区熔单晶硅和直拉单晶硅

区熔单晶硅和直拉单晶硅

区熔单晶硅和直拉单晶硅是两种常用的单晶硅生产工艺。单晶硅是一种高纯度的硅材料,广泛应用于半导体行业。在制备单晶硅时,区熔和直拉是两种常见的工艺路线。本文将对这两种工艺进行比较和介绍。

一、区熔单晶硅

区熔单晶硅是一种传统的生产工艺,也是最早被应用的工艺之一。它的主要步骤包括:选材、熔炼、晶化、切割和修整等。

1. 选材:区熔单晶硅的选材是非常关键的一步。选材要求硅原料的纯度高,杂质含量低,以确保生产出的单晶硅具有良好的电学性能。

2. 熔炼:在区熔工艺中,硅原料被放入石英坩埚中,在高温下进行熔炼。通过控制熔炼条件和熔炼时间,使硅原料逐渐熔化并形成单晶硅。

3. 晶化:熔融的硅原料在逐渐冷却的过程中,通过特定的方法来形成单晶硅。晶化过程需要严格控制温度和冷却速率,以保证单晶硅的晶体结构完整性和纯度。

4. 切割:晶化后的硅块需要经过切割处理,使其成为适合半导体器件制造的单晶硅片。切割时要保证切割面的光洁度和平整度,以提高单晶硅片的质量。

5. 修整:切割后的单晶硅片需要进行修整处理,以去除切割过程中产生的缺陷和杂质。修整过程通常包括化学腐蚀、机械研磨和抛光等步骤。

区熔单晶硅工艺的优点是工艺成熟、可控性好,生产成本相对较低。但是,由于区熔工艺存在晶体生长速度慢、晶体纯度不易控制等问题,生产出的单晶硅片质量相对较差。

二、直拉单晶硅

直拉单晶硅是一种相对较新的生产工艺,也是目前主流的单晶硅生产工艺之一。它的主要步骤包括:选材、熔炼、晶化、拉丝和修整等。

1. 选材:直拉单晶硅的选材要求与区熔工艺相似,同样需要高纯度的硅原料。选材的关键是减少杂质的含量,以确保生产出高质量的单晶硅。

2. 熔炼:直拉工艺中的熔炼过程与区熔工艺类似,硅原料被放入石英坩埚中,在高温下进行熔炼。熔炼后的硅液通过特定的方法形成一根硅棒。

3. 晶化:在直拉工艺中,硅棒从熔液中被拉出,并在拉伸过程中逐渐冷却和凝固。通过控制拉伸速度和温度等参数,使硅棒逐渐凝固并形成单晶硅。

4. 拉丝:拉伸后的硅棒可以进一步通过拉丝机进行加工,将其拉成所需的直径和长度。拉丝过程需要严格控制温度和拉伸速度,以保证单晶硅的质量和尺寸精度。

5. 修整:拉丝后的单晶硅棒需要进行修整处理,以去除表面的缺陷和杂质。修整过程通常包括化学腐蚀、机械研磨和抛光等步骤。

直拉单晶硅工艺的优点是晶体生长速度快、晶体纯度高,生产出的单晶硅片质量相对较好。但是,直拉工艺的设备和技术要求较高,生产成本也较高。

区熔和直拉是两种常见的单晶硅生产工艺。区熔工艺成熟、工艺可控性好,生产成本相对较低;而直拉工艺生产出的单晶硅质量更好,但设备和技术要求较高。不同的工艺路线可以根据具体需求和经济因素选择,以满足不同领域对单晶硅的需求。

