第八章玻璃的光学性能

第八章玻璃的光学性能
第八章玻璃的光学性能

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

玻璃的光学性质

第8章玻璃的光学性质 玻璃的光学性质是指玻璃的折射、反射、 吸收和透射等性质。玻璃常用作透光材料,因 此对其光学性质的研究在理论上和实践上都具有重要意义。 玻璃是一种高度透明的物质,可以通过调整成 分、着色、光照、热处理、光化学反应以及涂膜等物理和化学方法,获得一系列重要光学性能,以满足各种光学材料对特定的光性能和理化性能的要求。 玻璃的光学性能涉及范围很广。本章仅在可见光范围内(包括近紫外和近红外)讨论玻璃的折射率、色散、反射、吸收和透射(玻璃的着色和脱色在第9章中介绍)。 为了便于讨论玻璃的光学性质,先简略介绍光的本质。外来能源激发物质中的分子或原子,使分子或原子中的外层电子,由低能态跃迁到高能态,当电子跳回到原来状态时,吸收的能量便以光的形式对外产生辐射,此过程就叫发光。光是一种电磁波,具 有一定的波长和频率,且以极高的速度在空间传播(光速约为3 x 108m/s)。可见光、紫外线、红外线以及其他电磁辐射的波长频率范围见图8-1。 从图8-1中可看出,可见光在整个电磁波中只是很窄的一个波段(390~770nm)。在这一狭窄的波段内,存在着各种不同的色光,包括红、橙、黄、绿、青、蓝、紫等光谱。常说的“白光”应该当作“全色光”来理解。棱镜把太阳光分解为七色颜色光的相应波段,每一波段人眼看来是单一的色,叫做单色光,但它不是单一的值,只不过人眼区别颜色的能力有限,看不出单色复杂性而已。 8.1玻璃的折射率 当光照射到玻璃时,一般产生反射、透过和吸收。这 三种基本性质与折射率有关。 玻璃的折射率可以理解为电磁波在玻璃中传播速度的降低(以真空中的光速为准) 。如 果用折射率来表示光速的降低,则: n C/V (8-1 )频率/Hz 图8-1电磁波的频率和波长范围 紫外线 10 波长/nm 「一射线 Xi肘线 无线电腔 幽色

各种玻璃特性详细介绍

各种玻璃特性详细介绍文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

各种玻璃特性详细介绍 玻璃的制造已有五千年的历史,一般认为最早的制造者是古代的埃及人。我国在东周时代已能制造玻璃,玻璃组成中都含有氧化铅和氧化钡,与其他国家的古代玻璃有明显的区别。我国历史上有把玻璃称为琉璃、颇黎、假水晶料器、硝子等名称。 玻璃具有一系列非常可贵的特性:透明、坚硬、良好的化学稳定性;可通过化学组成的调整,大幅度调节玻璃的物理和化学性能,以适应各种不同的使用要求;可以用吹、压、拉、铸、槽沉、离心浇注等多种成形方法,制成各种形状的空心和实心制品;可以通过焊接和粉末烧结等加工方制成形状复杂、尺寸严格的器件。而且,制造玻璃的原料丰富,价格低廉。因此,作为结构材料和功能材料,玻璃在建材、轻工、交通、医药、化工、电子、航天、原子能等领域获得了极其广泛的应用。 B270/K9 K9玻璃是用K9料制成的玻璃制品,用于光学镀膜等领域 K9料属于光学玻璃,由于它晶莹剔透,所以衍生了很多以K9料为加工对象的工厂,他们加工出来的产品,在市面上称为水晶玻璃制品。 K9的组成如下: SiO2=69.13%B2O3=10.75%BaO=3.07%Na2O=10.40%K2O=6.29%As2O3=0.36% 它的光学常数为:折射率=1.51630色散=0.00806阿贝数=64.06。 无色光学玻璃--B270技术要求

石英玻璃 石英玻璃以其优良的理化性能,被大量广泛用于半导体技术,新型电光源,彩电荧光粉生产,化工过程,超高电压收尘、远红外辐射加热设备、航空航天技术、某些武器及光学仪器的光学系统、原子能技术、浮法玻璃及元碱玻璃窖的耐火材料,特种玻璃用坩埚,仪器玻璃成型部料碗,紫外线杀菌灯,各种有色金属的生产等诸多领域。石英玻璃SiO2含量大于99.5%,热膨胀系数低,耐高温,化学稳定性好,透紫外光和红外光,熔制温度高、粘度大,成型较难。多用于半导体、电光源、光导通信、激光等技术和光学仪器中。 石英玻璃在整个波长有特别好的透光性,在红外区(特殊的红外玻璃除外),光谱透射范围比普通玻璃大。在可见光区透过率达93%。在紫外光谱区,特别是在短波,紫外光谱区透过率比其他玻璃好的多。石英玻璃他的光学性能在很大程度上取决于它的化学性能。哪怕是0.001%的杂质就明显地影响产品质量。过度金属杂质会改变波长方向移动,羟基的存在会吸收2.73μm光带。国产光学石英玻璃有三个牌号:JGS1紫外光学石英玻璃,应用波段185-2000nm,用合成石制造,Sicl4为原料,JGS2紫外光学石英玻璃,应用波段220-2500nm,用水晶做原料,气炼法生产;JGS3红外光学石英玻璃,应用波段260-3500nm,采用水晶或

