立体几何中用传统法求空间角

立体几何中用传统法求空间角
立体几何中用传统法求空间角

-立体几何中的传统法求空间角

知识点:

一.异面直线所成角:平移法

二.线面角

1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否

有面面垂直的结构,找到交线,作交线的垂线即可。

2.用等体积法求出点到面的距离 sinA=d/PA

三.求二面角的方法

1、直接用定义找,暂不做任何辅助线;

2、三垂线法找二面角的平面角.

例一:如图,在正方体错误!未找到引用源。中,错误!未找到引

用源。、错误!未找到引用源。分别是错误!未找到引用源。、

错误!未找到引用源。的中点,则异面直线错误!未找到引用源。与错误!未找到引用源。所成的角的大小是______90______.

考向二线面角

例二、如图,在四棱锥P-ABCD中,底面ABCD是矩形,

AD⊥PD,BC=1,PC=23,PD=CD=2.

(I)求异面直线PA与BC所成角的正切值;

(II)证明平面PDC⊥平面ABCD;

(III)求直线PB与平面ABCD所成角的正弦值。

N

M

B1

A1

C1 D1

B

D C A

如图

三棱锥

P ABC

-中,

PA ⊥底面

,,60,90ABC PA AB ABC BCA ??=∠=∠=,

点D ,E 分别在棱,PB PC 上,且//DE BC

(Ⅰ)求证:BC ⊥平面PAC ;

(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值;

(Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC.

又90BCA ?

∠=,∴AC ⊥BC.

∴BC ⊥平面PAC.

(Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1

2

DE BC =

, 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E.

∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=AB , ∴△ABP 为等腰直角三角形,∴2

AD AB =

, ∴在Rt △ABC 中,60ABC ?

∠=,∴1

2

BC AB =

. ∴在Rt △ADE 中,2

sin 24

DE BC DAE AD AD ∠=

==,

考向三: 二面角问题 在图中做出下面例题中二面角

例三:.定义法(2011广东理18)

如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,2PA PD ==,PB=2,

E,F 分别是BC,PC 的中点.

(1) 证明:AD ⊥平面DEF;

(2) 求二面角P-AD-B 的余弦值.

法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。

因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为等

边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面PBG ,.AD PB AD GB ?⊥⊥

又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥平

面DEF 。

(2),PG AD BG AD ⊥⊥Q ,

PGB ∴∠为二面角P —AD —B 的平面角,

2227,4Rt PAG PG PA AG ?=-=

3Rt ABG ???中,BG=AB sin60

2

2

2

734

21

44cos 2773

2PG BG PB PGB PG BG +-+-∴∠===-

???

法二:(1)取AD 中点为G ,因为,.PA PD PG AD =⊥

又,60,AB AD DAB ABD =∠=??为等边三角形,因此,BG AD ⊥,从而AD ⊥平

面PBG 。 延长BG 到O 且使得PO ⊥OB ,又PO ?平面PBG ,PO ⊥AD ,,AD OB G ?= 所以PO ⊥平面ABCD 。

以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD

的直线为y 轴,建立如图所示空间直角坐标系。

设11

(0,0,),(,0,0),(,,0),(,,0).

22P m G n A n D n -则

3||||sin 602GB AB =?=

u u u r u u u r

Q

333131(((,0),(,).2222n m B n C n E n F ∴+

+++

由于

33(0,1,0),(()

22n m AD DE FE ===+-u u u r u u u r u u u r 得0,0,,,AD DE AD FE AD DE AD FE DE FE E ?=?=⊥⊥?=u u u r u u u r u u u r u u u r

AD ∴⊥平面DEF 。

(2)13(,,),()

22PA n m PB n m =--=+-u u u r u u u r Q

22221332,()2,1,42m n n m m n ++

=++===解之得

取平面ABD 的法向量1(0,0,1),n =-

设平面PAD 的法向量

2(,,)

n a b c =

由22330,0,0,0,

2222b b

PA n a c PD n a c ?=--=?=+-=u u u r u u u r 得由 取

23n =

123

212cos ,77

14n n ∴<>=

=-?