直拉单晶硅的制备工艺

直拉单晶硅的制备工艺 内容提要:单晶硅根据硅生长方向的不同分为区熔单晶硅,外延单晶硅和直拉单晶硅。直拉单晶硅的制备工艺一般包括多晶硅的装料和熔化,种晶,缩颈,放肩,等径和收尾。目前,单晶硅的直拉生长法已经是单晶硅制备的主要技术,也是太阳电池用单晶硅的主要制备方法。关键词:直拉单晶硅,制备工艺 一,直拉单晶硅的相关知识 硅单晶是一种半导体材料。直拉单晶硅工艺学是研究用直拉方法获得硅单晶的一门科学,它研究的主要内容:硅单晶生长的一般原理,直拉硅单晶生长工艺过程,改善直拉硅单晶性能的工艺方法。 直拉单晶硅工艺学象其他科学一样,随着社会的需要和生产的发展逐渐发展起来。十九世纪,人们发现某些矿物,如硫化锌、氧化铜具有单向导电性能,并用它做成整流器件,显示出独特的优点,使半导体材料得到初步应用。后来,人们经过深入研究,制造出多种半导体材料。1918年,切克劳斯基(J Czochralski)发表了用直拉法从熔体中生长单晶的论文,为用直拉法生长半导体材料奠定了理论基础,从此,直拉法飞速发展,成为从熔体中获得单晶一种常用的重要方法。目前一些重要的半导体材料,如硅单晶,锗单晶,红宝石等大部分是用直拉法生长的。直拉锗单晶首先登上大规模工业生产的舞台,它工艺简单,生产效率高,成本低,发展迅速;但是,锗单晶有不可克服的缺点:热稳定性差,电学性能较低,原料来源少,应用和生产都受到一定限制。六十年代,人们发展了半导体材料硅单晶,它一登上半

导体材料舞台,就显示了独特优点:硬度大,电学热稳定性好,能在较高和较低温度下稳定工作,原料来源丰富。地球上25.8%是硅,是地球上锗的四万倍,真是取之不尽,用之不竭。因此,硅单晶制备工艺发展非常迅速,产量成倍增加,1964 年所有资本主义国家生产的单为晶硅50-60 吨,70年为300-350 吨,76年就达到1200吨。其中60%以上是用直拉法生产的。 随着单晶硅生长技术的发展,单晶硅生长设备也相应发展起来,以直拉单晶硅为例,最初的直拉炉只能装百十克多晶硅,石英坩埚直径为40毫米到60毫米,拉制单晶长度只有几厘米,十几厘米,现在直拉单晶炉装多晶硅达40 斤,石英坩埚直径达350毫米,单晶直径可达150毫米,单晶长度近2米,单晶炉籽晶轴由硬构件发展成软构件,由手工操作发展成自动操作,并进一步发展成计算机操作,单晶炉几乎每三年更新一次。大规模和超大规模集成电路的发展,给电子工业带来一场新的革命,也给半导体材料单晶硅带来新的课题。大规模和超大规模集成电路在部分用直拉单晶硅制造,制造集成电路的硅片上,各种电路密度大集成度高,要求单晶硅有良好的均匀性和高度的完美性。以4k 位集成电路为例,在4×4 毫米或4×6 毫米的硅片上,做四万多个元件,还要制出各元件之间的连线,经过几十道工序,很多次热处理。元件的高密度,复杂的制备工艺,要保证每个元件性能稳定,除制作集成电路工艺成熟外,对硅单晶材料质量要求很高:硅单晶要有合适的电阻率和良好的电阻率均匀性,完美的晶体结构,良好的电学性能。因此,硅单晶生长技术要更成熟、更精细、

单晶硅材料简介

单晶硅材料简介 摘要:单晶硅是硅的单晶体,具有完整的点阵结构,纯度要求在99.9999%以上,是一种良好的半导体材料。制作工艺以直拉法为主,兼以区熔和外延。自从1893年光生伏效应的发现,太阳能电池就开始在人们的视线中出现,随着波兰科学家发展了生长单晶硅的提拉法工艺以及1959年单晶硅电池效率突破10%,单晶硅正式进入商业化。我国更是在05年把太阳能电池的产量提高到10MW/年,并且成为世界重要的光伏工业基地。单晶硅使信息产业成为全球经济发展中增长最快的先导产业,世界各国也重点发展单晶硅使得单晶硅成为能源行业宠儿。地壳中含量超过25.8%的硅含量使得单晶硅来源丰富,虽然暂时太阳能行业暂时以P 型电池主导,但遭遇边际效应的P型电池终将被N型电池所取代。单晶硅前途不可限量。 关键字:性质;历史;制备;发展前景 Monocrystalline silicon material Brief Introduction Abstract: Monocrystalline silicon is silicon single crystal with complete lattice structure, purity over 99.9999%, is a good semiconductor materials.Process is given priority to with czochralski method, and with zone melting and extension.Since 1893 time born v effect, found that solar cells began to appear in the line of sight of people, with the development of polish scientist pulling method of single crystal silicon growth process and single crystal silicon battery efficiency above 10% in 1959, monocrystalline silicon formally enter the commercial.5 years of our country is in the production of solar cells to 10 mw/year, and become the world pv industrial base.Monocrystalline silicon makes information industry become the world's fastest growing economy in the forerunner industry, the world also make focus on monocrystalline silicon single crystal silicon darling become the energy industry.Content more than 25.8% of silicon content in the crust has rich source of monocrystalline silicon, while the solar industry to temporarily P type battery, but in the marginal effects of p-type battery will eventually be replaced by N type battery.Future of monocrystalline silicon. Key words: silicon;Properties;History;Preparation;Prospects for development 一、单晶硅基本性质以及历史沿革 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。晶态硅的熔点1410C,沸点2355C,密度2.32~2.34g/cm3,莫氏硬度为7。 单晶硅是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。 熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。 最开始是1893年法国的实验物理学家E.Becquerel发现液体的光生伏特效应,简称为光伏效应。在1918年的时候波兰科学家Czochralski发展生长单晶硅的提拉法工艺。1959年Hoffman电子实现可商业化单晶硅电池效率达到10%,并通过用网栅电极来显著减少光伏电池串联电阻;卫星探险家6号发射,共用9600片太阳能电池列阵,每片2c㎡,共20W。由此单晶硅生产的太阳能电池正式进入商业化方向。 同样在中国,单晶硅的发展也是伴随着太阳能电池的发展。在1958年的时候我国开始

