摄像时的光照条件,牌照的整洁程度,摄像机的状态(焦距,角度和镜头的光学畸变),以及车速的不稳定等因素都会不同程度的影响图像效果,出现图像模糊,歪斜或缺损,车牌字符边界模糊不清,细节不清,笔画断开,粗细不均等现象,从而影响车牌区域的分割与字符识别的工作,所以识别之前要进行预处理。预处理的包括: 1)消除模糊—— 用逆滤波处理消除匀速运动造成的图像运动模糊 2)图像去噪。 通常得到的汽车图像会有一些污点,椒盐噪声,应用中值滤波 3)图像增强 自然光照度的昼夜变化会引起图像对比度的不足,所以必须图像增强,可以采用灰度拉伸,直方图均衡等 通过以上处理,提高了图像的质量,强化了图像区域。

2、车牌定位 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。 ? 图像的灰度化 ? 图像灰度拉伸 ? 对图像进行边缘检测 采用Sobel 算子经行边缘检测 该算子包含两组3*3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下: A Gx *]101202101?????+-+-+-?????= and A *121000121Gy ???? ?---+++?????= 图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。 2 y 2x G G G += 然后可用以下公式计算梯度方向。 ??? ? ??=x y G G arctan θ 在以上例子中,如果以上的角度θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。 ? 对其进行二值化 ? 纹理分析法 行扫描行法是利用了车牌的连续特性。车牌区域有连续7个字符,而且字符与字符之间的距离在一定围。定义从目标到背景或者从背景到目标为一个跳变。牌照区域相对于其它非车牌区域跳变多,而且间距在定围和跳变次数大于一定次数,并且连续满足上述要求的行要达到一定的数目。 从下到上的顺序扫描,对图像的每一行进行从左向右的扫描,碰到跳变点记录下当前位置,如果某行连续20个跳变点以上,并且前一个跳变点和后一个跳变点的距离在30个像素,就记录下起始点和终止点位置,如果连续有10行以上这样的跳变点,我们就认为该区域就是车牌预选区域。 3、字符分割: 完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 ? 车牌区域灰度二值化

人工智能YOLO V2 图像识别实验报告

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。 深度学习是机器学习中的一个新的研究领域,通过深度学习的方法构建深度网络来抽取特征是目前目标和行为识别中得到关注的研究方向,引起更多计算机视觉领域研究者对深度学习进行探索和讨论,并推动了目标和行为识别的研究,推动了深度学习及其在目标和行为识别中的新进展。基于这个发展趋势,我们小组选择了基于回归方法的深度学习目标识别算法YOLO的研究。 1.1.2课程项目研究的意义 众所周知,当前是信息时代,信息的获得、加工、处理以及应用都有了飞跃

计算机视觉第二次作业实验报告

厦门大学计算机视觉实验报告 摄像机标定 姓名:孙振强 学号:31520161153451 时间:2016.11.23

一、实验目的 学习使用OpenCV并利用OpenCV进行摄像机标定,编程实现,给出实验结果和分析。 二、实验原理 2.1摄像机标定的作用 在计算机视觉应用问题中,有时需要利用二位图像还原三维空间中的物体,从二维图像信息出发计算三维空间物体的几何信息的过程中,三维空间中某点的位置与二维图像中对应点之间的相互关系是由摄像机的几何模型决定的,这些几何模型的参数就是摄像机参数,而这些参数通常是未知的,摄像机标定实验的作用就是通过计算确定摄像机的几何、光学参数,摄像机相对于世界坐标系的方位。 2.2摄像机标定的基本原理 2.2.1摄像机成像模型 摄像机成像模型是摄像机标定的基础,确定了成像模型才能确定摄像机内外参数的个数和求解的方法。计算机视觉研究中,三维空间中的物体到像平面的投影关系即为成像模型,理想的投影成像模型是光学中的中心投影,也称为针孔模型。实际摄像系统由透镜和透镜组组成,可以由针孔模型近似模拟摄像机成像模型。 图2.1 针孔成像 2.2.2坐标变换 在实际摄像机的使用过程中,为方便计算人们常常设置多个坐标系,因此空间点的成像过程必然涉及到许多坐标系之间的相互转化,下面主要阐述几个重要坐标系之间的转换关系。

2.2.2.1世界坐标系--摄像机坐标系 图2.2 世界坐标系与摄像机坐标系空间关系 世界坐标系与摄像机坐标系之间的转换关系为: ????? ?????????????=????????????111w w w T c c c Z Y X O T R Z Y X R 和T 分别是从世界坐标系到摄像机坐标系的旋转变换和平移变换系数,反映的是世界坐标系和摄像机坐标系之间的关系,因此称为外参数。 2.2.2.2物理坐标系--像素坐标系 图2.3 像素坐标系

