小型水风光互补系统设计全解

小型水风光互补系统设计全解
小型水风光互补系统设计全解

毕业设计(论文)题目小型水风光互补系统设计

学生姓名

学号

专业

班级

指导教师

评阅教师

完成日期:2015年10月22日

毕业设计(论文)开题报告

题目:小型水风光互补系统设计

学生姓名:

专业:电力系统及自动化

指导老师:

一、课题来源

煤、石油、天然气等不可再生能源的使用量在世界各国不断上升,能源危机将成为人类最主要,最大的危机,发展可再生能源越来越成为世界各国的主攻研发方向和竞争目标,谁能领先,谁就会成为未来新贵,新霸主。电力作为重要的二次清洁能源,它的生产将主要依托可再生能源,从而如何利用可再生能源发电将是一个重大课题。

二、研究目的及意义

1、利用水能、风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性;

2、在保证同样供电的情况下,可大大减少储能蓄电池的容量;

3、通过合理地设计与匹配,可以基本上由水风光互补发电系统供电,很少或基本不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。

三、研究的内容、途径及技术线路

水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

1、水力发电部分是利用水能机将水能转换为机械能,通过水力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

2、风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

3、光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;

4、逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;

5、控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;

6、蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发

电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。

四、发展趋势

中国拥有世界上最多的人口,近年来经济快速增长。但中国目前的能源结构主要依赖燃煤发电,从而对环境产生了许多负面影响,特别是对空气和水资源的污染。国际能源机构(IEA)曾预测从2005年到2030年中国新增加的温室气体排放(42%)将和世界上其他国家排放总量(不包括印度,44%)相当。中国会取代美国成为世界上最大的温室气体排放国。发展可再生能源技术是减少温室气体排放和改善环境的有效措施之一。

3

可再生能源发电技术的应用,既包括大型的发电厂,如我国已经大规模发展的并网风力发电场、正在发展的太阳能并网发电场、也包括独立运作的用于西部无电地区电力建设的集中供电系统(村落电站)和户用系统。

多年来,在我国各级政府的努力下,我国的无电人口已经从2000年的5%左右减少到不足1%,取得了举世瞩目的成就。但是,不容忽视的是,这些尚未解决用电问题的人口主要分布在西北地区和孤岛,经济欠发达,交通不便利,生产性负载小,延伸电网的经济性非常差,甚至不可能。另外,我国还有大量的边防哨所,移动通信基站等,远离电网,迫切需要提供问稳定可靠的电力供应。可再生能源独立电站为满足这些需求提供了现实的可行性。

五、工作进度

起始日期要求完成的内容及质量

1、2015.6.1~2015.6.3 1、完成开题报告

2、2015.6.3~2015.6.5 2、完成毕业生及(论文)初稿,指导老师审核

3、2015.6.5~2015.6.6 3、完成毕业设计(论文),装订成册,连同电子文档一

并上交指导老师。

4、2015.6.6~2015.6.9 4、指导老师完成毕业设计(论文)的批阅,评阅小组完

成毕业设计(论文)的评阅。

5、毕业答辩

5、2015.6.9~2015.6.10

六、参考文献

书籍:

1.《光伏发电》杂志

2.风力发电技术

3.水力发电技术

4.电气设备

5.直流系统设计

6.电气逆变技术

7.《电机技术》

8.网络资源

三峡电力职业学院

毕业设计(论文)课题任务书

( 2015---- 2016 学年)

学院名称:

课题名称小型水风光互补系统设计

学生姓名专业发电厂及发电系统学号

指导教师任务书下达时间2015.5

课题概述:

分布式电源,是指位于用户附近,所发电能就地利用,以10千伏及以下电压等级接入电网,且单个并网点总装机容量不超过6兆瓦的发电项目。包括太阳能、天然气、生物质能、风能、地热能、江河海洋能、资源综合利用发电等类型。

水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

(1)水力发电部分是利用水能机将水能转换为机械能,通过水力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

(2)风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

(3)光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;

(4)逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;

(5)控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;

(6)蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。

风光互补发电系统根据风力和太阳辐射变化情况,可以在以下七种模式下运行:

1、风力发电机组单独向负载供电;

2、光伏发电系统单独向负载供电;

3、水力发电机组单独向负载供电;

4、水力发电机组和光伏发电系统联合向负载供电。

5、风力发电机组和水力发电机组联合向负载供电;

6、风力发电机组和光伏发电系统联合向负载供电;

7、三组同时联合向负载供电。

水、风、光互补发电比单独水力、发电或光伏发电有以下优点:

1、利用水能、风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性;

5

2、在保证同样供电的情况下,可大大减少储能蓄电池的容量;

3、通过合理地设计与匹配,可以基本上由水风光互补发电系统供电,很少或基本不用启动备

用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。

要求阅读或检索的参考资料及文献(包括指定给学生阅读的外文资料):

1.《光伏发电》杂志

2.风力发电技术

3.水力发电技术

4.电气设备

5.直流系统设计

6.电气逆变技术

7.《电机技术》

8.网络资源

设计(论文)成果要求:

(包括外文翻译、开题报告、设计或论文正文的数量和质量等要求等)

一、小型光伏发电系统

二、小型风力发电系统

三、小型水力发电系统

四、三能互补系统

其它要求:

(如设计型课题的原始资料及主要参数要求或论文型课题的论点、论据、逻辑性要求等)

