最新数学建模经典案例:最优截断切割问题
木材最优切割

五一数学建模竞赛承诺书我们仔细阅读了五一数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们授权五一数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
参赛题号(从A/B/C 中选择一项填写): B参赛队号:参赛组别(研究生、本科、专科、高中):所属学校(学校全称):参赛队员:队员1 姓名:XXX队员2 姓名:XXX队员3 姓名:XXX联系方式:Email:联系电话:日期:年月日(除本页外不允许出现学校及个人信息)五一数学建模竞赛题目:木料切割最优化问题关键词:矩形件下料切割问题guillotine摘要:随着社会的发展、人们对环境资源的重视,提高材料的利用率、获得最大利润就成了不可避免的问题,而解决这个问题的关键就是对产品的生产进行紧凑型的布局。
本文旨在解决家具厂木料的切割问题,由一维问题(或者说是 1.5 维问题)递推到二维问题,通过寻找合适的切割方法(采用guillotine ,贪心启发式算法的多目标二维切割),使得我们从目标木板上切割出的所需产品的面积和最大或者利润最大,后对方案进行优化处理,最终得出最优方案。
问题一用guillotine 方法切割可得一块木板上P1 最多能切割59 个。
问题二在问题一的基础上,通过迭代的方法,分析得出前三甲利用率分别为99.64%,99.23%和99.03%的最佳方案。
问题三又在问题二的基础上,引入了生产任务作为限制因素,并结合贪心启发式算法的多目标二维切割和问题使问题得到解决。
数学建模(金属板切割)

数学模型姓名:***129084106程根129084107王刚129084124金属板切割问题在一个金属板加工车间有一项长期的业务订单,订单要求除周六周日外每天提供如下表所车间将从尺寸为 54 cm× 1)为生产出满足每天的订单要求的金属板,最少可以使用多少块大块金属板?如订单企业要求每两周供货一次,能否给车间带来更多的利益?2)裁剪小块的金属板的裁剪方式太多会带来较高的成本,若要求每次裁剪时裁剪方式不超过三种,再考虑问题1)。
3) 若大块金属也是从市场上购买的,其价格与面积成正比。
市场上除现有的规格金属板外,还有另外三种规格的的金属板,其尺寸分别为: 48 cm×96 cm ,72 cm×120 cm ,90 cm×148 cm 。
a)若只能使用一种大金属板裁剪,来满足该长期订单的要求,是否需要换一种规格的大金属板?如更换,换那种规格的,其完成订单要求能节省多少成本。
b )若组合使用这四种大块金属板,其完成订单要求又能节省多少成本。
分析题目,我们可知,大金属板的切割方式有很多种,即使在省材料的情况下也是如此,当然,如果所有的切割方式让我们列举出来,我们就可以把题目转换成线性问题,因为切割方式太多,我们把四个小金属板分类。
四个小金属板可以组成1544342414=+++C C C C 种,在前面的例子中可以看到每一小金属板种类可能切出不同的数量组合。
通过这种分类方式,把大金属板分成小金属板,将问题转线性规划问题。
通过上述分类将问题给出的大金属板分割,给以每一种切割模式一种变量x i ,那么所得到的小金属板就可以用这些变量x i 来表示,在要求的小金属板数这一约束条件下通过LINGO 程序解出结果。
有上述知问题(1)直接可以得出。
若分别给变量x i 一个系数并赋予成0或1变量,只允许其中三个可以为正整数,其余为零。
通过问题(1)就可以解决问题(2)。
对于问题(3),同样的对问题给出的另外三种规格的金属板分割,可分别对每一金属板按照问题(1)计算,并可将四种金属板的分割当作一个新大金属板的分割,添加价格系数在其中,编写LINGO 程序求解。
最优截断切割问题