2、三垂线定理法

例四.(广东省惠州市2013届高三第三次调研理)(本小题满分14分)如图,在长方体

1111

ABCD A B C D -中,

11

AD AA ==,2AB =,点E 在棱AB 上移动.

(1)证明:

11D E A D

⊥;

(2)当E 点为AB 的中点时,求点E 到平面

1

ACD 的距离;

(3)AE 等于何值时,二面角1D EC D

--的大小为4π

18.(本小题满分14分) (1)证明:如图,连接

1D B

,依题意有:在长方形

11

A ADD 中,

11

AD AA ==,

1111111111111A ADD A D AD A D AD B AB A ADD AB A D A D D E

D E AD B AD AB A ?

⊥?

?⊥?

?⊥?⊥?⊥????

?=?

I 四边形平面又平面平面.……… 4分

∴点E 到平面1

ACD 的距离为1

3. ………………………………………………… 8分 (3)解:过D 作DF EC ⊥交EC 于F ,连接1D F .由三垂线定理可知,1DFD ∠为二面

1D EC D

--的平面角.

14DFD π

∠=

12D DF π

∠=

,111D D DF =?=. ……………………… 10分

1sin 26DF DCF DCF DC π∠=

=?∠=,∴3BCF π

∠=.…………………… 12分

tan

33

BE

BE BC π

=

?=23AE AB BE =-=-.

故23AE =-时,二面角1D EC D

--的平面角为4π

.…………………………… 14分

练习. 如图,在四面体A BCD -中,2,2,1AB AD BD DC ====,且BD DC ⊥,二

面角A BD C --大小为60o

(1)求证:平面ABC ⊥平面BCD ;

(2)求直线CD 与平面ABC 所成角的正弦值.

17.解:(1)在四面体A BCD -中,取BD BC 、中点分别为 M N 、,连接MN ,则//MN DC BD DC ⊥Q ,则MN BD ⊥ 又2AD AB ==

则AM BD ⊥

AMN ∴∠中,1

1,2

AM MN == 60AMN ∠=o ,

可知90ANM ∠=o

又BD ⊥面AMN ,则BD AN ⊥

AN ∴和两相交直线BD 及MN 均垂直,从而AN ⊥面BDC

又面ABC 经过直线AN ,故面ABC ⊥面BCD …………………………(6分)

(2)由(1)可知平面ABC ⊥平面BDC

过D 向BC 作垂线于足H ,从而DH ⊥面ABC

过Rt BDC V 中,2,1BD DC ==,则5

DH = 于是DC 与平面ABC 所成角即DCH ∠ 25

sin 5

DCH ∴∠=

= 因此直线CD 与平面ABC 所成角的正弦值为25

5

.…………………………(12分)

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

立体几何中的角度问题

立体几何题中的角度问题 一.异面直线所成的角 例1.(2011年宁波)正方体1111D C B A ABCD -中, (1).求D A AC 1与所成角的大小. (2).若E 、F 分别为AB 、AD 的中点,求11C A 与EF 所成角大小. 练习:1.A 是ΔBCD 平面外的一点,E 、F 分别是BC 、AD 的中点,AC ⊥BD.AC=BD.求EF 与BD 所成的角. 2.如图,在三棱锥S�ABC 中,,SA=AC=BC.求异 面直线SC 与AB 所成角的大小。 3.长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角的余弦值。

二.直线与平面所成角 例 2.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD 中,PA⊥面 ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点. (Ⅰ)证明:BD⊥面PAC ; (Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC⊥面BGD,求 PG GC 的值. 练习:1(2013年高考天津卷(文))如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱 长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ; (Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1; (Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值. 错误!未指定书签。 2(2013年高考大纲卷(文))已知正四棱柱 1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( ) A . 23 B . 33 C . 23 D . 13

