2014年河南高考数学(理科)真题--word高清版

2014年河南高考数学(理科)真题--word高清版
2014年河南高考数学(理科)真题--word高清版

2014年普通高等学校招生全国统一考试全国课标1

理科数学

注意事项:

1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准考证号填写在答题卡上.

2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.

3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.

4. 考试结束,将本试题和答题卡一并交回.

第Ⅰ卷

一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合

1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= ( )

A .[-2,-1]

B .[-1,2)

C .[-1,1]

D .[1,2) 2.3

2(1)(1)i i +-= ( )

A .1i +

B .1i -

C .1i -+

D .1i --

3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( ) A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数

C .()f x |()g x |是奇函数

D .|()f x ()g x |是奇函数

4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ) A .3 B .3 C .3m D .3m

5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 ( )

A .1

8 B .3

8 C .5

8 D .7

8

6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距

离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为

7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = ( )

A .20

3 B .16

5 C .7

2 D .15

8

8.设(0,)2π

α∈,(0,)2π

β∈,且1sin tan cos β

αβ+=,则 ( )

A .32π

αβ-= B .22π

αβ-= C .32π

αβ+= D .22π

αβ+=

9.不等式组1

24x y x y +≥??-≤?

的解集记为D .有下面四个命题: ( )

1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥,

3P :(,),23x y D x y ?∈+≤,4p :(,),21x y D x y ?∈+≤-.

其中真命题是

A .2p ,3P

B .1p ,4p

C .1p ,2p

D .1p ,3P

10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = ( )

A .7

2 B .5

2 C .

3 D .2

11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 ( ) A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为

A .62

B .42

C .6

D .4

第Ⅱ卷

本卷包括必考题和选考题两个部分。第(13)题-第(21)题为必考题,每个考生都必须作答。第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题5分。

13.8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案)

14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,

甲说:我去过的城市比乙多,但没去过B 城市;

乙说:我没去过C 城市;

丙说:我们三人去过同一个城市.

由此可判断乙去过的城市为 .

15.已知A ,B ,C 是圆O 上的三点,若1

()2AO AB AC =+,则AB 与AC 的夹角为 .

16.已知,,a b c 分别为ABC ?的三个内角,,A B C 的对边,a =2,且

(2)(sin sin )()sin b A B c b C +-=-,则ABC ?面积的最大值为 .

三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.

(Ⅰ)证明:2n n a a λ+-=;

(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.

18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .

(i)利用该正态分布,求(187.8212.2)P Z <<;

(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX . 附:150≈12.2.

若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.

19. (本小题满分12分)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.

(Ⅰ) 证明:1AC AB =;

(Ⅱ)若1AC AB ⊥,o

160CBB ∠=,

AB=Bc ,求二面角111A A B C --的余弦值.

20. (本小题满分12分) 已知点A (0,-2),

椭圆E :22

221(0)x y a b a b +=>>的离心率为3

2,F 是椭圆的焦点,直线AF 的斜率为23

3,O 为坐标原点.

(Ⅰ)求E 的方程;

(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ?的面积最大时,求l 的方程.

21. (本小题满分12分)设函数1

(0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为

(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.

请考生从第(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。

22.(本小题满分10分)选修4—1:几何证明选讲

如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的

延长线交于点E ,且CB=CE

.(Ⅰ)证明:∠D=∠E ;

(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:

△ADE 为等边三角形.

23. (本小题满分10分)选修4—4:坐标系与参数方程

已知曲线C :22

149x y +=,直线l :222x t y t

=+??=-?(t 为参数).

(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;

(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.

24. (本小题满分10分)选修4—5:不等式选讲

若0,0a b >>,且1

1

ab a b +=.

(Ⅰ) 求33a b +的最小值;

(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.