区熔单晶硅和直拉单晶硅

区熔单晶硅和直拉单晶硅 区熔单晶硅和直拉单晶硅是两种常用的单晶硅生产工艺。单晶硅是一种高纯度的硅材料,广泛应用于半导体行业。在制备单晶硅时,区熔和直拉是两种常见的工艺路线。本文将对这两种工艺进行比较和介绍。 一、区熔单晶硅 区熔单晶硅是一种传统的生产工艺,也是最早被应用的工艺之一。它的主要步骤包括:选材、熔炼、晶化、切割和修整等。 1. 选材:区熔单晶硅的选材是非常关键的一步。选材要求硅原料的纯度高,杂质含量低,以确保生产出的单晶硅具有良好的电学性能。 2. 熔炼:在区熔工艺中,硅原料被放入石英坩埚中,在高温下进行熔炼。通过控制熔炼条件和熔炼时间,使硅原料逐渐熔化并形成单晶硅。 3. 晶化:熔融的硅原料在逐渐冷却的过程中,通过特定的方法来形成单晶硅。晶化过程需要严格控制温度和冷却速率,以保证单晶硅的晶体结构完整性和纯度。 4. 切割:晶化后的硅块需要经过切割处理,使其成为适合半导体器件制造的单晶硅片。切割时要保证切割面的光洁度和平整度,以提高单晶硅片的质量。

5. 修整:切割后的单晶硅片需要进行修整处理,以去除切割过程中产生的缺陷和杂质。修整过程通常包括化学腐蚀、机械研磨和抛光等步骤。 区熔单晶硅工艺的优点是工艺成熟、可控性好,生产成本相对较低。但是,由于区熔工艺存在晶体生长速度慢、晶体纯度不易控制等问题,生产出的单晶硅片质量相对较差。 二、直拉单晶硅 直拉单晶硅是一种相对较新的生产工艺,也是目前主流的单晶硅生产工艺之一。它的主要步骤包括:选材、熔炼、晶化、拉丝和修整等。 1. 选材:直拉单晶硅的选材要求与区熔工艺相似,同样需要高纯度的硅原料。选材的关键是减少杂质的含量,以确保生产出高质量的单晶硅。 2. 熔炼:直拉工艺中的熔炼过程与区熔工艺类似,硅原料被放入石英坩埚中,在高温下进行熔炼。熔炼后的硅液通过特定的方法形成一根硅棒。 3. 晶化:在直拉工艺中,硅棒从熔液中被拉出,并在拉伸过程中逐渐冷却和凝固。通过控制拉伸速度和温度等参数,使硅棒逐渐凝固并形成单晶硅。