求空间角的常用方法

求空间角的常用方法(两课时) 张一生 1.定义法————根据定义,把空间角转化为平面角求解. 例1.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的正弦值大小; (Ⅲ)求点C 到平面APB 的距离. [ 3 ] 例2. 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,, 60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明AE ⊥平面PCD ; (Ⅲ)求二面角A PD C --的正弦值大小. 2.选点平移法——选择适当的点,通过作平行线,构造出所要求的空间角. 例3.如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD = ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥ AD ,AD =2AB =2BC =2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的正切值;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为 AQ QD 的值;若不存在,请说明理由. 3.垂线法————当已知条件中出现二面角中一个半平面内一点到另一个半平面垂线时(或虽未给出这样的垂线,但由已知条件能作出这样的线),可依据三垂线定理或其逆定理作出它的平面角,然后再求解. 例4.如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点 E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ;(Ⅱ)求二面角1A DE B --的正切. A B D P A C D P E A B C D E A 1 B 1 C 1 D 1 F H G

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

立体几何中的求角问题

立 体 几 何 中 的 求 角 问 题 集美中学数学组 刘 海 江 一、记一记,填一填,这些知识你掌握了吗? 1、 两条异面直线所成的角θ的范围是 ,当θ= 时,这两条异面直线互相垂直。 ☆异面直线所成角的求法: (1)平移(做平行线)其中一条或两条直线,使之同在某一三角形中,通过解三角形求出所求的角。 (2)利用向量夹角来求:设异面直线b a ,的方向向量为,,则直线b a ,的夹角θ由公式||||cos b a ?=θ, 2、 斜线AO 与它在平面α内的射影AB 所成的角1θ叫做 。设AC 是α内的一条直线,AO 与AC 所成的角为θ,AB 与AC 所成的角为θ2,则θ1、θ2、θ的余弦值关系是________________. 3、平面的斜线和平面所成的角,是这条斜线和这个平面内的任一条直线所成的角中__________. 如果直线和平面垂直,那么就说_______________. 如果直线和平面平行或在平面内,那么说______________. 4、直线和平面所成的角的范围为_____________. 5、斜线和所交平面所成的角的范围为__________. 6、直线与平面所成的角(设为θ) (1)斜线与平面所成的角的定义:平面的一条斜线和它在这个平面内的_____________ 所成的________________,叫做这条直线和这个平面所成的角。 (2)当一条直线__________于平面时,规定它们所成的角是直角;当一条直线和平面 ___________或_________时,规定它们所成的角为________________. (3)填写下表: 在直线与平面所成的角的定义中体现_________和___________数学思想. (4)斜线和平面所成的角的最小性:斜线和平面所成的角是用两条相交直线所成的_____________来定义的,其中一条直线就是斜线本身,另一条直线就是斜线在平面上的___________________.在平面内经过斜足的直线有无数条,;它们和斜线都组成相交的两条直线,为什么选中射影和斜线这两条相交直线,用它们所成的____________来定

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

综合法求空间角专题

D C B A C 1 B 1 D 1 A 1 教学过程 一、【历次错题讲解】 二、【基础知识梳理】 高考要求:空间角的计算在高考中通常有一道解答题,题目为中等难度,这是作为立体几何中重点考查的内容之一,解题时要注意计算与证明相结合. 知识与方法整理: 空间角 异面直线所成的 角 直线和平面所成的 角 二面角 定义 范围 图示 求空间角的一般步骤是:(一“作”;二“证”;三“求”) (1)找出或作出有关的图形(将空间角转化为平面上的角研究); (2)证明此角为所求角; (3)计算。 三、【例题讲解】 (一)异面直线夹角问题 例1、(1)如图,正棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 (2) 如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA= 90,点D 1、 F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成的角 的余弦值_________ (3)如图,在棱长为a 的正方体1111D C B A ABCD -,E 分别为BC 的中点, 直线C A 1与DE 所成的角等于 小结:线线角抓平行线 要求异面直线夹角,关键是将两条直线平移到同一平面上,将空间角转化为平面角。 异面直线所成的角求法:①平移法 ②割补法 (二)线面夹角问题 O