气溶胶光学特性的反演方法研究

气溶胶光学特性的反演方法研究 韩 冰,高 飞,李铜基 (国家海洋技术中心,天津 300111) 摘 要:气溶胶是大气重要组成部分,其对地球的辐射收支平衡以及气候变化均有非常重要的贡献。文中根据非线性辐射传输理论,研究了从自动观测太阳光度计(CE318)多角度的天空扫描数据获取气溶胶粒子谱分布、散射相函数等光学特性的反演方法,并对2000年10月27日、30日南海试验的观测数据进行了分析,取得了较好效果。关键词:气溶胶;粒子谱分布;散射相函数;辐射传输 中图分类号:T P722.4 文献标识码:B 文章编号:1003-2029(2006)03-0055-06 1 引言 气溶胶的严格含意是指悬浮在气体中的固体和(或)液体微粒与气体载体共同组成的多相体系[1]。相应地,大气气溶胶是指大气与悬浮在其中的固体和液体微粒共同组成的多相体系。大气气溶胶粒子的直径多在10-3~102L m之间,包括可溶性的(如海盐粒子)和不可溶性的(如化石燃料的氧化物)粒子。依其形成机制则可分为自然因子与人为因子,前者主要是经由地表的自然风化过程和海洋表面的碎浪过程而进入大气,后者则是来自人类工业文明所产生微小污染物[2]。气溶胶对地球的辐射收支平衡继而气候变化均有非常重要的贡献,但是目前人们对气溶胶的了解非常欠缺。气溶胶的辐射贡献包括两部分:一是直接辐射贡献,即气溶胶对太阳辐射进行吸收、散射等引起的;二是通过改变云的微观物理特性而产生的间接影响。 首先,气溶胶对气候的影响方面,M cCo rm ick和L ud-wig认为[3],气溶胶会增加太阳辐射的反照率,进而导致地球的长期性冷却效果,而Char lso n和Pilat[4]也曾提出气溶胶对大气系统能量收支的影响,即气溶胶透过吸收、散射和放射过程直接影响地球能量的收支。其次,在卫星数据校正方面,气溶胶对卫星信号的贡献是很难准确估算的部分,因而通过研究气溶胶的光学特性必然会提高估算的准确性。 利用地面的光谱辐射计对大气进行观测,是目前广泛使用的研究大气特性的方法之一。其中自动太阳光度计是一种不受天气限制、自动跟踪并存储数据的辐射计,在世界范围内得到认可并大量使用,例如A ERO N ET气溶胶观测网[5]采用的就是这种仪器。CE318具有天空辐亮度扫描的 收稿日期:2006-01-20功能,利用其测量数据可反演气溶胶粒子谱分布、散射相函数等信息。本文以2000年10月27日、30日海南三亚的观测数据为例,利用CE318多角度的天空扫描数据,采用非线性数值方法对气溶胶光学特性反演方法进行了研究。 2 太阳光度计测量原理 CE318是法国CIM EL公司生产的一种自动跟踪扫描太阳辐射计,该仪器在可见近红外设有8个观测通道,它不仅能自动跟踪太阳作太阳直射辐射测量,而且可以进行太阳等高度角天空扫描、太阳主平面扫描和极化通道天空扫描。CE318能自动存储和传输测量数据,实现自动测量采集和远程数据传输。CE318天空扫描主要有两种模式:平维圈扫描和主平面扫描。平维圈扫描是指观测时保持仪器的天顶角与太阳天顶角相同,而仪器与太阳的相对方位角逐渐变化;主平面扫描是指观测时仪器与太阳之间的相对方位角不变,而仪器的天顶角变化[5]。 CI M EL318辐射计测量太阳直射辐射F和漫射辐射E: F=F0ex p(-m S)(1) E(H0,<)≡E(()=m XS P(()F$8+q(()(2)式中:F0是大气层外的辐射通量;S是总的大气光学厚度; m是大气光学质量;H0是太阳天顶角;<是观测的方位角;(是散射角;X是整个大气层内单次反照率;P(()是总的相函数(包括瑞利散射和气溶胶散射两部分);$8是观测辐射计的立体观测角;q(()表示多次散射的贡献[6]。 为了减少仪器带来的系统误差,我们将观测数据用太阳直射辐射进行标准化,即: E(()≡ m XS P(()F$8+q(() Fm$8 =XS P(()+r(()(3) 通过多角度的天空扫描,我们可以通过非线性数值方 第25卷 第3期2006年9月 海 洋 技 术 OCEAN T ECHNOLOGY Vol.25,No.3 Sept,2006