进度及要求

起止日期要求完成的内容及质量

1、2015.6.1~2015.6.3

2、2015.6.3~2015.6.5

3、2015.6.5~2015.6.6

4、2015.6.6~2015.6.9

5、2015.6.9~2015.6.10

1、完成开题报告

2、完成毕业设计(论文)初稿,指导老师审核。

3、完成毕业设计(论文),装订成册,连同电子文档一并

上交指导老师。

4、指导老师完成毕业设计(论文)的批阅,评阅小组完成

毕业设计(论文)的评阅。

5、毕业答辩。

审核(教研室主任)批准(系主任)

7

目录

摘要 (1)

前言 (1)

1小型光伏发电系统 (1)

1.1光伏发电的基本原理 (1)

1.2光伏发电系统的组成 (2)

1.3 小型独立光伏发电系统 (3)

2 小型风力发电系统 (3)

2.1风力发电系统的基本原理 (3)

2.2风力发电系统的组成 (4)

2.3 小型独立风力发电系统 (5)

3 小型水力发电系统 (6)

3.1 水力发电系统基本原理 (6)

3.2水力发电系统的组成 (7)

3.3小型独立水力发电系统 (7)

4 水风光三能互补系统 (8)

4.1 水风光三能互补系统基本原理 (8)

4.2水风光三能互补系统的组成 (9)

4.3水风光三能互补系统发电 (10)

4.3.1水风光三能互补系统发电分析其运行模式 (10)

5.水风光优缺点 (13)

致谢 (14)

参考文献 (15)

小型水风光互补系统

学生:吴迪

指导教师:李玉清

(三峡大学职业技术学院)

摘要

水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

关键词:发电机组、并网发电、基本原理、控制器、逆变器,交直流负载

前言

本论文主要论述太阳能独立发电系统,风力独立发电系统,水力独立发电系统和水风光互补发电系统的有关重要问题,介绍了各自发电技术的基本原理,各自电力系统的重要组成等,主要的是及水风光互补系统、相关问题分析以及运行管理等知识。

1 小型光伏发电系统

本章摘要:光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电。

本章关键词:光伏发电、太阳能、电池板、逆变器、(直流电转换为交流电)

1.1 光伏发电的基本原理

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

太阳能发电有两种方式,一种是光-热-电转换方式,另一种是光-电直接转换方式。

(1) 光-热-电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光-热转换过程;后一个过程是热-电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2) 光-电直接转换方式该方式是利用光伏效应,将太阳辐射能直接转换成电能,光-电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

1.2系统组成

太阳能电池方阵、直流操作箱、光伏监控系统,蓄电池组,充放电控制器,逆变器,交流配电柜

1.3光伏独立发电系统

太阳能光伏并网发电系统中,太阳能通过太阳能电池组件的光生伏特效应转化为直流电能,再通过光伏并网逆变器中的功率变换及控制系统将直流电能转化为符合电网电能质量要求的交流电。

2 小型风力发电系统

本章摘要:风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

关键词:风车叶片、增速器、齿轮箱、塔架、蓄电池充电控制器、逆变器、卸荷器、并

网控制器、蓄电池组

2.1风力发电的基本原理

风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。风力发电原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。

2.2风力发电系统组成

风力发电电源由风力发电组、支撑发电机组的塔架、蓄电池充电控制器、逆变器、卸荷器、并网控制器、蓄电池组等组成;风力发电机组包括风轮、发电机;风轮中含叶片、

轮毂、加固件等组成;它有叶片受风力旋转发电、发电机机头转动等功能。风速选择:低风速风力发电机能有效提升风力发电机在低风速区域的风能利用,在年平均风速小于3.5m/s,且无台风的地区,推荐选用低风速产品。

2.3 小型独立风力发电系统

依据目前的风车技术,大约3m/s的微风速度便可以开始发电。风力发电的原理说起来非常简单,最简单的风力发电机可由叶片和发电机两部分构成如图下所示。

空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动片叶旋转,如果将叶轮的转轴与发电机的转轴相连就会带动发电机发出电来。

3.小型水力发电系统

本章摘要:光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;

关键词:水位、水轮机、传动装置、发电机、整流滤波、变压

3.1水力发电系统基本原理

水力发电的基本原理是利用水位落差,配合水轮发电机产生电力,也就是利用水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。科学家们以此水位落差的天然条件,有效的利用流力工程及机械物理等,精心搭配以达到最高的发电量,供人们使用廉价又无污染的电力。而低位水通过吸收阳光进行水循环分布在地球各处,从而恢复高位水源。

3.2水力发电系统的组成

水工建筑、水轮机、调速器、励磁系统、发电机、变电场,电力网

3.3小型独立水力发电系统

水力发电系利用河流、湖泊等位于高处具有位能的水流至低处,将其中所含之位能转换成水轮机之动能,再藉水轮机为原动力,推动发电机产生电能。

利用水力(具有水头)推动水力机械(水轮机)转动,将水能转变为机械能,如果在水轮机上接上另一种机械(发电机)随着水轮机转动便可发出电来,这时机械能又转变为电能。水力发电在某种意义上讲是水的位能转变成机械能,再转变成电能的过程。因水力发电厂所发出的电力电压较低,要输送给距离较远的用户,就必须将电压经过变压器增高,再由空架输电线路输送到用户集中区的变电所,最后降低为适合家庭用户、工厂用电设备的电压,并由配电线输送到各个工厂及家庭。

4.水风光三能互补系统

本章摘要:我们知道,任何能源都有其局限性,通过多种能源互补发电,可实现全天候无间断供电。而水风光互补发电系统是依照时间、空间的变换而调节采用水、风、太阳能三种不同能源通过必要设备发挥作用转换输出电能,经过直流汇流箱集中送入直

流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节实现了全天候的发电功能,比单用水力、风机和太阳能更经济、科学、实用。