1 n 720 (n) knife (n) cut 1 n 720 k 1
(n) ( ( F } min {e f (v ) p (m kn ) )s (v kn ) )}
若 n n 时有
6 ( n ) ( e f (v ) p(mk ) s(vkn ) ) Fmin k 1
h ( h(2), h(1), h(5), h(3), h(4), h(6) ) ( 1, 6, 9, 7, 5.5, 6 ) 则 t1 (a1 , b1 , c1 ) ( 10, 14.5, 19 ) , t2 (a2 , b2 , c2 ) t1 (a1 , b1 , c1 ) ( 9, 14.5, 19 ) t1 h(2)(1,0,0) , t3 (a3 , b3 , c3 ) t2 (a2 , b2 , c2 ) ( 3, 14.5, 19 ) t2 h(1)(1,0,0) , t4 (a4 , b4 , c4 ) t3 (a3 , b3 , c3 ) ( 3, 14.5, 10 ) t3 h(5)(0,0,1) , t5 (a5 , b5 , c5 ) t4 (a4 , b4 , c4 ) ( 3, 7.5, 10 ) t4 h(3)(0,1,0) , t6 (a6 , b6 , c6 ) t5 (a5 , b5 , c5 ) ( 3, 2, 10 ) t5 h(4)(0,1,0) , t6 (a6 , b6 , c6 ) ( 3, 2, 4 ) t6 h(6)(0,0,1) . k 1, 2,3, 4,5 tk 1 tk tk h(vk )em(vk ) ,
木板最优切割方案数学建模

木板最优切割方案数学建模
我们可以使用线性方程组来求解木板最优切割方案。
具体如下:
minimize
f(某)=(某_1-某_2)^2+(某_3-某_4)^2
subject to
某_1<=某_2<=某_3<=某_4
可以看出,木板的最优切割方案就是使得某_1、某_2、某_3、某_4大小相等的方案。
对于实际的切割过程,可以使用线性规划的求解器来求解最优切割方案,如下所示:
import math
import linprog
def BoardCut(board,某1,某2,某3,某4):
'''
function to find the best way to cut a board
board: the board to be cut
某1,某2,某3,某4: the coordinates of the corners of the board
'''
# create the constraint matri某A=[[某1-某2],[某3-某4]]
# create the objective function obj = [某1-某2,某3-某4]
# solve the linear program
lp = linprog.LinearProgram。
lp.add_constraint(A)
lp.add_objective(obj)
lp.solve。
# return the optimal solution
某 = lp.get Solution。
最优切割问题

————最优切割问题99131059 魏炜一:问题的提出某些工业部门(如贵重石才的加工等)采用截断切割的加工方式。
这里“截断切割”是指将物体沿某个切割平面分成两个部分。
从一个长方体中加工出一个已知尺寸位置预定的长方体(这个长方体的对应表面是平行的),通常要经过6次截断切割。
设水平切割单位面积的费用是垂直切割单位面积的r倍,且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e。
试为这些部门设计一种安排个面加工次序的方法。
待加工的长方体和成品的长,宽,高分别为10,14.5,19和3,2,4两者左侧面,正面,底面之间的距离分别为6 ,7,9(单位均为厘米)垂直切割的费用为每平方厘米1元。
r和e数据如下(a)r=1,e=0 (b)r=1.5 e=2二:问题的分析刚拿到这个题目时,还是很茫然的,不知应该用什么样的方法进行解答,当学到图与网络分析的时候,突然觉得这道题是不是可以用最短路的来求解呢?抱着试试看的心里,我将问题成功的转换成了求一个图的最短路的问题,而我们要求最短路就是要先求出每一条边所表示的权重。
三:问题的解决设待加工体的长、宽、高分别为a0、b0、c0。
六个切割面分别位于左、右、前后、上下相应为S1、S2、S3、S4、S5、S6。
这六个面与成品的相应外测面的距离分别为d1、d2、d3、d4、d5、d6。
不失一般性设d1>=d2、d3>=d4、d5>=d6。
故可以只考虑S1在S2前、S3在S4前、S5在S6前被切割的方式。
I:e=0 r=1 的情形。
先考虑如何建立图形。
将切割问题转化为求图的最短路径问题。
赋权网络图G*的建立。
由于共计切6刀,因此我们想到要建立一个三维网络图:① 图形的解释。
图中各个点表示每个切割状态。
例如)0,0,0(1v 表示最初状态,)2,2,2(27v 表示已经切割完毕。
)0,2,1(8v 表示左前被切一刀,前后各被切一刀,上下没有被切。
最短路问题(讲稿),截断切割题目与参考答案,最优截断切割问题参考案例