光学材料特性

光学材料特性表:

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5% 常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢

耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定 耐有机溶剂性:溶于氯化烃和部分酮,酯及芳香烃中,不溶于脂肪族,碳氢化合物,醚和醇类 日光及耐气候性:日光照射微脆化 常用光学塑料-烯丙基二甘碳酸酯CR39 密度(kg/m3):25 1.32×10E3 nD ν:1.498 53.6~57.8 透过率(%):92 吸水率(%):0.2 24h 25 玻璃化温度:

气溶胶光学厚度

第2章 气溶胶光学厚度反演的原理和方法 气溶胶光学厚度(Aerosol Optical Depth )简称AOD ,定义为介质的消光系数在垂直方向上的积分,描述的是气溶胶对光的消减作用[7]。它是气溶胶最重要的参数之一,表征大气浑浊程度的关键物理量,也是确定气溶胶气候效应的重要因素。。通常高的AOD 值预示着气溶胶纵向积累的增长,因此导致了大气能见度的降低。现阶段对于AOD 的监测主要有地基遥感和卫星遥感两种方法。其中地基遥感又有多种形式:多波段光度计遥感、全波段太阳直接辐射遥感、激光雷达遥感等。其中多波段光度计遥感是目前地基遥感研究中采用的最广泛的方法。美国NASA 和法国LOA-PHOTONS 联合建立的全球地基气溶胶遥感观测网AERONET 所使用的就是多波段太阳光度计(Sun/Sky Photomerers ),在全球共布设1217个站点长期观测全球气溶胶的光学特性,积累了大量的AOD 数据,并用作检测气溶胶光学厚度反演精度的标准。而近年来卫星遥感技术的快速发展,多种传感器被用来研究气溶胶特性,加上经济发展带来的大气污染问题使得利用卫星遥感资料反演AOD 成为热门课题。 2.1 气溶胶光学厚度反演的基本原理 大气光学厚度是指沿辐射传输路径单位截面上气体吸收和粒子散射产生的总消弱,是无纲量值。在可见光和近红外波段,它可以由下列公式计算得出: )()()()()()(a 21m λτ+λτ+λτ+λτ+λτ=λτμωω (2-1) 其中)(λτ表示大气总的光学厚度,)(m λτ表示整层大气的分子散射光学厚度,)(1λτω表示氧气的吸收光学厚度,)(2λτω表示臭氧的吸收光学厚度,)(λτμ表示 水汽的吸收光学厚度,)(a λτ表示气溶胶光学厚度[21; 22]。 卫星遥感反演大气气溶胶是利用卫星传感器探测到的大气顶部的反射率,也称为表观反射率,可以表示为[23]: F /L s s * μπ=ρ (2-2)

红外光学玻璃与红外晶体材料光学特性

一、红外光学玻璃与红外晶体材料光学特性: 1.晶体材料 晶体材料包括离子晶体与半导体晶体离子晶体包括碱卤化合物晶体, 碱土—卤族化合物晶体及氧化物及某些无机盐晶体。半导体晶体包括Ⅳ族单元素晶体、Ⅲ~Ⅴ族化合物和Ⅱ~Ⅵ族化合物晶体等。离子型晶体通常具有较高的透过率, 同时有较低的折射率, 因而反射损失小, 一般不需镀增透膜, 同时离子型晶体光学性能受温度影响也小于非离子型晶体。半导体晶体属于共价晶体或某种离子耦合的共价键晶体。晶体的特点是其物理和化学特性及使用特性的多样性。晶体的折射率及色散度变化范围比其它类型材料丰富得多。可以满足不同应用的需要, 有一些晶体还具备光电、磁光、声光等效应, 可以用作探测器材料。 [1] 按内部晶体结构晶体材料可分为单晶体和多晶体 ①单晶体材料 表1.1 几种常用红外晶体材料[1] 名称化学组成透射长波限/ μm 折射率/4.3μ m 硬度/克氏密度/(g·cm-3)溶解度 /(g·L-3)H2O 金刚石C30 2.48820 3.51不溶锗Ge25 4.02800 5.33不溶硅Si15 3.421150 2.33不溶石英晶体SiO2 4.5 1.46740 2.2不溶兰宝石Al2O3 5.5 1.681370 3.98不溶氟化锂LiF8.0 1.34110 2.600.27氟化镁MgF28.0 1.35576 3.18不溶氟化钡BaF213.5 1.4582 4.890.17氟化钙CaF210.0 1.41158 3.180.002溴化铊TLBr34 2.35127.560.05金红石TiO2 6.0 2.45880 4.26不溶砷化镓GaAs18 3.34(8μm)750 5.31不溶氯化钠NaCl25 1.5217 2.1635 硒化锌ZnSe22 2.4150 5.27不溶锑化铟InSb16 3.99223 5.78不溶硫化锌ZnS15 2.25354 4.09不溶KRS-5TLBr-TLI45 2.38407.370.02 KRS-6TLBr-TLCl30 2.19357.190.01 ②多晶体材料