本章关键词:水利发电机、风力发电机、太阳能电池板,调节器,转换器4.1水风光三能互补发电系统基本原理

水风光互补,是一套发电应用系统,该系统是利用水轮机组、太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。是水力机组、风力发电机和太阳电池方阵三种发电设备共同发电。

4.2水风光三能互补系统的组成

水力发电机组、风力发电机、太阳能电池组件、太阳能方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备

4.3水风光三能互补系统发电

分布式水风光互补发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的水风光互补发电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。

分布式水风光互补供电系统由水力发电系统、风力发电系统和光伏发电系统组成;其基本设备包括水力发电机组、风力发电机、太阳能电池组件、太阳能方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备。

另外还有供电系统监控装置和环境监测装置。

4.3.1水风光三能互补系统发电分析其运行模式是:

1)在夜间和阴雨天无阳光时由风力发电系统将风能转换输出电能;

2)在有太阳辐射时由光伏发电系统将太阳能转换输出电能;

3)在即无风又没有太阳的情况下由水力发电系统将水能转换输出电能;

4)在没有水但有风又有太阳的情况下两者同时发挥作用转换输出电能。

经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节实现了全天候的发电功能,比单用风机

和太阳能更经济、科学、实用。

1、水力发电的优缺点:

优点: (1) 利用高处之水量持有位能转换动能推动原动机。

(2)利用引导水路及压力水管将水量之位能转换为动能。

(3)有利之水力地点离负载中心远,离电距离长,输电费用高。

(4)水力发电效率高达90%以上。

(5)单位输出电力之成本最低。

(6)发电之起动快,数分钟内可以完成发电。

缺点: (1) 因地形上之限制无法建造太大之容量。单机容量为300MW左右。

(2) 建厂期间长,建造费用高。

(3)因设于天然河川或湖沼地带易受风水之灾害,影响其他水利事业。电力输出易受天候旱雨之影响。

(4) 建厂后不易增加容量。

风光互补发电系统技术方案

风光互补发电系统 技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是当前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,能够保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统能够共用,且风机的单位造价只有太阳能电池的三分之一左右,因此风光互补发电系统的整体造价能够降低。同时,由于风机和太阳能电池的发电时间上互补,能够减少储能的蓄电池组

风光互补电源系统的设计原理及应用

风光互补电源系统的设计原理及应用 现在全国都在发展新能源,储能、负载相同,发电方式不同和资源上的互补性,使风电和光电系统集成为风光互补系统电源成为必然。另外一个特点是地域性,不同地域具有不同的太阳能和风能资源。太阳能也是这样,有明显的地域性,这是它一个特点。另外一个特点是不确定性。资源不确定性,即每天的发电量受天气影响很大,会导致系统发电与用电不平衡,使蓄电池组长期处于浅充,这也是引起该系统失效的主要原因。蓄电池在该系统中承担的电的储存和供给的作用,它必须能够适应8 这种浅充,基于这样的分析我们提出设计原理,开展以蓄电池管理为核心的研究,把发电组建、控制组建、出能组建和负载设计为一个整体,实现能量的最大化利用,这就是我们提出的边远系统的设计原理。根据地域条件的不同,这个系统又可演变为光点系统、风电系统和风光互补三种形式。尽管国内有很多部门在做,但是基础方面的工作还做的不够。 系统由什么组成呢?风电和广电的发电部件、蓄电池储能部件、供电部件和控制部件,这四大部件组成。我们要做到稳定可靠,各部件及规范。首先讲系统的规范和标准,这也是我参与起草《移动通信设备风光互补电源系统》,就构成了系统种类、构成及划分,部件要求和鉴别,系统选择与设计、安装、调试,维护管理等等,都有明确的规定。 蓄电池作为我们通信行业对蓄电池很熟悉、不陌生,用于太阳能系统蓄电池不是普遍的电池,我们有专门对太阳能系统的要求和测试方法。风能发电机有一个通用的标准,我们推荐使用另外一种风机,也符合国家的标准。它的特点是和先速和过栽均采用电磁制动,同是具备叶片变形失速功能,这个大量使用在我们的基站上,重量轻、故障小,输出的电也比较稳定。因为风率的利用

风光互补发电

离网风光互补发电系统的维护 (2013— 2014学年第一学期) 班级: 姓名: 学号: 专业:电气工程及其自动化 时间: 2013年12月 指导教师:

新疆大学电气工程学院 离网风光互补发电系统的维护 一、引言 能源是国民经济发展和人民生活必须的重要物质基础。在过去的200多年里,建立在煤炭,石油,天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,也带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏。各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生,无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 二、证论 2.1 离网风光互补发电系统简介 风光互补发电系统是一种将光能和风能转化为电能的装置,由于太阳能与风能的互补性强,该系统能弥补风电和光电独立系统在资源上的间断不平衡性、不稳定性。可以根据用户的用电负荷情况和资源条件对系统容量进行合理配置,既保证供电的可靠性,又降低发电系统的造价。同时,风光互补发电系统是一套独立的分散式供电系统,可不依赖电网独立供电,不消耗市电,不受地域限制,环保又节能,还可作为一道典雅的风景为城市景观增姿添彩。风光互补发电系统运行方式分为离网运行和并网运行两种。系统图如下:

图1 离网风光互补发电系统 2.2 离网风光互补发电的风光互补系统的结构简介 本离网型风光互补发电系统采用2组2KW的风力发电机,2KW的太阳能电池组件,通过风机控制器,太阳能控制器向蓄电池组供电,再经过逆变器向设备供电。系统框图如下所示。 图2离网风光互补发电的风光互补系统的结构 2.3 离网分光互补发电系统的工作原理及组件介绍 2.3.1 光互补发电系统的工作原理 风光互补离网发电系统是利用风能发电机和太阳能电池组件将风能和太阳能转换为电能,通过控制器作用将其存储在蓄电池中,然后再由控制器控制蓄电