(A)60O (B)45O (C) 90O (D)30O (2)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且 2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥; (II )求CM 与平面CDE 所成的角. 小结:线面角抓面垂线(定射影)要求直线与平面所成的角,关键是找到直线在此平面上的射影,为此,必须在这条直线上的某一点处作一条(或找一条)平面的垂线。 斜线与平面所成的角求法:定义法 (三)二面角问题 例3、(1)四边形ABCD 是正方形,P 是平面ABCD 外一点,且⊥PA 平面ABCD ,PA=AB=a ,则二面角D PC B --的大小为 。 (2)在二面角βα--l 的一个平面α内有一条直线AB ,它与棱的夹角为?45,AB 与平面β所成的角为?30,则二面角的大小为 ; (3)二面角βα--l 是锐角,空间一点P 到βα,和棱的距离分别是22,4和 24,则这个二面角的度数为( ) A 、?30或?45 B 、?15或?75 C 、?30或?60 D 、?15或?60 (4)如图,△ABC 中,∠ABC= 30,PA⊥平面ABC,PC⊥BC ,PB 与平面ABC 成45°角,①求证:平面PBC ⊥平面PAC ;②求二面角A —PB —C 的正弦值。

立体几何之空间角(经典)

中小学1对1课外辅导专家 武汉龙文教育学科辅导讲义 授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课 使用教具 讲义、纸、笔 教学目标 熟悉高考中立体几何题型的一般解法 教学重点和难点 重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题 教学流程及授课详案 【知识讲解】 空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:o o 900≤<α; 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以 通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 (2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90; ③斜线与平面所成的角:范围o o 900<<α;即也就是斜线与它在平面内的射影所成的角。 (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法; 注意:还可以用射影法:S S ' cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封 闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。一般用于解选择、填空题。 时 间 分 配 及 备 注

【题海拾贝】 例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. EF平面P AD; (1)求证:// (2)当平面PCD与平面ABCD成多大二面角时, EF平面PCD? 直线 例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a, F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.

立体几何——面角问题方法归纳

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成 最大角的正切值为 2 ,求二面角E —AF —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P - 中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是 CD 的中点,P A ⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小. 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 A B C E D P E A B C F E A B C D D

立体几何专题复习空间角的求法(三)

立体几何专题复习-----空间角的求法(三) (一)异面直线所成的角: 定义:已知两条异面直线a,b,经过空间任一点0作直线a //a,b //b, a ,b■所成的角的大小与点0的选择无关,把a,b?所成的锐角(或直角)叫异面直线a,b所成的角(或夹角)?为了简便,点0通常取在异面直线的一条上? (1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。 (2)异面直线所成的角的范围:(0,—]. 2 (3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直?两条异面直线a,b垂直,记作a_b. (4)求异面直线所成的角的方法: 法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线; 法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求+ (二)直线和平面所成的角 1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 2.记作:二;3 、范围:0,】1; 当一条直线垂直于平面时,所成的角二 2 即直线与平面垂直; 2 当一条直线平行于平面或在平面内,所成角为二二0。 3.求线面角的一般步骤: (1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线 I 面角;(3)解直角三角形。cos^=L,sin日 l l (三)二面角 1.二面角的平面角: (1)过二面角的棱上的一点O分别在两个半平面内作棱的两条垂线 OA,OB,则AOB叫做二面角〉-丨- 一:的平面角. (2)一个平面垂直于二面角〉-丨- 1的棱丨,且与两半平面交线分别为0A,0B,0 为垂足,则.A0B也是〉-丨- 1的平面角* 说明:(1)二面角的平面角范围是[0:,180打; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平