玻璃的光学性能

合肥学院 Hefei University 翻译文献:玻璃的光学性能 课程名称:金属学与热处理 指导教师:谢劲松 系别/班级:14粉体材料科学与工程一班 姓名(学号):罗成1403011012

摘要:无机材料指由无机物单独或混合其他物质制成的材料。通常指由硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐等原料和/或氧化物、氮化物、碳化物、硼化物、硫化物、硅化物、卤化物等原料经一定的工艺制备而成的材料。 Abstract: inorganic materials by inorganic material alone or mixed with other materials. Usually made of silicate, aluminate, borate, phosphate and germanate and / or raw materials such as oxides, nitrides, carbides, borides, silicides, sulfides, halides as raw materials prepared by materials. 玻璃是由二氧化硅和其他化学物质熔融在一起形成的(主要生产原料为:纯碱、石灰石、石英)。在熔融时形成连续网络结构,冷却过程中粘度逐渐增大并硬化致使其结晶的硅酸盐类非金属材料。普通玻璃的化学组成是Na2SiO3、CaSiO3、SiO2或Na2O·CaO·6SiO2等,主要成分是硅酸盐复盐,是一种无规则结构的非晶态固体。广泛应用于建筑物,属于混合物。另有混入了某些金属的氧化物或者盐类而显现出颜色的有色玻璃,和通过物理或者化学的方法制得的钢化玻璃等。有时把一些透明的塑料(如聚甲基丙烯酸甲酯)也称作有机玻璃。 The glass is made of silicon dioxide and other chemical substances fused together to form (the main raw materials for the production of soda ash, limestone, quartz). The formation of a continuous network structure in the melt, silicate nonmetalmaterials cooling process viscosity increases gradually and hardening resulting in the crystallization. The chemical composition of glass is Na2SiO3, CaSiO3, or SiO2 Na2O - CaO - 6SiO2, is the main component of silicate, is an amorphous solid irregular structure. Widely used in buildings, to the mixture. Otherwise mixed with some metal oxides or salts and show the color of colored glass The glass and method by physical or chemical preparation of toughened glass. Some transparent plastic (such as PMMA) also called organic glass. 关键词:折射率、反射、对红外和紫外的吸收 Refractive index, reflection, infrared and ultraviolet absorption 一、玻璃的折射率 当光照射到玻璃时,一般产生反射、透过和吸收。这三种基本性质与折射率有关。玻璃的折射率可以理解为电磁波在玻璃中传播速度的降低(以真空中的光速为准)。如果用折射率来表示光速的降低,则:n=c/v When the light shines on the glass, generally have the reflection and absorption. Through these three kinds of basic properties and refractive index. The refractive index of the glass can be understood as to reduce the velocity of

光学论文光学玻璃

光学玻璃 摘要:随着光子学技术的发展,光学玻璃的研究领域更加宽阔,光学玻璃的研究成为 各国一项重的项目,光学玻璃也越来越多普及到生活各个领域,本文着重介绍光学玻璃的一些特性、应用、研究、及其发展前景。 关键词:光学玻璃技术特性发展 引言: 玻璃技术经历了5000 多年的发展历史。直到近代, 为了适应军用光学仪器的发 展, SCHO TT 公司的创始人O t to Scho t t 于1884 年发展了现代光学玻璃熔炼技术, 制造出世界上第一块高质量光学玻璃。目前, 随着光学、信息技术、能源、航空航天技术、生物技术以及生命科学等学科的迅速发展, 光学玻璃由传统意义上的光学仪器用成像介质——透 镜(主要是应用几何光学原理进行成像) 逐渐向新的应用领域迅速发展。尤其是伴随着光子学技术的发展, 光子继电子之后成为信息的主要载体。 一、光学玻璃概念: 光学玻璃是制造光学镜头、光学仪器的主要材料。光学玻璃(在普通的硼硅酸盐玻璃原料中加入少量对光敏感的物质,如AgCl、AgBr等,再加入极少量的敏化剂,如CuO等,使玻璃对光线变得更加敏感。光学玻璃必须有高度精确的折射率、阿贝数和高透明度、高均匀度。光学玻璃是用高纯度硅、硼、钠、钾、锌、铅、镁、钙、钡等的氧化物按特定配方混合,在白金坩埚中高温融化,用超声波搅拌均匀,去气泡;然后经长时间缓慢地降温,以免玻璃块产生内应力。冷却后的玻璃块,必须经过光学仪器测量,检验纯度、透明度、均匀度、折射率和色散率是否合规格。合格的玻璃块经过加热锻压,成光学透镜毛胚。 二、光学玻璃的分类及其特性: B270/K9 K9玻璃是用K9料制成的玻璃制品,用于光学镀膜等领域 K9料属于光学玻璃,由于它晶莹剔透,所以衍生了很多以K9料为加工对象的工厂,他们加工出来的产品,在市面上称为水晶玻璃制品。 K9的组成如下: SiO2=69.13%B2O3=10.75%BaO=3.07%Na2O=10.40%K2O=6.29%As2O3=0.36% 它的光学常数为:折射率=1.51630色散=0.00806阿贝数=64.06。 无色光学玻璃--B270技术要求