计算机视觉实验5形态学滤波实验报告

Experiment 4:Thresholding & mathematical morphology 王影电子1203班学号:1210910322 Ⅰ. Aim The aim of this laboratory session is to learn to deal with image data by Matlab. By the end of this session, you should be able to perform image preprocessing of thresholding and mathematical morphology. Ⅱ. Knowledge required in the Experiment ⅰ.You are supposed to have learned the basic skills of using Matlab; ⅱ.You need to review Matlab programming language and M-file format. ⅲ. You should have studied image segmentation and mathematical morphology methods. Ⅲ.Experiment Contents ⅰ.Read “bac.bmp” file (to do this by imread function), convert the color image into grayscale image, and then perform thresholding by auto threshoding method using “while loop” and display the results in a Matlab window. 程序: %Iterative thresholdi clear all; im=imread('bac.bmp'); subplot(1,2,1); imshow(im); title('Gray image'); [Y X]=size(im); S=sum(sum(im)); S=S/(X*Y); D=0.1; T=0; im_bi=im>S; while(abs(S-T)>D) im1=double(im_bi).*double(im); im2=double(abs(1-im_bi)).*double(im); S1=sum(sum(im1))/sum(sum(im_bi)); S2=sum(sum(im2))/sum(sum(abs(1-im_bi))); T=S; S=(S1+S2)/2;

视功能检查方法

视功能检查方法 1、打开双侧视孔,置入双眼平衡后的屈光度数,调整使得右侧为红色滤光内置辅镜,左侧为绿色滤光内置辅镜,投放Worth四点灯视标,嘱患者注视视标。 2、能看到四个光点,表明有正常的融像能力。 3、能看到两个红点,看不到十字绿色视标,而下方的圆形视标偏红:表明左眼信息被抑制。 4、能看到三个绿点,看不到上方的菱形红色视标,而下方的圆形视标偏绿:表明病人仅接收来自左眼的视觉信息而右眼的视觉信息被抑制。 5、能同时看到五个点,两个红点,三个绿点或下方的圆形视标呈横置的椭圆形,表明有复视,为双眼融合机能障碍的表现。询问患者光点的相对位置,若两个红点在绿点的右侧,为同侧性复视,表示患者有内隐斜。反之,为交叉性复视,表示患者有外隐斜。 6、两个红点,三个绿点交替看到:表示有交替性抑制存在,患者无融像能力。 立体视检查 检查方法 1、打开双侧视孔,置入双眼平衡后的屈光度数,投放立体式视标,嘱患者注视视标中融合点,此时患者看到上下方视标为距离相等的双竖线。 2、调整内置辅镜使得双侧均为偏振光片,嘱患者再次注视视标。 3、能看到上下方视标均为单竖线,表明有正常的融像能力,有立体视。 4、能看到上方视标为双竖线,下方视标为单竖线,为同测性复视,表示患者有内隐斜:能看到上方视标为单竖线,下方视标为双竖线,为交叉性复视,表示患者有外隐斜。 5、能看到上下方视标均为双竖线,表明有复视,患者无融像能力,无立体视,当出现这种现象时,要询问患者上下方视标的相对位置。若上方两竖线距离较下方两竖线距离远,为同侧性复视,表示患者有内隐斜,反之,为交叉性复视,表示患者有外隐斜。 远距离水平隐斜 检查方法 1、被检测者屈光不正完全矫正,远用瞳距 2、让患者轻闭双眼,将旋转菱镜转到视孔前,右眼放置6△BU(分离镜),左眼放置10△BI(测量镜) 3、视标为单眼最佳视力上一行的单个远视标 4、让患者睁开双眼,问其是否看到两个视标,一个在右下,一个在左上。 5、让患者注视右下方的视标,用余光注视左上方的视标。 6、逐渐减小左眼的菱镜度,直至患者报告上下两个视标垂直向对齐,记录此时左眼前菱镜的底向的度数。 7、继续以同样方向转动菱镜直至患者又见到两个视标,一个在右上,一个在左下。 8、然后以反方向转动菱镜直至两个视标再次对齐,记录此时的菱镜底向的度数。 9、两次的平均值为测量结果,水平斜视度。在检查过程中应该不断遮盖去遮盖,以打破融合,检查结果更准确。 近距离水平隐斜