空间角的求法精品(优秀教案)

空间角的求法精品(优秀教案)

————————————————————————————————作者:————————————————————————————————日期: 2

P C D B A 空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。空间角是异面直线所成的角、直线与平面所成的角及二面角总称。 空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。 空间角的求法一般是:一找、二证、三计算。 一、异面直线所成角的求法 异面直线所成的角的范围:090θ<≤o o (一)平移法 【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=o ,PA ⊥平面AC ,且2BC =, 1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。 【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE ,则PC 与BD 所成的角为PCE ∠或它的补角。 2CE BD == Q ,且2210PE PA AE =+= ∴由余弦定理得 2223 cos 26PC CE PE PCE PC CE +-∠==-? ∴PC 与BD 所成角的余弦值为 6 3 (二)补形法 【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。求异面直线1AB 与1BC 所成角的余弦值。 【答案】1 25 A 1 C 1 C B A B 1 D

A B C P 二、直线与平面所成角 直线与平面所成角的范围:090θ≤≤o o 方法:射影转化法(关键是作垂线,找射影) 【例2】如图,在三棱锥P ABC -中,90APB ∠=o ,60PAB ∠=o ,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。 【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角 设AB 的中点为D ,连接,PD CD 。 AB BC CA ==Q ,所以CD AB ⊥ 90,60APB PAB ∠=∠=o o Q ,所以PAD ?为等边三角形。 不妨设2PA =,则1,3,4OD OP AB == = 2223,13CD OC OD CD ∴==+= 在Rt OCP ?中,339 tan 1313 OP OCP OC ∠= == 【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。 2AB BC ==,1CD SD ==,求AB 与平面SBC 所成的角的大小。 【解】由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE 作SF DE ⊥,垂足为F ,则SF ⊥平面ABCD ,3 2 SD SE SF DE ?== 作FG BC ⊥,垂足为G ,则1FG DC == 连结SG ,则SG BC ⊥,又BC FG ⊥,SG FG G =I 故BC ⊥平面SFG ,平面SBC ⊥平面SFG 作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 217SF FG FH SG ?= =,即F 到平面SBC 的距离为21 7 由于//ED BC ,所以//ED 平面SBC ,故E 到平面SBC 的距离d 也为 21 7 设AB 与平面SBC 所成的角为α,则21sin 7d EB α==,则21arcsin 7 α=

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

题型五立体几何中的空间角问题

题型五立体几何中的空间角问题 1.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求直线BF和平面BCE所成角的正弦值. 2.(2011·湖南)如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,C是AB的中点,D为AC的中点. (1)证明:平面POD⊥平面P AC; (2)求二面角B—P A—C的余弦值.

答案 1.(1)证明 设AD =DE =2AB =2a ,以A 为原点,AC 为x 轴,AB 为z 轴,建立如图所示的直角坐 标系A —xyz , 则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ). 因为F 为CD 的中点, 所以F ??? ?32a ,32a ,0. AF →=??? ?32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a,0,-a ). 因为AF →=12 (BE →+BC →),AF ?平面BCE , 所以AF ∥平面BCE . (2)证明 因为AF →=??? ?32a ,32a ,0,CD →=(-a ,3a,0), ED →=(0,0,-2a ),故AF →·CD →=0, AF →·ED →=0,所以AF →⊥CD →,AF →⊥ED →. 所以AF →⊥平面CDE . 又AF ∥平面BCE ,所以平面BCE ⊥平面CDE . (3)解 设平面BCE 的法向量为n =(x ,y ,z ). 由n ·BE →=0,n ·BC →=0, 可得x +3y +z =0,2x -z =0,取n =(1,-3,2). 又BF →=??? ?32a ,32a ,-a ,设BF 和平面BCE 所成的角为θ, 则sin θ=|BF →·n ||BF →||n |=2a 2a · 22=24. 所以直线BF 和平面BCE 所成角的正弦值为24 . 2.方法一 (1)证明 如图,连接OC ,因为OA =OC ,D 是AC 的中点,所以AC ⊥OD . 又PO ⊥底面⊙O ,AC ?底面⊙O , 所以AC ⊥PO .