建筑玻璃常用的光学热工性能指标

建筑玻璃常用的光学热工性能指标 早期人们对玻璃的要求仅是透光、平整和外观质量好。随着能源及环境政策的不断深入落实,节能建筑、绿色建筑、环境友好性建筑等概念日益得到了人们的认可,并迅速发展起来。这些类型的建筑都对玻璃提出了越来越多的光学热工性能指标要求,由此也诞生了更多的新型玻璃品种。在实际选购玻璃时,一方面建筑设计师会提出多项指标要求企业加工玻璃产品,另一方面企业也会尽可能全面地标示出自己产品的光学热工性能供客户选择。准确地了解和分析这些特性参数,才能选择到适合的玻璃产品,从而使建筑物符合标准规定的性能要求。但由于光学热工性能指标专业性较强,普及应用时间较短,容易出现理解不清和表达错误。因此,本文将有关建筑玻璃常用的光学热工性能指标进行列举和解释,供生产和应用中相关技术人员准确理解及使用。 玻璃表面辐射率:也称为E值。从Low-E玻璃开始这一词汇就频繁地被使用,是判断是否为Low-E玻璃的标准,也是表征节能特性的重要指标,直接影响着玻璃传热系数的大小。定义为玻璃表面单位面积辐射的热量同单位面积黑体在相同温度,相同条件下辐射热量之比,数据范围为0-1。辐射率越低,玻璃吸收热量的能力越低,反射热量能力越强。耀华在线Low-E玻璃的辐射率低于0.2,能良好地反射80%以上的远红外热量,具有优良的节能性能;而普通玻璃的辐射率为0.84,仅能反射11%左右的热量。玻璃的辐射率使用红外光谱仪测定后经计算得出,国内依据的标准是GB/T2680,国际标准是ISO10292。 可见光反射比Lightreflectance:可简写为Rvis,主要用于限制玻璃幕墙的反射“光污染”现象。在《玻璃幕墙光学性能》标准中做了如下限定:“玻璃幕墙应采用反射比不大于0.30的幕墙玻璃”,“主干道、立交桥、高架路两侧建筑物高20m 以下部分,其余路段高10m以下部分如使用玻璃幕墙,应采用反射比不大于0.16的玻璃”。 可见光透射比Lighttransmittance:简写为Tvis,是最早被普及使用的玻璃光学性能参数。这一指标不仅影响着建筑的通透效果,还直接影响着室内的照明能耗,所以在《公共建筑节能设计标准》中提出了“当窗墙比小于0.4时,玻璃的可见光透射比不应小于0.4”的限制耍求。

典型玻璃的光学、热工性能参数

典型玻璃的光学、热工性能参数 玻璃品种及规格(mm)可见光 透射比 太阳能 总透射比 遮阳系数 中部传热 系数 透明玻璃3透明玻璃0.830.87 1.00 5.8 6透明玻璃0.770.820.93 5.7 12透明玻璃0.650.740.84 5.5 吸热玻璃5绿色吸热玻璃0.770.640.76 5.7 6蓝色吸热玻璃0.540.620.72 5.7 5茶色吸热玻璃0.500.620.72 5.7 5灰色吸热玻璃0.420.600.69 5.7 热反射玻璃 6高透光热反射玻璃0.560.560.64 5.7 6中等透光热反射玻璃0.400.430.49 5.4 6低透光热反射玻璃0.150.260.30 4.6 6特低透光热反射玻璃0.110.250.29 4.6 单片6高透光Low-E玻璃0.610.510.58 3.6