计算机视觉课程设计报告

计算机视觉课程设计实验报告 1.题目: 图像变形 2.组员:曹英(E03640201) 叶超(E03640124) 李淑珍(E03640104) 3.实验目的:掌握图像几何运算中变形算法 4.实验原理:对两幅图分别进行卷绕、插值,每幅图得到一序列图片,然后 对这些序列图片进行加权求和,得到一序列帧,再将其显示出来,就得到了由一幅图到另一幅图的变形。 5.实验步骤:对一幅图分别选4行4列的16个控制点,在每条边上进行五 等分,每条边形成六个点,加上原来的16个就是36个控制点,这样就把它分成了不规则的25小块,对每小块进行卷绕、插值,本实验我们用的是最近邻插值,目标控制点就是将图片分成标准并且相同大小的25小块的36个点。这样会得到一幅不规则图片,让它作为新的原图进行如前所述一样的处理,控制点都是这样自动产生的:一开始所选每个控制点到相应标准控制点等距离(本实验我们是分成9等分)产生一序列的36个控制点。这样每产生一幅图都对它进行相类似的处理,控制点的产生方法就是上面所说的那样。得到的一序列图片越来越接近原图,最后一幅与原图一样。这样我们就可以得到这样的一序列图片:原图,手工选控制点进行处理后得到的不规则图,循环产生控制点得到的越来越接近原图的9幅图(最后一幅与原图一样)。为了描述的方便,这里我把它编号为1_1到1_11。对目标图进行与原图一样的处理。编号也类似,即2_1到2_11。 最后进行加权求和,第一帧是原图,第二帧是1_10与2_2加权求和,其中1_10的权值是0.9,2_2的权值是0.1,第三帧是1_9与2_3加权求和,其中1_9的权值是0.8,2_3的权值是0.2,……,第十帧是1_2与2_10加权求和,其中1_10的权值是0.1,2_2的权值是0.9,第十一帧是目标图。这样就得到了所要的结果。这里需要说明的是两幅手工选择的控制点最好是那些有代表性的特征点,这样的话结果会更好。

步态分析实验报告

步态分析方案设计 报告说明:我看了五篇关于步态分析的文献,并对其具体实验方法进行归纳。五篇文献的原文在文件夹中。最后为我的方案设计。 一、A practical gait analysis system using gyroscopes陀螺仪分析步态 本研究是为了调查使用单轴陀螺仪来研制简单便携步态分析系统的可行性。陀螺仪绑在小腿和大腿的皮肤表面,记录小腿和大腿角速度。这两部分的倾斜度和膝关节角度都来自角速度。使用从运动分析系统得到的信号来评估角速度和陀螺仪传来的信号,发现这些信号有不错的相关性。当转身时,腿部倾斜度和角度信号会发生漂移,有两种方法来解决这个问题:(1)自动复位系统,重新初始化每个步态周期的角度;(2)高通滤波。两种方法都能很好的纠正漂移。小腿部的单陀螺仪可以提供以下信息:腿部倾斜度、摆动频率、步数以及步幅和步速的估计。 具体方法: 受试者在步态实验室沿直线行走进行陀螺仪数据收集,陀螺仪用绳子固定在大腿和小腿部,感测轴沿中间-横向方向,以测量矢状平面中的角度。 两个人加入测试,一个是不完整的脊髓损伤,一个没有损伤。一运动分析系统使用各部分解剖学位置的回射标记物来评估腿部的偏移、腿部的角速度和膝角度。实验开始前5s,受试者直立站立以初始化倾斜角度和陀螺仪的偏置,随后,对象以一个自己喜欢的速度沿预定路径行走。进行了三组实验来分析陀螺仪的性能,并计算步幅、步态周期时间和每次行走期间的速度。第一个实验,数据来自两小腿上陀螺仪的信号,并与未损伤者进行比较。后两个实验是陀螺仪的数据与运动分析系统进行比较。第一个实验是比较小腿不同位置的陀螺仪信号,对于同一小腿上的两个点,先站立后倾斜,两个点的角速度、角度应该是相同的,陀螺仪一个放在胫骨关节处,一个放在胫骨靠近踝关节10cm处。第二个实验一个放置在大腿髌骨上方10cm处,一个在胫骨靠近踝关节10cm处,记录的是陀螺仪的角速度。第三个实验,陀螺仪放置于第二个相同,受试者直行4.5m然后转身180°。 二、Acoustic Gaits: Gait Analysis With Footstep Sounds 声步态 我们描述的是声步态——从人正常行走时的脚步声推导人的自然步态特征。我们引入了步态轮廓,这是从通过麦克风收集的脚步声时间信号得到的,可以说明某些时空步态参数,这些参数是通过对声步态轮廓的三个时间信号分析方法提取,三个时间信号分别是平方能量估计、希尔伯特变量和Teager–Kaiser能量。通过对这些参数估计的统计学分析,我们发现从步态轮廓获得的时空参数和步态特征可以连续可靠地评估目前用于标准化步态评估的临床和生物测定步态参数信息。我们的结论是Teager–Kaiser能量可以在不同时间、地点提供最稳定的步态参数估计。相对于目前实验室步态分析中使用的昂贵侵入式系统,如测力台、压力垫、可穿戴传感器,声步态使用便宜的麦克风和计算设备制成了准确非侵入式的步态分析系统,而且实验室的一些系统会改变正在测量的步态参数。