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题 高考定位 以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查,高考注重以传统方法解决空间角问题,但也可利用空间向量来求解. 真 题 感 悟 (2017·浙江卷)如图,已知四棱锥P -ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点. (1)证明:CE ∥平面P AB ; (2)求直线CE 与平面PBC 所成角的正弦值. 法一 (1)证明 如图, 设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF =1 2AD , 又因为BC ∥AD ,BC =1 2AD , 所以EF ∥BC 且EF =BC , 即四边形BCEF 为平行四边形,所以CE ∥BF . 又因为CE ?平面P AB ,BF ?平面P AB , 因此CE ∥平面P AB . (2)解 分别取BC ,AD 的中点为M ,N , 连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点,

在平行四边形BCEF 中,MQ ∥CE . 由△P AD 为等腰直角三角形得PN ⊥AD . 由DC ⊥AD ,N 是AD 的中点得BN ⊥AD . 因为PN ∩BN =N ,所以AD ⊥平面PBN . 由BC ∥AD 得BC ⊥平面PBN , 因为BC ?平面PBC ,所以平面PBC ⊥平面PBN . 过点Q 作PB 的垂线,垂足为H ,则QH ⊥平面PBC .连接MH ,则MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1. 在△PCD 中,由PC =2,CD =1,PD =2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =1 4, 在Rt △MQH 中,QH =1 4,MQ =2, 所以sin ∠QMH =2 8, 所以,直线CE 与平面PBC 所成角的正弦值是2 8. 法二 过P 作PH ⊥CD ,交CD 的延长线于点H .不妨设AD =2,∵BC ∥AD ,CD ⊥AD ,则易求DH =1 2,过P 作底面的垂线,垂足为O ,连接OB ,OH ,易得OH ∥BC ,且OP ,OB ,OH 两两垂直.故可以O 为原点,以OH ,OB ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示. (1)证明 由PC =AD =2DC =2CB ,E 为PD 的中点,则可得: D ? ????-1,12,0,C ? ????-1,32,0,P ? ????0,0,32,A ? ????1,12,0,B ? ? ???0,32,0,E ? ?? ??-12,14,34,

第8讲立体几何中的向量方法求空间角 (1)

第8讲立体几何中的向量方法(二)——求空间角 一、选择题 1.(2016·长沙模拟)在正方体A1B1C1D1-ABCD中,AC与B1D所成的角的大小为() A.π 6 B. π 4 C. π 3 D. π 2 解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0). ∴AC→=(1,1,0),B1D →=(-1,1,-1), ∵AC→·B1D →=1×(-1)+1×1+0×(-1)=0, ∴AC→⊥B1D →, ∴AC与B1D所成的角为π2. 答案 D 2.(2017·郑州调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为() A. 3 2 B. 3 3 C. 3 5 D. 2 5 解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如 图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1, 0),D1(0,0,1), 所以BB1→=(0,0,1),AC→=(-1,1,0),AD1 →=(-1,0,1). 令平面ACD1的法向量为n=(x,y,z),则n·AC→=-x+y=0,n·AD1 →=-x+z =0,令x=1,可得n=(1,1,1),

所以sin θ=|cos 〈n ,BB 1→ 〉|=13×1=3 3 . 答案 B 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1, 则A 1(0,0,1), E ? ????1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=? ????1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有???A 1D →·n 1=0,A 1E →·n 1=0,即???y -z =0,1-12z =0,解得????? y =2,z =2. ∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为2 3. 答案 B 4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

相关文档
最新文档