风光互补发电系统方案

风光互补发电系统 方案

光伏发电系统在别墅中的应用方案 1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在别墅屋顶上,用于演示光伏发电系统在别墅中应用的情况,为日后大面积推广提供参考。 1.2光伏发电系统的要求 本项目设计一个5kWp的小型系统,平均每天发电25kWh,可供一个1kW的负载工作25小时。能够满足别墅正常见电的需要(一般家庭每天用电量在10kWh左右)。 2.系统方案 2.1现场资源和环境条件 长春北纬43 °05’~45 °15’;东经124 °18’~127 °02’。长春市年平均气温 4.8°C,最高温度39.5°C,最低温度-39.8°C,日照时间2,688小时。夏季,东南风盛行,也有渤海补充的湿气过境。年平均降水量522至615毫米,夏季降水量占全年降水量的60%以上;最热月(7月)平均气温23℃。秋季,可形成持续数日的晴朗而温暖的天气,温差较大,风速也较春季小。 2.2太阳能光伏发电系统原理 太阳能光伏发电是一种新型的发电方式, 基本原理是光生伏特

效应原理, 也就是当太阳光照射在某些特殊材料上, 会引起材料中电子的移动, 形成电势差, 从而由太阳光能直接转换为电能。这其中的特殊材料也就是光伏发电的的最基本元件被称为太阳电池半导体, 即太阳能电池(片), 它包括有单晶硅、多晶硅、非晶硅和薄膜电池等。光伏发电系统主要由太阳能电池阵列、蓄电池、逆变器、控制器等几大部分组成, 由这些电子元器件构成的系统, 安装维护简便, 运行稳定可靠。白天太阳能电池组件将太阳辐射出的光线转变为电能, 储存在蓄电池里, 在夜间或需要时, 从蓄电池里将电能释放出来, 用于照明和其它用途。太阳能电池组件是发电设备, 蓄电池是储能设备, 控制器、逆变器是充放电控制保护和直交流变换设备。 2.3太阳能光伏发电主要部件 (1) 太阳能电池板: 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (2) 太阳能控制器: 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其它附加功能如光控开关、时控开关都应当是控制器的可选项。

风光互补发电系统现状及发展状况(可编辑修改word版)

风光互补发电系统现状及发展状况 高洁琼 (ft西大学 ft西·太原030013) 摘要:本文介绍了风光互补发电系统的结构、工作原理和优缺点,以及风光互补发电系统的发展过程及现状,同时说明其应用前景。太阳能和风能之间互补性很强, 由这两者结合而来的风光互补发电系统在资源上具有最佳的匹配性。 关键词: 风能太阳能风光互补系统 1.风光互补发电系统的结构、工作原理、基本要求以及优缺点 1.1风光互补发电系统的结构 风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄 电池、逆变器、交流直流负载等部分组成。该系统是集风能、太阳能及蓄电池 等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。1.2风光互补发电系统的工作原理及运行模式 风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械 能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;光伏发 电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电, 通过逆变器将直流电转换为交流电对负载进行供电;逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的 220v 交流电,保证交流电负载设备的正常 使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;控制 部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行 切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多 余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的 电能送往负载,保证了整个系统工作的连续性和稳定性;蓄电池部分由多块蓄 电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系 统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 风光互补发电系统根据风力和太阳辐射变化情况,可以在以下三种模式下 运行:风力发电机组单独向负载供电;光伏发电系统单独向负载供电;风力发 电机组和光伏发电系统联合向负载供电。 1.3风光互补发电系统的优缺点

小型水风光互补系统设计全解

毕业设计(论文)题目小型水风光互补系统设计 学生姓名 学号 专业 班级 指导教师 评阅教师 完成日期:2015年10月22日

毕业设计(论文)开题报告 题目:小型水风光互补系统设计 学生姓名: 专业:电力系统及自动化 指导老师: 一、课题来源 煤、石油、天然气等不可再生能源的使用量在世界各国不断上升,能源危机将成为人类最主要,最大的危机,发展可再生能源越来越成为世界各国的主攻研发方向和竞争目标,谁能领先,谁就会成为未来新贵,新霸主。电力作为重要的二次清洁能源,它的生产将主要依托可再生能源,从而如何利用可再生能源发电将是一个重大课题。 二、研究目的及意义 1、利用水能、风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性; 2、在保证同样供电的情况下,可大大减少储能蓄电池的容量; 3、通过合理地设计与匹配,可以基本上由水风光互补发电系统供电,很少或基本不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。 三、研究的内容、途径及技术线路 水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。 1、水力发电部分是利用水能机将水能转换为机械能,通过水力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; 2、风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; 3、光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电; 4、逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量; 5、控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性; 6、蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发 电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 四、发展趋势 中国拥有世界上最多的人口,近年来经济快速增长。但中国目前的能源结构主要依赖燃煤发电,从而对环境产生了许多负面影响,特别是对空气和水资源的污染。国际能源机构(IEA)曾预测从2005年到2030年中国新增加的温室气体排放(42%)将和世界上其他国家排放总量(不包括印度,44%)相当。中国会取代美国成为世界上最大的温室气体排放国。发展可再生能源技术是减少温室气体排放和改善环境的有效措施之一。