第二部分 双眼视功能检查

第二部分双眼视功能检查 一、BCC检查 调节反应,调节滞后和调节超前的测量方法,正常值为+0.25~+0.75D。 1. 综合验光仪内置入被检者远用屈光不正矫正度数,近用瞳距。将FCC视标置于近视标杆40㎝处,将两眼辅助镜片的±0.50转至90o位置(其负散轴位于90o),不需要额外增加照明,让被检者双眼睁开,注视40㎝处的FCC视标。 2. 被检者报告水平线较清晰,说明被检者为调节滞后,在双眼前同时增加正球镜至横竖线条同样清晰,所增加的正球镜即为其调节滞后量。 3. 被检者报告垂直线清晰,说明被检者为调节超前,在双眼前同时增加负球镜至横竖线条同样清晰,所增加的负球镜即为其调节超前量。 4. 若被检者报告水平线和垂直线同样清晰,说明被检者的调节反应量为零。 二、NRA检查: 负相对调节,即在集合保持相对稳定的情况下,双眼所能减少调节的能力,正常值为+2.25~+2.50D。 1. 被检者舒适地坐在综合验光仪后,置于其远用屈光不正矫正度数,近用瞳距,良好照明。 2. 让被检者双眼同时注视40㎝近用视力表最佳视力的上一行视标。 3. 在双眼前同时增加正球镜,直至被检者报告视标开始变模糊,退回前一片。记录增加的正球镜度数,即为其负相对调节(NRA)。 4. 检测值正常说明无调节参与,测得的度数是真实度数; 检测值偏低说明有调节参与,即假性近视,需要散瞳处理; 检测值偏高说明负镜过矫或正镜欠矫。 三、PRA检查 正相对调节,即在集合保持相对稳定的情况下,双眼所能增加调节的能力,正常值>-2.50D。 1. 被检者舒适地坐在综合验光仪后,置于其远用屈光不正矫正度数,近用瞳距,良好照明。 2. 让被检者双眼同时注视40㎝近用视力表最佳视力的上一行视标。 3. 在双眼前同时增加负球镜,直至被检者报告视标持续模糊。记录增加的负球镜度数,即为其正相对调节(PRA)。 4. 检测值若低于验光测得近视增长的度数,被检者无法接受新眼镜,可通过调节训练; 5. PRA低加上外隐斜,看近必须要戴镜。 四、调节灵活度检查 调节灵活度是采用±2.00D翻转拍(Flipper拍)进行检查,测量每一分钟的循环次数,其单位为cpm。调节灵活度代表了调节能力、速度、持久力,在无法进行NRA、PRA检查或者低龄儿童不合作的情况下可快速估测调节是否正常、调节和放松哪部分出现问题。正常值为单眼12cpm,双眼8~10cpm。 1. 被检者戴屈光不正全矫眼镜,右眼处于打开状态,左眼关闭。注视40cm 处的0.6近视标检查卡。

opencv第一次实验报告

计算机视觉与Opencv 基础实验一 学院:宇航学院 专业:探测制导与控制技术 学号: 39152215 姓名:程勖 北京航空航天大学

一、Opencv2.3.1在VS2010平台上安装配置图解 1、下载软件 Opencv2.3.1可从此处下载到:https://www.360docs.net/doc/2e6992763.html,/index.php/Download VS Express是微软提供的免费版,可从此处下载: https://www.360docs.net/doc/2e6992763.html,/visualstudio/en-us/products/2010-editions/express 2、安装软件 先安装VS2010,接着把刚下载的Opencv2.3.1文件解压,可以放在任意位置,但在下面的配置中相应把路径改下。 3、设置用户变量 计算机>属性>高级系统设置>环境变量>新建,新建一个用户变量,如变量名:Path,变量值:C:\opencv2.3.1\build\x86\vc9\bin 变量值有如下选择: 32位VS2010:C:\opencv2.3.1\build\x86\vc10\bin

4、设置编译路径 VS2010:先新建一个项目(每新建一个项目都需要进行以下的配置才能编译Opencv里的函数,可以不注册电脑),在“解决方案资源管理器”窗口下,右击,“属性”,如果是32位系统,在“平台”框上显示“Win32”,64位显示“x64”,需要更改则点击“配置管理器”,在“活动解决方案平台”下拉框新建一个对应的平台。 接着,配置属性>VC++目录,在右边“包含目录”那栏,点击编辑按钮,再分别新建以下3条路径: C:\opencv\build\include C:\opencv\build\include\opencv C:\opencv\build\include\opencv2 然后选择“库目录”那栏,新建1条路径: 32位:C:\opencv\build\x86\vc10\lib 64位:C:\opencv\build\x64\vc10\lib

相关文档
最新文档