硅工艺-《集成电路制造技术》课程-试题

晶圆制备 1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。 2.单晶硅生长常用(CZ法)和(区熔法)两种生长方式,生长后的单晶硅被称为(硅锭)。 3.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。 4.晶圆制备的九个工艺步骤分别是整型、定向、标识。 5.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111)。 6.CZ直拉法生长单晶硅是把(融化了的半导体级硅液体)变为(有确定晶向的)并且(被掺杂成p型或n型)的固体硅锭。 7.CZ直拉法的目的是(实现均匀掺杂的同时,并且复制仔晶的结构,得到合适的硅锭直径)。影响CZ直拉法的两个主要参数是(拉伸速率)和(晶体旋转速率)。 8.晶圆制备中的整型处理包括(去掉两端)、(径向研磨)和(硅片定位边和定位槽)。 9.制备半导体级硅的过程:1(制备工业硅);2(生长硅单晶);3(提纯)。 10.晶片需要经过切片、磨片、抛光后,得到所需晶圆。 氧化 10.二氧化硅按结构可分为()和()或()。 11.热氧化工艺的基本设备有三种:(卧式炉)、(立式炉)和(快速热处理炉)。 12.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。 13.用于热氧化工艺的立式炉的主要控制系统分为五部分:(工艺腔)、(硅片传输系统)、气体分配系统、尾气系统和(温控系统)。 14.选择性氧化常见的有(局部氧化)和(浅槽隔离),其英语缩略语分别为LOCOS和(STI )。 15.列出热氧化物在硅片制造的4种用途:(掺杂阻挡)、(表面钝化)、场氧化层和(金属层间介质)。 16.可在高温设备中进行的五种工艺分别是(氧化)、(扩散)、(蒸发)、退火和合金。 17.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。 18.卧式炉的工艺腔或炉管是对硅片加热的场所,它由平卧的(石英工艺腔)、(加热器)和(石英舟)组成。淀积 19.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。 20.淀积膜的过程有三个不同的阶段。第一步是(晶核形成),第二步是(聚焦成束),第三步是(汇聚成膜)。21.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。 22.在外延工艺中,如果膜和衬底材料(相同),例如硅衬底上长硅膜,这样的膜生长称为(同质外延);反之,膜和衬底材料不一致的情况,例如硅衬底上长氧化铝,则称为(异质外延)。 23.化学气相淀积是通过()的化学反应在硅片表面淀积一层()的工艺。硅片表面及其邻近的区域被()来向反应系统提供附加的能量。 金属化 24.金属按其在集成电路工艺中所起的作用,可划分为三大类:()、()和()。 25.气体直流辉光放电分为四个区,分别是:无光放电区、汤生放电区、辉光放电区和电弧放电区。其中辉光放电区包括前期辉光放电区、()和(),则溅射区域选择在()。 26.集成电路工艺中利用溅射现象主要用来(),还可以用来()。 27.对芯片互连的金属和金属合金来说,它所必备一些要求是:(导电率)、高黏附性、(淀积)、(平坦化)、可靠性、抗腐蚀性、应力等。 28.在半导体制造业中,最早的互连金属是(铝),在硅片制造业中最普通的互连金属是(铜),。 29.写出三种半导体制造业的金属和合金(Al )、(Cu )和(铝铜合金)。 30.阻挡层金属是一类具有(高熔点)的难熔金属,金属铝和铜的阻挡层金属分别是(W )和(W )。 31.被用于传统和双大马士革金属化的不同金属淀积系统是:()、()、()和铜电镀。 32.溅射主要是一个()过程,而非化学过程。在溅射过程中,()撞击具有高纯度的靶材料固体平板,按物理过程撞击出原子。这些被撞击出的原子穿过(),最后淀积在硅片上。 平坦化 33.缩略语PSG、BPSG的中文名称分别是()、()。 34.列举硅片制造中用到CMP的几个例子:()、LI氧化硅抛光、()、()、钨塞抛光和双大马士革铜抛光。 35.终点检测是指(CMP设备)的一种检测到平坦化工艺把材料磨到一个正确厚度的能力。两种最常用的原位终点检测技术是(电机电流终点检测)和(光学终点检测)。 36.硅片平坦化的四种类型分别是(平滑)、部分平坦化、(局部平坦化)和(全局平坦化)。 37.传统的平坦化技术有()、()和()。