风光互补发电

风光互补发电系统 概述 能源是国民经济发展和人民生活必须的重要物质基础,在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏,各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 风光互补发电系统的发展过程及现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。其中colorado state university和national renewable energy laboratory合作开发了hybrid2应用软件。 hybrid2本身是一个很出色的软件,它对一个风光互补系统进行非常精确的模拟运行,根据输入的互补发电系统结构、负载特性以及安装地点的风速、太阳辐射数据获得一年8760小时的模拟运行结果。但是hybrid2只是一个功能强大的仿真软件,本身不具备优化设计的功能,并且价格昂贵,需要的专业性较强。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐

家用风光互补发电系统分析设计

1、风光互补发电技术 1.1风光互补发电系统的特点 风力发电系统利用风力发电机,将风能转换成电能,然而通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统具有日发电量较高,系统造价较低,运行维护成本低等优点。缺点是小型风力发电机可靠性低,常规水平轴风力发电机对风速的要求较高。光伏发电系统利用光电板将太阳能转换成电能,然后通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统的优点是系统供电可靠性高、资源条件好、运行维护成本低,缺点是系统造价高。发电与用电负荷的不平衡性是风电和光电系统共同存在的一个缺陷,它是由资源的不确定性造成的。风电和光电系统发出电能后都必须通过蓄电池储能才能稳定供电,但是每天的发电量受阳光、风力的影响很大,阳光、风力较弱会导致系统的蓄电池组长期处于亏电状态,这是引起蓄电池组使用寿命降低的主要原因。较风电和光电独立系统,风光互补发电系统具有以下特点:(1)风光互补发电系统弥补了风电和光电独立发电系统在资源上的缺陷,利用太阳能和风能的互补性,提供较稳定的电能; (2)在风光互补发电系统中,风电和光电系统可以共用一套蓄电池组和逆变环节,减少系统造价; (3)整个系统是两种发电系统进行互补运行,因此,在保证同等供电的情况下,可大大减少储能装置的容量; (4)风光互补发电系统可以根据用户需要合理配置系统容量,在不影响供电可靠性的情况下减少系统造价; (5)风光互补发电系统可以根据用户所在地的季节及天气变化情况优化系统设计方案,在满足用户要求的情况下节约资源。 1.2适合风光互补地区分析 太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。图1为我国太阳能风能分部情况。

风光互补发电系统技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 2017年04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是目前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,可以保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统可以共用,且风机的单位造价只有太阳能电池的三分之一左右,所以风光互补发电系统的整体造价可以降低。同时,由于风机和太阳能电池的发电时间上互补,可以减少储能的蓄电池组容量,使发电系统造价降低。经济上更趋于合理,随着我国4G通信网的开通,可实现大范围的无线传输图像资料,风光互补监控系统将在森林防火、防盗猎监控、城市乡村的防犯罪监控、古墓群的防盗墓监控、边防地区的防偷渡监控、生态保护区的防盗猎监控、旅游地区的安全监控和矿产资源的防乱开采监控等领域得到广泛的应用,这种监控系统体系不仅能大大降低管理成本,而且能实现有效及时和安全的防护体系。对降低森林火灾,减少资源破坏,提高破案率都有非常极的意义。技术的进步可以促进社会管理手段的进步,同时,新技术的广泛应用才能进一步促进新技术产业的发展。

风光互补发电系统技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 2017年04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是目前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,可以保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,

可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统可以共用,且风机的单位造价只有太阳能电池的三分之一左右,所以风光互补发电系统的整体造价可以降低。同时,由于风机和太阳能电池的发电时间上互补,可以减少储能的蓄电池组容量,使发电系统造价降低。经济上更趋于合理,随着我国4G通信网的开通,可实现大范围的无线传输图像资料,风光互补监控系统将在森林防火、防盗猎监控、城市乡村的防犯罪监控、古墓群的防盗墓监控、边防地区的防偷渡监控、生态保护区的防盗猎监控、旅游地区的安全监控和矿产资源的防乱开采监控等领域得到广泛的应用,这种监控系统体系不仅能大大降低管理成本,而且能实现有效及时和安全的防护体系。对降低森林火灾,减少资源破坏,提高破案率都有非常极的意义。技术的进步可以促进社会管理手段的进步,同时,新技术的广泛应用才能进一步促进新技术产业的发展。 技术方案 1、设计依据: 系统应用地点资源条件要求: (1)平均风速3.5m/s以上地点; (2)太阳能资源属Ⅲ类以上可利用地区。

风光互补发电系统

风光互补发电系统 第一章绪论 1.1 能源与环境问题 能源是是国民经济发展与社会文明进步的基石,能源可持续发展是人类社会可持续发展的重要保障之一。从原始社会开始,化石能源逐步成为人类所用能源的主要来源,这种状况一直延续至科技发达的现代社会。随着人类对能源需求的日益增加,化石能源的储量正日趋枯竭。此外,大量使用化石燃料己经为人类生存环境带来了严重的后果,全世界每天产生约1亿吨温室效应气体,己经造成极为严重的大气污染、温室效应、酸雨等环境影响。开发利用可再生新能源以实现能源可持续发展是人类应对能源问题的有力方法之一。 1.2 新能源发展现状 当前,世界各国普遍重视能源技术创新,技术研发与制度创新越来越受到推崇。美提出培育世界领先水平的科技人员,建设世界一流的能源科技基础设施,整合基础研究和应用研究,加快研究电力储备、智能电网、超导输电、二氧化碳捕获、先进电池、纤维素乙醇、氢燃料以及清洁煤、核能、太阳能和风能等先进发电技术。日本也提出了引导未来能源技术的战略,从2050年、2100年超长期视点出发,展望未来能源技术,制定2030年科技战略。我国也看到新能源发展的紧迫性,加快建立法律法规,积极扶持新能源发展,新能源在我国的发展速度很快。 在新能源体系中,可再生能源是自然界中可以不断再生、永续利用的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用,主要包括风能、太阳能、水能、生物质能、地热能、海洋能等。 1.3 互补发电的概念 很多可再生新能源因其资源丰富、分布广泛,而且在清洁环保方面具有常规能源所无 法比拟的优势,因而获得了快速的发展。尤其是小规模的新能源发电技术,可以很方便地就地向附近用户供电,非常近合在无电、少电地区推广普及。不过由于风能、太阳能等可再生新能源本身所具有的变化特性,所以独立运行的单一新能源发电方式很难维持整个供电系统的频率和电压稳定。 考虑到新能源发电技术的多样性,以及它们的变化规律并不相同,在大电网难以到达的边远地区或隐蔽山区,一般可以采用多种电源联合运行,让各种发电方式在个系统内互为补充,通过它们的协调配合来提供稳定可靠的、电能质量合格的电力,在明显提高可生能源可靠性的同时,还能提高能源的综合利用率。这种多种电源联合运行的方式,就称为互补发电。