Low-E6中等透光型Low-E玻璃0.550.440.51 3.5 中空玻璃 6透明+12空气+6透明0.710.750.86 2.8 6绿色吸热+12空气+6透明0.660.470.54 2.8 6灰色吸热+12空气+6透明0.380.450.51 2.8 6中等透光热反射+12空气+6 透明 0.280.290.34 2.4 6低透光热反射+12空气+6透 明 0.160.160.18 2.3 6高透光Low-E+12空气+6透明0.720.470.62 1.9 6中透光Low-E+12空气+6透明0.620.370.50 1.8 6较低透光Low-E+12空气+6 透明 0.480.280.38 1.8 6低透光Low-E+12空气+6透明0.350.200.30 1.8 6高透光Low-E+12氩气+6透明0.720.470.62 1.5 6中透光Low-E+12氩气+6透明0.620.370.50 1.4

各种玻璃特性详细的介绍

各种玻璃特性详细介绍 玻璃的制造已有五千年的历史,一般认为最早的制造者是古代的埃及人。我国在东周时代已能制造玻璃,玻璃组成中都含有氧化铅和氧化钡,与其他国家的古代玻璃有明显的区别。我国历史上有把玻璃称为琉璃、颇黎、假水晶料器、硝子等名称。 玻璃具有一系列非常可贵的特性:透明、坚硬、良好的化学稳定性;可通过化学组成的调整,大幅度调节玻璃的物理和化学性能,以适应各种不同的使用要求;可以用吹、压、拉、铸、槽沉、离心浇注等多种成形方法,制成各种形状的空心和实心制品;可以通过焊接和粉末烧结等加工方制成形状复杂、尺寸严格的器件。而且,制造玻璃的原料丰富,价格低廉。因此,作为结构材料和功能材料,玻璃在建材、轻工、交通、医药、化工、电子、航天、原子能等领域获得了极其广泛的应用。 B270/K9 K9玻璃是用K9料制成的玻璃制品,用于光学镀膜等领域 K9料属于光学玻璃,由于它晶莹剔透,所以衍生了很多以K9料为加工对象的工厂,他们加工出来的产品,在市面上称为水晶玻璃制品。 K9的组成如下: SiO2=69.13%B2O3=10.75%BaO=3.07%Na2O=10.40%K2O=6.29%As2O3=0.36% 它的光学常数为:折射率=1.51630色散=0.00806阿贝数=64.06。

石英玻璃 石英玻璃以其优良的理化性能,被大量广泛用于半导体技术,新型电光源,彩电荧光粉生产,化工过程,超高电压收尘、远红外辐射加热设备、航空航天技术、某些武器及光学仪器的光学系统、原子能技术、浮法玻璃及元碱玻璃窖的耐火材料,特种玻璃用坩埚,仪器玻璃成型部料碗,紫外线杀菌灯,各种有色金属的生产等诸多领域。石英玻璃SiO2含量大于99.5%,热膨胀系数低,耐高温,化学稳定性好,透紫外光和红外光,熔制温度高、粘度大,成型较难。多用于半导体、电光源、光导通信、激光等技术和光学仪器中。 石英玻璃在整个波长有特别好的透光性,在红外区(特殊的红外玻璃除外),光谱透射围比普通玻璃大。在可见光区透过率达93%。在紫外光谱区,特别是在短波,紫外光谱区透过率比其他玻璃好的多。石英玻璃他的光学性能在很大程度上取决于它的化学性能。哪怕是0.001%的杂质就明显地影响产品质量。过度金属杂质会改变波长方向移动,羟基的存在会吸收2.73μm光带。国产光学石英玻璃有三个牌号:JGS1紫外光学石英玻璃,应用波段185-2000nm,用合成石制造,Sicl4为原料,JGS2紫外光学石英玻璃,应用波段220-2500nm,用水晶做原料,气炼法生产;JGS3红外光学石英玻璃,应用波段260-3500nm,采用水晶或高纯度石英砂为原料,真空加压炉生产。国外还有一种全波段光学石英玻璃,应用波段180-4000nm,采用等离子(无水无H2状态下)化学相沉积法生产。用特纯Sicl4为原料。在石英玻璃中掺入少量Tio2,可以把220nm下的紫外线滤掉,称无臭氧石英玻璃。因为220nm以下的紫外线能使空气中的氧变成臭氧,在石英玻璃中掺入少量钛、铕等元素。可以把340nm以下的短波过滤掉。用它制电