2014年高考四川理科数学试题及答案(详解纯word版)

2014年普通高等学校招生全国统一考试(四川卷) 数 学(理工类) 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。满分150分。考试时间120分钟。考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。考试结束后,将本试题卷和答题卡一并交回。 第Ⅰ卷 (选择题 共50分) 注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。 第Ⅰ卷共10小题。 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。 1.已知集合2 {|20}A x x x =--≤,集合B 为整数集,则A B ?= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 2.在6 (1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点 A .向左平行移动 12个单位长度 B .向右平行移动1 2 个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有 A .a b c d > B .a b c d < C .a b d c > D .a b d c < 5. 执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 A .192种 B .216种 C .240种 D .288种 7.平面向量(1,2)a =,(4,2)b =, c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = A .2- B .1- C .1 D .2 8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是

2014年高考新课标1理科数学真题及答案详解

2014年普通高等学校招生全国统一考试(新课标全国卷Ⅰ) 理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A A.]1,2[-- B.]1,1[- C.)2,1[- D.)2,1[ (2) =-+2 3 )1()1(i i A.1+i B.-1+i C.1-i D.-1-i (3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B.|)(|)(x g x f 是奇函数 C.)(|)(|x g x f 是奇函数 D.|)()(|x g x f 是奇函数 (4)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为 A.3 B.m 3 C.3 D.m 3 (5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 A.8 1 B.8 5 C.8 3 D.8 7

(6)如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为 (7)执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=

2017年河南省高考数学试卷(理科)(全国新课标ⅰ)

2017年河南省高考数学试卷(理科)(全国新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合A={x |x <1},B={x |3x <1},则( ) A .A ∩B={x |x <0} B .A ∪B=R C .A ∪B={x |x >1} D .A ∩B=? 2.(5分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14 B .π8 C .12 D .π4 3.(5分)设有下面四个命题 p 1:若复数z 满足1 z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 4.(5分)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 5.(5分)函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( ) A .[﹣2,2] B .[﹣1,1] C .[0,4] D .[1,3]

6.(5分)(1+1 x 2)(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30 D .35 7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16 8.(5分)如图程序框图是为了求出满足3n ﹣2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别填入( ) A .A >1000和n=n +1 B .A >1000和n=n +2 C .A ≤1000和n=n +1 D .A ≤1000和n=n +2 9.(5分)已知曲线C 1:y=cosx ,C 2:y=sin (2x + 2π3 ),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右 平移π 6 个单位长度,得到曲线C 2

2014年高考理科数学试题及参考答案(新课标Ⅱ)

2014年普通高等学校招生全国统一考试(新课标Ⅱ) 理科数学 注意事项 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?= A. {1} B. {2} C. {0,1} D. {1,2} 2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z = A. - 5 B. 5 C. - 4+ i D. - 4 - i 3.设向量a,b 满足|a+b |a-b ,则a ?b = A. 1 B. 2 C. 3 D. 5 4.钝角三角形ABC 的面积是12 ,AB=1, ,则AC= A. 5 B. C. 2 D. 1 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A. 0.8 B. 0.75 C. 0.6 D. 0.45 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 A. 1727 B. 59 C. 1027 D. 13

2014年高考数学理科全国1卷

2014年高考数学理科全国1卷

2014年普通高等学校招生全国统一考试 理科数学 本试题卷共9页,24题(含选考题)。全卷满分150分。考试用时120分钟。 ★祝考试顺利★ 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的 指定位置。用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。 2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域内均无效。 3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ?=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.3 2(1)(1) i i +-=( ) A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )

A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ) A .3 B .3 C .3m D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ) A .18 B .38 C .58 D .78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始 边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M , 将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的 图像大致为( ) 7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A .203 B .165 C .72 D .158 8.设(0,)2πα∈,(0,)2 πβ∈,且1sin tan cos βαβ+=,则( ) A .32π αβ-= B .22π αβ-= C .32π αβ+= D .22π αβ+= 9.不等式组124x y x y +≥??-≤? 的解集记为D .有下面四个命: 1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥,

2018年河南高考数学(文科)高考试题(word版)(附答案)

2018年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02, B .{}12, C .{}0 D .{}21012--, ,,, 2.设1i 2i 1i z -= ++,则z = A .0 B .12 C .1 D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为

A .13 B .12 C D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A . B .12π C . D .10π 6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .31 44AB AC - B .13 44AB AC - C . 31 44 AB AC + D . 13 44 AB AC + 8.已知函数()2 2 2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在 正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A . B . C .3 D .2 10.在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B . C . D .11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a , ,()2B b ,,且 2 cos 23 α= ,则a b -=