自动化毕业设计 风光互补发电系统设计

风光互补发电系统 摘要 进入二十一世纪,人类面临着实现经济和社会可持续发展的重大挑战,而能源问题日益严重,一方面是常规能源的匮乏,另一方面石油等常规能源的开发带来一系列的问题,如环境污染、温室效应等。人类需要解决能源问题,实现可持续发展,只能依靠科技进步,大规模开发利用可再生能源和新能源。而太阳能和风能被看做是最具有代表性的新能源和可再生能源,作为这两种能源的高级利用太阳能发电和风力发电技术受到世界各国的高度重视。由于风力发电和太阳能发电系统均受到外部条件的影响,光靠独立的风力或太阳能发电系统经常会难以保证系统供电的连续性和稳定性,因此,在采用风光互补的混合发电系统来进行相互补充,实现连续、稳定地供电。风光互补发电以其独特优势成为新能源研究的热点之一。本文针对风光互补发电系统设计了一套小型模拟装置,包括太阳能电池模拟,用直流电机对风机的模拟和交错并联Buck-Boost蓄电池充电主电路,并对交错并联Buck-Boost电路和交错并联Cuk斩波电路进行了研究、仿真,以及进行了模拟风机装置的调试。系统控制全部采用Freescale公司的56F8013 DSP控制实现,给出了各部分流程图。对于软硬件的关键问题还给出了相应解决方案。 关键词:风光互补 Buck–Boost电路 DSP

Wind & Solar Hybrid Generating System ABSTRACT Entering the 21st century, human beings are facing to realize the sustainable development of economy and society, and energy problem becomes more and more serious, on the one hand, conventional energy is serious short on the other hand, the development of oil and other conventional energy brings a series of problems, such as the environmental pollution, the greenhouse effect and so on. Only by relying on the progress of science and technology and the large-scale exploitation and utilization of renewable energy and new energy can human solve the problem of energy, and realize the sustainable development. And solar and wind power are considered the most representative of new and renewable energy, The power technology of solar energy and wind attrack world’s attention. Because of wind power and solar power system under external conditions, and only by independent wind or solar power systems often hard to ensure the continuity and consistency of power system therefore, using hybrid power system of complementary scenery to complement each other, realize the continuous, stable power supply. Wind-light complementary with its unique advantages become one of new energy research hotspots. Aiming at wind-light complementary this article design a small device, including solar cells in dc motor, the simulation and interlacing of fan parallel Buck - hee, and main circuit batteries to Buck staggered shunt circuit and interlacing parallel hee - Cuk chopper were studied, and the simulation, the simulated fan unit commissioning. Control system adopt Freescale company 56F8013 DSP control chart, each part. The key question for software and hardware to the corresponding solutions. Keyword:Wind and PV hybrid Buck–Boost Circuit DSP

风光互补发电系统设计

5.3.1风光互补发电系统设计 风能和太阳能都具有能量密度低、稳定性差的弱点,并受到地理分布、季节变化、昼夜交替等影响.然而太阳能与风能在时间上和地域上一般都有一定的互补性,白天太阳光最强时,风较小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强.在夏季,太阳光强度大而风小;冬季,太阳光强度小而风大。太阳能发电稳定可靠,但目前成本较高,而风力发电成本较低,随机性大,供电可靠性差。若将两者结合起来,可实现昼夜发电.在合适的气象资源条件下,风光互补发电系统能提高系统供电的连续性、稳定性和可靠性,在很多地区得到了广泛的应用.如图5.1为某地10 月份某日典型的太阳能和风资源分布,因此采用风光互补发电系统,可以弥补风能和太阳能间歇性的缺陷。 图5.1 某地10 月份典型日太阳能和风能资源分布图风光互补发电的优势: (1)利用风能和太阳能的互补性,弥补了独立风电和独立光伏发电系统的不足,可以获得比较稳定的和可靠性高的电源。 (2)充分利用土地资源。 (3)保证同样供电的情况下,可大大减少储能蓄电池的容量。 (4)对系统进行合理的设计和匹配,可以基本上基本上由风光互补发电系统供电,获得较好的经济效益。 5)大大提高经济效益。