汽车安全玻璃试验方法--光学性能试验

前言 GB/T 5137《汽车安全玻璃试验方法》分为四个部分: ——第1部分:力学性能试验; ——第2部分:光学性能试验; ——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验; ——第4部分:太阳能透射比测定方法。 本部分为GB/T 5137的第2部分。 GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学性能试验方法》(英文版)。 本部分与该国际标准的主要差异如下: ——删除了国际标准中的“定义”部分; ——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003相一致。 本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。 本部分与GB/T 5137.2—1996相比主要变化如下: ——将“4.透射比试验”改为“4.可见光透射比试验”; ——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透射比”; ——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”; ——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”; ——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致; ——将“9.反射比试验”改为“9.可见光反射比试验”; 本部分附录A为资料性附录。 本部分由原国家建筑材料工业局提出。 本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。 本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。 本部分主要起草人:王乐、韩松、陈峥科。 本部分所代替标准的历次版本发布情况为: GB 5137.2—1985、GB/T 5137.2—1996。 汽车安全玻璃试验方法 第2部分:光学性能试验 1 范围 GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。 本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。 2 试验条件 除特殊规定外,试验应在下述条件下进行: a) 环境温度:20℃±5℃; b) 压力:8.60×104Pa~1.06×105Pa; c) 相对湿度:40%~80%。 3 试验应用条件 对某些类型的安全玻璃而言,如果试验结果可以根据其某些已知的性能所预测,则无须进行本标准规定的所有试验。 4 可见光透射比试验比 4.1 试验目的 测定安全玻璃是否具有一定的可见光透射比。 4.2 试样 应使用制品或试验片,试验片可以从制品上相应试验区域切取。 4.3 仪器 4.3.1 光源:白炽灯,其灯丝包含在1.5mm×1.5mm×3mm的平行六面体内。加于灯丝两端的电压应使色温为2856K±50K,该电压稳定在±0.1%内。用来测量电压的仪表应有相应的精度。

光学玻璃特性(精)

HB610 HB630 HB640 HB650 HB670 HB685 HB700 HB720 HWB760 HWB780 HWB800 HWB830 HWB850 HWB900 HWB930 ZWB1 ZWB2 ZWB3 ZB1 ZB2 ZB3 QB1 QB2 QB3 QB4 QB5 QB9 QB10 QB11 QB12 QB13 QB16 QB17 HB10 HB11 HB12 HB13 HB14 HB15 HB16 KC11 KC13 KC14 KC15 KC17 KC18 KC19 RG610 RG630 RG645 RG665 R-68 RG695 RG715 RG780 IR-80 RG830 IR-83 IR-85 R-70 R-72 IR-76 R-62 R-64 R-66 ZWB1 ZWB2 ZWB3 ZB1 ZB2 ZB3 QB1 QB2 QB3 QB4 QB5 QB9 QB10 QB11 QB12 QB13 QB16 QB17 QB18 QB19 QB21 YфC2 YфC3 YфC1 фC1 фC6 фC7 CC1 CC2 CC4 CC5 CC8 C3C3 C3C5 C3C7 C3C8 C3C9 C3C15 C3C16 C3C17 C3C19 C3C21 UG11 UG1 UG5 BG3 U-340 U-360 U-330 B-390 B-370 B-410 B-440 BG14 B-460 QB18 QB19 QB21 QB23 QB24 BG38 BG7 BG12 B-480 JB1 JB9 CB1 CB2 HB1 HB3 HB5 HB6 HWB1 HWB3 HWB4 FB1 FB3 GRB1 GRB3 PNB586 HOB445 TB1 TB2 SSB40 SSB145 SSB165 SSB200 SJB20 SJB80 SJB100 SJB130 SJB140 ZAB00 ZAB02 ZAB2 ZAB5 ZAB10 ZAB25 ZAB30 ZAB50 ZAB65 ZAB70 JB1 CB1 CB2 HB1 HB3 HB5 HWB1 HWB3 HWB4 FB1 FB3 QB15 HB2 ЖC3 OC5 OC6 ⅡC5 ⅡC8 ⅡC13 ⅡC2 ИKC1 ИKC2 ИKC3 TC1 TC3 C3C14 C3C16 C7

光学玻璃性能参数及解释和代号

序 成都光明光电股份有限公司始建于1956年,是中国最大的光学材料制造商,其光学玻璃的产量数年连续世界第一。公司开发力量雄厚,光学材料生产技术和设备先进,检验测试手段完善。公司持之以恒地进行产品研发、永无止境地追求质量最优,目前能提供200多个牌号的光学、光电子玻璃。 本目录中主要列出了无铅、砷、镉的环境友好玻璃、镧系玻璃以及低软化点玻璃(LSG)、高透过(Hi-Tran)玻璃牌号,同时也保留了部分含铅和砷的玻璃牌号。 与2012年版相比,本版次完善了部分牌号的性能指标,同时新增了公司最新研究开发的一些光学玻璃牌号供你参考选择。 成都光明光电股份有限公司 2013年2月修订