2014年浙江高考理科数学试题及答案_word版本

2014年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ? B. }2{ C. }5{ D. }5,2{ (2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm 4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( ) A.向右平移4π 个单位 B.向左平移4π 个单位 C.向右平移12π个单位 D.向左平移12π 个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f , 则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) A.45 B.60 C.120 D. 210 6.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )

2014年全国大纲卷高考理科数学试题真题含答案

2014年普通高等学校统一考试(大纲) 理科 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设103i z i =+,则z 的共轭复数为 ( ) A .13i -+ B .13i -- C .13i + D .13i - 【答案】D . 2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N = ( ) A .(0,4] B .[0,4) C .[1,0)- D .(1,0]- 【答案】B. 3.设sin33,cos55,tan35,a b c =?=?=?则 ( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 【答案】C . 4.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( ) A .2 B C .1 D . 2 【答案】B . 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种 【答案】C .

6.已知椭圆C :22 221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的 直线l 交C 于A 、B 两点,若1AF B ?的周长为C 的方程为 ( ) A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 【答案】A . 7.曲线1x y xe -=在点(1,1)处切线的斜率等于 ( ) A .2e B .e C .2 D .1 【答案】C . 8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814 π B .16π C .9π D .274π 【答案】A . 9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则 21cos AF F ∠=( ) A .14 B .13 C .4 D .3 【答案】A . 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( ) A .6 B .5 C .4 D .3 【答案】C . 11.已知二面角l αβ--为60?,AB α?,AB l ⊥,A 为垂足,CD β?,C l ∈,135ACD ∠=?,则异面直线AB 与CD 所成角的余弦值为 ( )

2016年河南省高考数学试卷及答案(理科)(全国新课标ⅰ)

2016年河南省高考数学试卷(理科)(全国新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() A.B.C.D. 5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离 为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B. C.D. 8.(5分)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c C.alog b c<blog a c D.log a c<log b c 9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、 E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8 11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()

2014年全国高考理科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试 全国课标1理科数学 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准 考证号填写在答题卡上. 2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合 题目要求的一项。 1. 已知集合A={x |2 230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2. 32 (1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 已知F 是双曲线C :2 2 3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A B .3 C D .3m 5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动 的概率

A .18 B .38 C .58 D .78 6. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边 为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A . 203 B .165 C .72 D .158 8. 设(0, )2π α∈,(0,)2 π β∈,且1sin tan cos βαβ+= ,则 A .32 π αβ-= B .22 π αβ-= C .32 π αβ+= D .22 π αβ+= 9. 不等式组1 24x y x y +≥??-≤? 的解集记为D .有下面四个命题: 1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤,4p :(,),21x y D x y ?∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P 10. 已知抛物线C :2 8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦

2014年高考数学全国卷1(理科)

绝密★启用前 2014 年普通高等学校招生全国统一考试 (新课标 I 卷 ) 数 学(理科 ) 一.选择题:共 12 小题,每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合 A={ x | x 2 2x 3 0 } , - ≤<=,则A B = B={ x | 2 x 2 A .[-2,-1] B .[-1,2 ) C .[-1,1] D .[1,2) (1 i )3 2. (1 i ) 2 = A .1 i B .1 i C . 1 i D . 1 i 3.设函数 f ( x) , g( x) 的定义域都为 R ,且 f ( x) 时奇函数, g (x) 是偶函数,则下列结论正确的 是 A . f (x) g( x) 是偶函数 B .| f ( x) | g ( x) 是奇函数 C .f (x) | g( x) 是奇函数 D .|f ( x) g ( x) 是奇函数 | | 4.已知 F 是双曲线 C : x 2 my 2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为 A . 3 B .3 C . 3m D . 3m 5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日 都有同学参加公益活动的概率 A . 1 B . 3 C . 5 D . 7 8 8 8 8 6.如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角 x 的始边 为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP 的距 离表示为 x 的函数 f ( x) ,则 y = f ( x) 在 [0, ]上的图像大致为