截断切割B题截断切割题目某些工业部门(如贵重石材加工等)采用截断切割的加工方式。
这里“截断切割”是指将物体沿某个切割平面分成两部分。
从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长主体的对应表面是平行的)通常要经过6次截断切割。
设水平切割单位面积的费用是垂直切割单位面积费用的r倍,且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试为这些部门设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。
(由工艺要求,与水平工作台接触的长方体底面是事先指定的)详细要求如下:1、需考虑的不同切割方式的总数2、给出上述问题的数学模型和求解方法。
1、试对某部门用的如下准则作出评价:每次选择一个加工费用最少的待切割面进行切割。
2、对于e=0的情形有无简明的优化准则。
3、用以下实例验证你的方法:待加工长方体和成品长方体的长、宽、高分别为10、14.5、19和3、2、4,二者左侧面、正面、底面之间的距离分别为6、7、9(单位均为厘米)。
垂直切割费用为每平方厘米1元,r和e的数据有以下4组:a.r=1 e=0 ;b.r=1.5 e=0 ;c.r=8 ,e=0 ;d.r=1.5;2≤e≤15对最后一组数据应给出所有最优解,并进行讨论。
B题截断切割参考答案(1)需考虑的不同切割方式的总数V中共有6!=720个不同的元素,因此有720种不同的切割方式,注意到相继二次切割一对平行的平面时,交换这二次切割的先后次序不影响对应切割方式的费用,将费用相同的切割方式归成一类,每类取一种切割方式作不代表,此时仅需考虑加工费用可能不同的切割方式426种。
(2)问题归结为求一个定义在6个切割面排列次序的全体或它的一个子集上的函数的最小值。
目标函数应尽量用显式写出。
求解可用枚举法,分支定界法或其它方法,从尽可能简便有效作为评价标准:(3)一种作法如下:在直角坐标系中,表面平行于坐标平面的长方体可表示为{(x,y,z),(a,b,c)},其中(x,y,z)为长方体某指定角点的坐标,a,b,c分别为它的长、宽、高。
数学建模---最优化的有效切割问题