目录 1 光学玻璃牌号分类和命名 (4) 1.1 光学玻璃牌号分类 (4) 1.2 光学玻璃牌号命名 (4) 1.3 无铅、砷、镉玻璃牌号的命名 (4) 1.4 低软化点玻璃牌号命名 (4) 1.5 高透过玻璃牌号的命名 (4) 2 光学性能 (5) 2.1 折射率 (5) 2.2 色散和阿贝数 (5) 2.3 色散公式 (5) 2.4 相对部分色散 (6) 2.5 应力光学系数B (6) 2.6 内透射比τ (7) 2.7 着色度(λ80 /λ5) (7) 2.8 折射率温度系数(Δn/ΔT) (7) 3 化学性能 (7) 3.1 抗潮湿大气作用稳定性RC(S)(表面法) (7) 3.2 抗酸作用稳定性R A(S)(表面法) (8) 3.3 耐水作用稳定性D W(粉末法) (8) 3.4 耐酸作用稳定性D A(粉末法) (8) 4 热学性能 (8) 4.1 热膨胀系数α (9) 4.2 转变温度Tg (9) 4.3 弛垂温度Ts (9) 4.4 应变点T1014.5 (9) 4.5 退火点T1013 (9) 4.6 软化点T107.6 (9) 4.7 热传导系数λ (9) 5 机械性能 (10) 5.1 杨氏模量E、剪切模量G和泊松比μ (10) 5.2 Knoop硬度HK (10) 5.3 磨耗度FA (10) 5.4 密度ρ (11)

各种玻璃特性详细介绍

玻璃的制造已有五千年的历史,一般认为最早的制造者是古代的埃及人。我国在东周时代已能制造玻璃,玻璃组成中都含有氧化铅和氧化钡,与其他国家的古代玻璃有明显的区别。我国历史上有把玻璃称为琉璃、颇黎、假水晶料器、硝子等名称。 玻璃具有一系列非常可贵的特性:透明、坚硬、良好的化学稳定性;可通过化学组成的调整,大幅度调节玻璃的物理和化学性能,以适应各种不同的使用要求;可以用吹、压、拉、铸、槽沉、离心浇注等多种成形方法,制成各种形状的空心和实心制品;可以通过焊接和粉末烧结等加工方制成形状复杂、尺寸严格的器件。而且,制造玻璃的原料丰富,价格低廉。因此,作为结构材料和功能材料,玻璃在建材、轻工、交通、医药、化工、电子、航天、原子能等领域获得了极其广泛的应用。 B270/K9 K9玻璃是用K9料制成的玻璃制品,用于光学镀膜等领域 K9料属于光学玻璃,由于它晶莹剔透,所以衍生了很多以K9料为加工对象的工厂,他们加工出来的产品,在市面上称为水晶玻璃制品。 K9的组成如下: SiO2=%B2O3=%BaO=%Na2O=%K2O=%As2O3=% 它的光学常数为:折射率=色散=阿贝数=。 无色光学玻璃--B270技术要求

石英玻璃 石英玻璃以其优良的理化性能,被大量广泛用于半导体技术,新型电光源,彩电荧光粉生产,化工过程,超高电压收尘、远红外辐射加热设备、航空航天技术、某些武器及光学仪器的光学系统、原子能技术、浮法玻璃及元碱玻璃窖的耐火材料,特种玻璃用坩埚,仪器玻璃成型部料碗,紫外线杀菌灯,各种有色金属的生产等诸多领域。石英玻璃SiO2含量大于%,热膨胀系数低,耐高温,化学稳定性好,透紫外光和红外光,熔制温度高、粘度大,成型较难。多用于半导体、电光源、光导通信、激光等技术和光学仪器中。 石英玻璃在整个波长有特别好的透光性,在红外区(特殊的红外玻璃除外),光谱透射范围比普通玻璃大。在可见光区透过率达93%。在紫外光谱区,特别是在短波,紫外光谱区透过率比其他玻璃好的多。石英玻璃他的光学性能在很大程度上取决于它的化学性能。哪怕是%的杂质就明显地影响产品质量。过度金属杂质会改变波长方向移动,羟基的存在会吸收μm光带。国产光学石英玻璃有三个牌号:JGS1紫外光学石英玻璃,应用波段185-2000nm,用合成石制造,Sicl4为原料,JGS2紫外光学石英玻璃,应用波段220-2500nm,用水晶做原料,气炼法生产;JGS3红外光学石英玻璃,应用波段260-3500nm,采用水晶或高纯度石英砂为原料,真空加压炉生产。国外还有一种全波段光学石英玻璃,应用波段180-4000nm,采用等离子(无水无H2状态下)化学相沉积法生产。用特纯Sicl4为原料。在石英玻璃中掺入少量Tio2,可以把220nm下的紫外线滤掉,称无臭氧石英玻璃。因为220nm以下的紫外线能使空气中的氧变成臭氧,在石英玻璃中掺入少量钛、铕等元素。可以把340nm以下的短波过滤掉。用它制电光源对人的皮肤有保健作用。这种玻璃可以做到完全无气泡。具有优良的透紫外线性能,特别是在短波紫外区,其透过性能远远胜过所有的其他玻璃。在185μm处的透过率可达85%。是185-2500nm波段的优良光学材料。由于这种玻璃含OH基团,所

相关文档
最新文档