河南高考数学考点分析

2014年河南高考数学考点分析 数学高考试题的命制按照“考查基础知识的同时,注重考查能力”的原则,将知识、能力和素质融为一体,全面检测考生的数学素养。在能力要求上,着重对考生的五种能力(空间想象能力,抽象概括能力,推理论证能力,运算求解能力,数据处理能力)和两种意识(应用意识,创新意识)进行考查。试题基本保持大稳定小创新。 下面针对近6年课改区试题按模块进行分析: 模块一不等式(不含选考) 2008年 6. 不等式(恒成立) 2009年 6.线性规划(目标函数为线性); 2010年 8.解不等式 2011年 13.线性规划(线性区域为四边形内部,目标函数为线性) 2012年14.线性规划线性规划(目标函数为线性); 2013年 1.一元二次不等式解法,11分段函数恒成立求参数范围 该部分很少考查纯粹的题目,一般会和其他知识结合考查。单纯考查一般较简单,主要考查不等式性质、解法等和线性规划,最值。学生易忽视不等式性质,线性规划试题很常规,不易过难训练. 模块二函数与导数 2008年 10.定积分21.导数(切线,对称) 2009年12.由指数函数和两个一次函数构成的最小值函数的最值(作图解决); 21.导数(涉及指数和积的导数,求单调区间,证明不等式) 2010年 3.一次分式函数的导数;8.函数(偶函数、不等式);11.分段函数(考查图像);21.指数函数导数(求单调求单调、参数范围) 2011年 2.函数性质判断(奇偶性、单调性);9.求积分;12.函数性质的运用(反比例函数与三角函数的交点问题);21函数解析式为包含对数的分式(根据某点处切线方程求参数,根据不等式求参数) 2012年10.函数图象及性质(涉及对数);12.函数综合(涉及指数和对数);21.导数综合(涉求单调求单调及指数) 2013年 16函数求最值,21函数求解析式,恒成立求参数范围 大题一般考查导数有关的综合问题,注意把导数与不等式证明联系起来,导数题目的难度是相当大的,函数类型涉及有对数型、指数型、三次函数、分式函数。三个二次间的关系,分段函数,三角函数型的要引起重视.学生易在起步求导出错.求导与求定积分要分清。 模块三三角函数与平面向量 2008年 1. 三角函数(周期)3. 三角形(余弦定理)7. 三角求值13. 向量(坐标运算) 2009年 9.根据向量关系式判断点在三角形中的位置); 14. 三角(知图像求表达式);17.三角(正余弦定理进行实际测量的步骤) 2010年 4.三角函数的实际应用;9.三角(涉及二倍角的化简求值);16.解三角形(三角形面积,三角变换) 2011年 5.三角化简求值(二倍角、基本关系式);10.求向量夹角的范围;11.三角函数化简及性质研究;2012年9.三角函数的性质;13.向量运算;17.解三角 2013年 13.向量数量积运算17解三角形 小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实

2014河南高考理科数学真题及答案

2014河南高考理科数学真题及答案 理科数学(一) 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2 230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 【答案】A 【难度】容易 【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解. 2.32 (1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 【答案】D 【难度】容易 【点评】本题考查复数的计算。在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。 3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是

2014年全国高考理科数学试卷及答案(大纲卷)

2014年普通高等学校统一考试(大纲) 理科 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选 项中,只有一项 是符合题目要求的. 1.设103i z i =+,则z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i - 2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =( ) A .(0,4] B .[0,4) C .[1,0)- D .(1,0]- 3.设0sin 33a =,0cos55b =,0tan 35c =,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 4.若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( ) A .2 B C .1 D 5.有6名男医生、5名女医生,从中选出2名男医生、1名女 医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种 6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,过2F 的 直线交C 于A 、B 两点,若1AF B ?的周长为C 的方程为( ) A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 7.曲线1x y xe -=在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .1 8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4, 底面边长为2,则该球的表面积为( )