风光互补发电系统主要组成部分(1)发电部分:由一台或者几台风力发电机和太阳能电池阵列构成风—电、光—电发电部分,发电部分输出的电能通过充电控制器与直流中心完成蓄电池组自动充电工作。 (2)蓄电部分:蓄电部分主要作用是将风电或光电储存起来,稳定的向电器供电。蓄电池组在风光互补发电系统中起到能量调节和平衡负载两大作用。 (3)控制及直流中心部分:控制及直流中心部分由风能和太阳能充电控制器、直流中心、控制柜、避雷器等组成,完成系统各部分的连接、组合及对蓄电池组充放电的自动控制。控制及直流中心具体构成参数由最大用电负荷与日平均用电量决定。 (4)供电部分:供电部分不可缺少的部分是逆变器,逆变器把蓄电池储存的直流电转换为交流电,保证交流负载的正常使用。同时,还有稳压功能,以改善风光互补系统的供电质量。 图5.2 风光互补发电系统 设计一个完善的风光互补发电系统需要考虑多种因素.如各个地区的气候条件,当地的太阳辐照量情况,太阳能方阵及风力发电机功率的选用,作为储能装置蓄电池的特性等.因此,必须选择建立一些先进的数学模型进行多种计算,确定合理的太阳能电池方阵和风力发电机容量,使系统设计最优化. 数学模型计算 1.蓄电池容量计算 蓄电池的容量C 通常按照保证连续供电的天数来计算:

风光水互补发电_可再生能源发展新方向

中国电力报/2011年/3月/5日/第006版 前沿 风光水互补发电——可再生能源发展新方向 大规模非水可再能源的发展,给传统水电开发赋予了新任务。水电与风—光互补结合,可对风—光并网发电和储能提供强有力的支撑,水电的绿色环境效益和生态效益成为其开发所追求的新目标 清华大学水利系、水沙科学与水利水电工程国家重点实验室马吉明郑双凌陈 浩波 能源和环境是当前人类生存和发展迫切需要解决的问题。常规化石能源如煤、石油、天然气等,储量随利用时间的增长而日益减少,且带来严重的环境污染问题。大力发展可再生能源的任务愈发紧迫。从目前可再生能源的资源状况和技术发展水平看,利用水能、风能、太阳能发电,最为现实,前景广阔。三者互补结合是一条有效的途径。但光伏发电的时间局限性和风能发电的不稳定性是这两种电源的固有缺陷,必须具有相当规模和调节性能良好的备用电源,风-光出力才能成为国民经济发展的依靠。水电是规模大、调节性能良好的电源,可以充分利用水库的调节能力,克服光伏和风能发电不连续、不稳定的缺点,确保供电质量。 风光可再生能源的发电前景广阔 首先是风力发电。风力发电包括小型离网运行风力发电和大型并网风力发电,是继水电后技术最成熟、最具有大规模开发利用前景的可再生能源发电方式,具有清洁无污染、永不枯竭、基建周期短、装机灵活等优点。 据统计,我国陆地可利用风能资源3亿千瓦,加上近岸海域可利用风能资源,共计约10亿千瓦,比水力总蕴藏量6.94亿千瓦还多。风能资源主要分布于两大风带:一是“三北地区”(东北、华北北部和西北地区);二是东部沿海陆地、岛屿及近岸海域。《可再生能源中长期发展规划》指出,在具备规模化开发条件的地区,进行集中连片开发,建成若干个风电大省、数个百万千瓦级大型风电基地;到2020年全国风电总装机容量达到3000万千瓦。目前,我国规划在甘肃、新疆、河北、吉林、内蒙古、江苏6个省区建设7个千万千瓦级风电基地。 随着风电技术的进步和规模的扩大,风电成本已接近常规能源,是近期最有市场的非水可再生能源,在今后相当长的时间内将会保持较快发展。 其次是光伏发电。光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能,具有许多优点,如无噪声、无污染、无燃料消耗,能量随处可得,维护简便等。光伏发电最初作为独立的分散电源使用,近年来规模逐渐增大,包括离、并网两种类型,其中并网光伏增长尤为迅速。 我国太阳能资源丰富。然而由于目前光伏发电还处于起步阶段,成本高,在电网覆盖区域还无法和常规能源竞争。一旦光伏发电的成本下降,将会得到大规模的应用。届时,光伏发电不但会替代部分常规能源,还将发挥出巨大的环境效益。根据《可再生能源中长期发展规划》,在甘肃敦煌和西藏拉萨(或阿里)建设大型并网型太阳能光伏电站示范项目;到2020年,我国大型太阳能并网光伏电站总容量将达到20万千瓦。 风能和光伏发电目前发展速度飞快,二者分别利用风能和太阳能辐射作为初始能源,也存在的一定的问题。一是,大规模开发占地面积大。太阳辐射在地面上的最大功率小于1平方米每千瓦,考虑到光电转换效率与接受面积的周边空隙,每平方米的有效功率约100瓦,发电量每年约

太阳能风光互补发电系统

太阳能风光互补发电系统 1.问题的提出 如何解决能源危机问题,已经成为全球关注的热点。节能和环保已成为当今世界的两大主题。在当前可利用的几种可再生能源中,太阳能和风能是应用比较广泛的两种。风光互补发电控制系统是为了弥补传统电力的不足而设计的独立发电设备。它是由太阳能电池组件与风力发电机配合而成的一个系统,通过微型计算机的远程控制,并实现了免维护的功能。 2.风光互补发电系统的现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐射和风速下对应的光伏阵列的发电量和风机的发电量的和大于等于负载的耗电量,主要用于系统功率设计。 目前国内进行风光互补发电系统研究的大学,主要有中科院电工研究所、内蒙古大学、内蒙古农业大学、合肥工业大学等。各科研单位主要在以下几个方面进行研究:风光互补发电系统的优化匹配计算、系统控制等。目前中科院电工研究所的生物遗传算法的优化匹配和内蒙古大学新能源研究中推出来的小型户用风光互补发电系统匹配的计算即辅助设计,在匹配计算方面有着领先的地位,而合肥工业大学智能控制在互补发电系统的应用也处在前沿水平。 3.一个设计好的太阳能风光互补发电的设计框图结构 该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