约束 满足需求 4 x1 3x2 2 x3 x4 x5 50
x2 2 x4 x5 3x6 20 x3 x5 2 x7 15
26 x1 x2 x3 31
x1 x2 x3
模式排列顺序可任定
计算结果
• 模式1:每根原料钢管切割成3根4米和1根6 米钢管,共10根; • 模式2:每根原料钢管切割成2根4米、1根5 米和1根6米钢管,共10根; • 模式3:每根原料钢管切割成2根8米钢管, 共8根。 • 原料钢管总根数为28根。
整数非线性规划模型
钢管下料问题2
增加约束,缩小可行域,便于求解
每根原料钢管长19米
需求:4米50根,5米10 根,6米20根,8米15根
4 50 5 10 6 20 8 15 26 原料钢管总根数下界: 19
特殊生产计划:对每根原料钢管 模式1:切割成4根4米钢管,需13根; 模式2:切割成1根5米和2根6米钢管,需10根; 模式3:切割成2根8米钢管,需8根。 原料钢管总根数上界:13+10+8=31
钢管下料问题2 目标函数(总根数)
Min x1 x2 x3
模式合理:每根 余料不超过3米
约束 条件
满足需求
r11 x1 r12 x2 r13 x3 50
r21 x1 r22 x2 r23 x3 10
16 4r11 5r21 6r31 8r41 19
数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题一、 问 题从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍。
且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。
二、 假 设1、假设水平切割单位面积的费用为r,垂直切割单位面积费用为1;2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e;3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割.三、 模型的建立与求解设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b 0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M 4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式。
当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑 P 6622290!!!⨯⨯=种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u 1≥u2,u3≥u 4,u5≥u6,故只考虑M1在M2前、M 3在M 4前、M5在M6前的切割方式。
1、 e=0 的情况为简单起见,先考虑e=0 的情况.构造如图9—13的一个有向赋权网络图G(V,E)。
为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.图9—13 G(V,E)图G(V,E)的含义为:(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0)表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模案例:最优截断切割问题
一、 问 题
从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少.
二、 假 设
1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1;
2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ;
3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用;
4 、每个待加工长方体都必须经过6次截断切割.
三、 模型的建立与求解
设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.
由此准则,只需考虑 P 6622290!!!
⨯⨯=种切割方式.即在求最少加工费用时,
只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.
1、 e=0 的情况
为简单起见,先考虑e=0 的情况.构造如图9-13的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.
图9-13 G(V,E)
图G(V,E)的含义为:
(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.
(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用.
W(Vi,Vj)=(xj-xi)⨯(bi⨯ci)+(yj-yi)⨯(ai⨯ci)+(zj-zi)⨯(ai⨯bi)⨯r
其中,ai、bi、ci分别代表在状态Vi时,长方体的左右面、上下面、前后面之间的距离.
例如,状态V5(1,1,0),a5 = a0-u1,b5 = b0-u3,c5 = c0;状态V6(2,1,0)W(V5,V6) =(b0-u3)⨯c0
(3)根据准则知第一刀有三种选择,即第一刀应切M1、M3、M5中的某个面,在图中分别对应的弧为( V1,V2),(V1,V4),(V1,V10). 图G中从V1到V27的任意一条有向道路代表一种切割方式.从V1到V27共有90条有向道路,对应着所考虑的90种切割方式.V1到V27的最短路即为最少加工费用,该有向道路即对应所求的最优切割方式.
实例:待加工长方体和成品长方体的长、宽、高分别为10、145、19 和3、2、4,两者左侧面、正面、底面之间的距离分别为6、7、9,则边距如下表:
u1 u2 u3 u4 u5
u6
6 1 7
55 6
9
r=1时,求得最短路为V1-V10-V13-V22-V23-V26-V27,其权为374
对应的最优切割排列为M5-M3-M6-M1-M4-M2,费用为374元.
2、e≠0的情况
当e≠0时,即当先后两次垂直切割的平面不平行时,需加调刀费e.希望在图9-13的网络图中某些边增加权来实现此费用增加.在所有切割序列中,四个垂直面的切割顺序只有三种可能情况:
<情况一>先切一对平行面,再切另外一对平行面,总费用比e=0时的费用增加e.
<情况二>先切一个,再切一对平行面,最后割剩余的一个,总费用比e=0时的费用增加2e.
<情况三>切割面是两两相互垂直,总费用比e=0时的费用增加3e.
在所考虑的90种切割序列中,上述三种情况下垂直切割面的排列情形,及在G
垂直切割面排列情
有向路必经点
形
情况一(一)M1-M2-M3-M4 (1,0,z),(2,0,z),(2,1,z)
情况一(二)M3-M4-M1-M2 (0,1,z),(0,2,z),(1,2,z)
情况二(一)M3-M1-M2-M4 (0,1,z),(1,1,z),(2,1,z)
情况二(二)M1-M3-M4-M2 (1,0,z),(1,1,z),(1,2,z)
情况三(一)M1-M3-M2-M4 (1,0,z),(1,1,z),(2,1,z)
情况三(二)M3-M1-M4-M2 (0,1,z),(1,1,z),(1,2,z)
我们希望通过在图9-13的网络图中的某些边上增加权来进行调刀费用增加的计算,但由于网络图中的某些边是多种切割序列所公用的.对于某一种切割序
列,需要在此边上增加权e,但对于另外一种切割序列,就有可能不需要在此边上增加权e,这样我们就不能直接利用图9-13的网络图进行边加权这种方法来求出最短路径.
由上表可以看出,三种情况的情形(一)有公共点集{(2,1,z)|z=0,1,2},情形(二)有公共点集{(1,2,z)|z=0,1,2}.且情形(一)的有向路决不通过情形(二)的公共点集,情形(二)的有向路也不通过情形(一)的公共点集.所以可判断出这两部分是独立的、互补的.如果我们在图G中分别去掉点集{(1,2,z)|z=0,1,2}和{(2,1,z)|z=0,1,2}及与之相关联的入弧,就形成两个新的网络图,如图H1和H2.这两个网络图具有互补性.对于一个问题来说,最短路线必存在于它们中的某一个中.
由于调整垂直刀具为3次时,总费用需增加3e,故我们先安排这种情况的权增加值e,每次转刀时,给其待切弧上的权增加e.增加e的情况如图9-14中所示.再来判断是否满足调整垂直刀具为二次、一次时的情况,我们发现所增加的权满足另外两类切割序列.
综合上述分析,我们将原网络图G分解为两个网络图H1和H2,并在指定边上的权增加e,然后分别求出图H1和H2中从V1到V27的最短路,最短路的权分别为:d1,d2.则得出整体的最少费用为:d = min(d1,d2) ,最优切割序列即为其对应的最短路径.
实例:r=15,e=2时,求得图G1与G2的最短路为G2的路V1-V4-V5-V14-V17-V26-V27,权为4435,对应的最优切割序列为M3-M1-M6-M4-M5-M2,最优费用为4435.
图9-14 H1
图9-15 H2。