2014年高考理科数学全国卷1有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页) 绝密★启用前 2014年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考生号填写在答题卡上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|230}A x x x =--≥,{|22}B x x =-<≤,则A B = ( ) A .[2,1]-- B .[1,2)- C .[1,1]- D .[1,2) 2. 3 2 (1i)(1i)+=- ( ) A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是 ( ) A .()f x ()g x 是偶函数 B .|()|f x ()g x 是奇函数 C .()f x |()|g x 是奇函数 D .|()()|f x g x 是奇函数 4.已知F 为双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 ( ) A B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 ( ) A .18 B .38 C . 58 D . 78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示成x 的函数()f x ,则 ()y f x =在[0,π]的图象大致为 ( ) A . B . C . D . 7.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M = ( ) A . 203 B . 72 C .165 D .158 8.设π(0,)2α∈,π(0,)2 β∈,且1sin tan cos β αβ+=,则 ( ) A .π32αβ-= B .π 32αβ+= C .π22αβ-= D .π 22αβ+= 9.不等式组1, 24x y x y +??-?≥≤的解集记为D ,有下面四个命题: 1p :(,)x y D ?∈,22x y +-≥; 2p :(,)x y D ?∈,22x y +≥; 3p :(,)x y D ?∈,23x y +≤; 4p :(,)x y D ?∈,21x y +-≤. 其中的真命题是 ( ) A .2p ,3p B .1p ,2p C .1p ,4p D .1p ,3p 10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个 交点,若4FP FQ =,则||QF = ( ) A .72 B .3 C .52 D .2 11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 ( ) A .(2,)+∞ B .(1,)+∞ C .(,2)-∞- D .(,1)-∞- 12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 ( ) A .B .6 C .D .4 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.8()()x y x y -+的展开式中27x y 的系数为 (用数字填写答案). 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 为圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,2a =,且(2)(sin b A +- sin )()sin B c b C =-,则ABC △面积的最大值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=; (Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由. 姓名________________ 准考证号_____________ -------------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ----------------

2014年高考全国2卷理科数学试题(含解析)

.. 绝密★启用前 2014年高考全国2卷理科数学试题(含解析) 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A.- 5 B.5 C.- 4+ i D.- 4 - i 2.设向量a,b 满足|a+b|=10,|a-b|=6,则a ?b = ( ) A.1 B.2 C.3 D.5 3.钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( ) A.5 B.5 C.2 D.1 4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45 5.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A.1727 B.59 C.1027 D.1 3 6.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A.4 B.5 C.6 D.7 7.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A.0 B.1 C.2 D.3 8.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则 △OAB 的面积为( ) A.334 B.938 C.6332 D.94 9.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( ) A.110 B.25 C.3010 D.22 10.设函数()3sin x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +

河南省2017年高考理科试题及答案汇总(Word版)

河南省2017年高考理科试题及答案汇总 (Word版) 语文------------------- 2~12 理科综合-------------------13~38 理科数学-------------------39~48 英语--------------------49~61

河南省2017年高考语文试题及答案 (word版) (考试时间:120分钟试卷满分:150分) 一、现代文阅读(35分) (一)论述类文本阅读(本题共3小题,9分) 阅读下面的文字,完成1~3题。 气候正义是环境正义在气候变化领域的具体发展和体现。2000年前后,一些非政府组织承袭环境正义运动的精神。开始对气候变化的影响进行伦理审视,气候正义便应运而生。气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。 从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。 从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。我们这一代既是受益人,有权使用并受益于地球,又是受托人,为下一代掌管地球。我们作为地球的受托管理人,对子孙后代负有道德义务。实际上,气候变化公约或协定把长期目标设定为保护气候系统免受人为原因引起的温室气体排放导致的干扰,其目的正是为了保护地球气候系统,这是符合后代利益的。至少从我们当代人已有的科学认识来看,气候正义的本质是为了保护后代的利益,而非为其设定义务。 总之,气候正义既有空间的维度,也有时间的维度,既涉及国际公平和国内公平,也涉及代际公平和代内公平。因此,气候正义的内涵是:所有国家、地区和个人都有平等地使用、享受气候容量的权利,也应公平地分担稳定气候系统的义务和成本。

相关文档
最新文档