景观灯小型风光互补发电系统的改进

第37卷第3期2 0 1 4年5月 河北农业大学学报 JOURNAL OF AGRICULTURAL UNIVERSITY OF HEBEI Vol.37No.3 May.2 0 1 4 文章编号:1000-1573(2014)03-0115-03 DOI:10.13320/j.cnki.jauh.2014.0075景观灯小型风光互补发电系统的改进 祁丙宝, 孙维连, 王会强, 孙 铂 (河北农业大学机电工程学院,河北保定071000) 摘要:目前国内风光互补系统快速发展并应用在了各个行业,本研究针对风光互补发电系统在运行当中容易出 现的一些问题进行研究,以达到优化系统的目的。对一些关键电气元件进行有效控制,基于光源随动系统和最 大功率补偿的技术,提高了有效光照时间和系统的稳定性,并且创新性的把此系统应用在了日常生活当中的景 观灯上,为景观灯提供了单独的电源供应系统,简化了工序,降低了成本,是节能环保的一个具体实践应用。 关 键 词:光源随动控制;功率给定;风光互补;节能环保 中图分类号:TK511文献标志码:A Wind/PV hybrid system application and the improving on landscape lights QI Bing-bao,SUN Wei-lian,WANG Hui-qiang,SUN Bo (College of Mechanical and Electrical Engineering,Agricultural University of Hebei,Baoding 071001,China) Abstract:Optimized wind/PV hybrid system has an effective control over some key electricalcomponents.Especially the application of light source servo system prolongs effective illumina- tion time to make it operate safely and stably.At the same time,the system is innovatively ap- plied to daily landscape lights to provide them separated power supply system.Working proce- dure is simplified and cost is reduced.Therefore,this is a specific application to save energy and protect environment. Keywords:light source servo system;power of given;wind/PV hybrid system;energy conser- vation and environmental protection 风能和太阳能作为一种能源多样化,社会可持续发展的能源代表,已经被社会认可,而且两者具有天然的匹配互补性[1-2]。针对风能与太阳能的特点,指出风力与太阳能互补发电比单一发电方式更优越,并介绍风力与太阳能光伏互补发电的研究现状及进一步发展所要做的努力[3]。 传统的风光互补照明系统虽然直接应用了风光互补技术,但是因为受气候,地势的影响,系统的稳定性和系统的工作效率都不够理想,仍然需要连接电网。如果建立单独的电源供应系统不仅加大了施工难度,更重要的是增加了投入成本。因此,要解决长期稳定的可靠供电、不建输电线路、也不做挖路埋线工程,就必须学会地取材,利用自然资源[4]。本研究在分析小型风光混合发电系统的运行结构以及混合发电系统各种控制策略的基础上,选定风力发电机、太阳能电池组件进行优化改进,并把其应用于生活当中的景观灯,以期解决传统风光互补照明系统中存在的问题。 收稿日期:2013-10-28 作者简介:祁丙宝(1987-),男,河北省张家口人,在读硕士生,主要从事机电一体化研究. 通讯作者:孙维连(1956-),男,教授,主要从事机械设计和材料方面的研究.E-mail:bd999@eyou.com

风光互补发电系统简述

风光互补发电系统 摘要:风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统。本文通过对风光互补发电系统的动力来源-风能和太阳能资源的初步调研,分析了风光互补发电系统的优势,并总结了国内外风光互补发电系统的研究现状,对其基本的工作原理进行了阐述。最后对举例说明了风光互补发电系统的应用前景。 关键词:风光互补,现状,工作原理,应用前景 1.引言 能源是人类社会发展和进步的物质基础,人类社会的发展和进步离不开优质能源的开发利用和先进的能源技术的不断革新。煤和石油等矿物能源的开发和利用推动了近代工业革命的发展,极大地改变了人类的生活方式。由于煤、石油、天热气等常规能源的储量是有限的,据估计,地球上煤炭最多可用300年,石油最多可维持40多年,天然气还可以维持50多年,不断爆发的能源危机严重阻碍了人类社会的发展进步。为了缓解不断加重的能源危机,世界各国相继加大了对可再生能源的研究。可再生能源是指除常规能源外的包括风能、太阳能、生物质能、地热能、海洋能等能源资源。 为了降低能耗和解决日益突出的环境问题,全球都投入到了可再生发展能源的热潮之中,全球可再生能源发展取得了明显成效。主要表现在:成本持续下降,市场份额不断扩大,其定位也开始由补充能源向替代常规能源的方向转化。近10年来,全球风力发电市场保持了28%的年均增长速度,太阳能光伏发电的年均增长速度超过30%[1]。 进入新世纪以来,中国的可再生能源利用步入了快速发展的轨道,特别是自2006年可再生能源法实施以来,中国可再生能源已经进入快速发展时期。2009年中国可再生能源在一次性能源消费结构中所占的比例已从2008年的8%提升至9%。根据中国国家能源局制定的《新能源产业振兴发展规划》,预计到2011年,新能源在能源结构中的占到的比重达到2%(含水电为l%),新能源发电容量占总电力装机容量的比重将会达到5%(含水电为25%)。其中风电装机容量将会达到3500万千瓦(陆地风电3000万千瓦,海上风电500万千瓦),太阳能发电装机容量达到200万千瓦[2]。除此之外,根据(2008年中国风电发展报告》的预测,估计到2020年末,全国风电开发建设总规模有望达到1亿kW。到2020年全国

相关文档
最新文档