单晶生产

单晶硅是单质硅的一种形态。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加;有显著的半导电性。超纯的单晶硅是本征半导体。 单晶硅是制造半导体硅器件的原料。用作耐高压、工作温度较高的器件,如大功率整流器、大功率晶体管、齐纳二极管、开关器件等。 4.1 单晶硅 4.1.1 国际动态 目前生长硅单晶的工艺主要采用直拉法(CZ)、磁场直接法(MCZ)、区熔法(FZ)以及双坩埚拉晶法,这其中又有固定式又坩埚电阻率均匀化控制拉晶技术(FC-CZ)和上下坩埚分离手稿式半连续供熔体直接技术(SCCZ)。全球电子工业用CZ单晶硅约占单晶硅总用量的80%,FZ单晶硅约占15%,EPI约占5%。CZ、FZ和MCZ单晶各自适用于不同的电阻率范围的器件,而MCZ可完全代替CZ 成为高速ULSI材料。一些硅材料技术先进的国家的MCZ技术发展较快,连续供熔体拉晶法也有逐步发展的趋势。 集成电路高集成度、微细化和低成本的要求,对半导体单晶材料的电阻率均匀性、金属杂质含量、微缺陷、晶片平整度、表面洁净度以及晶片大尺寸和高质量等提出了更加苛刻的要求。既要求大直径化(出于降低成本的目的),又要求晶体性能完美无缺。目前世界硅单晶的主流直径逐步从200mm转变到300mm,已开始300mm直径的工业化生产,日本超级硅研究所(SSI)在2003年第三届硅材料先进科学和工艺会议上宣布了400mm(质量438kg)硅单晶的制造工艺,预计2014年达到量产。直径450mm的硅单晶也已在实验室研究成功。 众所周知,单晶硅熔体生长中,对流会引起熔质分凝而形成杂质条纹,严重影响生长晶体的质量。利用微重力环境,人们将浮力对流的影响减小到最低限度。然而,在浮区法中,热毛细对流不但未被削弱,而且变得十分突出。为抑制热毛细对流,人们利用了不同的方法,如表面敷层、气流剪切、外加磁场等。在TEXUS-12火箭和D-1空间站进行的辐射加热硅单晶生长实验中,采用表面敷层技术成功地抑制了热毛细对流的产生;Dressler等也证实了气流剪切可抑制毛细对流;而在D-2空间GaAs单晶生长实验中则采用了外加磁场技术,使生长界面接近于平面,消除了晶体中的杂质条纹,位错密度减少了一个数量级以上,达到了理想的晶体生长效果。一种新的抑制热毛细对流的方法(重庆大学动力工程学院李杰等):表面截割法,热毛细对流得到显著抑制,削弱程度达70%以上。 目前面临尺寸扩大化趋势,对于300mm以上硅单晶生长所面临的几个主要问题是:流体动力学更为复杂,热应力问题也更加突出;传统的细颈不能支撑300kg 以上的硅棒,石英坩埚的扩大也是一个难题;点缺陷的影响加剧,OSF等缺陷更难以控制;拉晶试验成本会大大增加。因此,专家认为应采用联合实验开发方式,采用计算机模拟方法,采用MCZ或连续供熔体CZ法生长单晶硅,将会有助于发挥共同的群体优势,以便减少开发费用。 在硅材料晶体生长的研究方面,大量采用计算机模拟,拉晶技术采用磁场直拉法(MCZ);在缺陷的控制方面,采用设计晶体生长速率与固液界面温度梯度V/G临界在V/GL/D和V/COISF之间的工艺,可控制硅中自间隙硅原子、空位及相关微缺陷,可独得完美硅单晶d缺陷的利用方面,采用综合内吸除技术能够控制和利用硅中的缺陷和杂质,尤其是近年采用快速热处理并引入和控制空位,从

单晶硅介绍

单质硅有无定形及晶体两种。无定形硅为灰黑色或栗色粉末,更常见的是无定形块状,它们是热和电的不良导体、质硬,主要用于冶金工业(例如铁合金及铝合金的生产)及制造硅化物。晶体硅是银灰色,有金属光泽的晶体,能导电(但导电率不及金属)故又称为金属硅。高纯度的金属硅(≥99.99%)是生产半导体的材料,也是电子工业的基础材料。掺杂有微量硼、磷等元素的单晶硅可用于制造二极管、晶体 管及其他半导体器件。 由于半导体技术不断向高集成度,高性能,低成本和系统化方向发展,半导体在国民经济各领域 中的应用更加广泛。单晶硅片按使用性质可分为两大类:生产用硅片;测试用硅片。 半导体元件所使用的单晶硅片系采用多晶硅原料再经由单晶生长技术所生产出来的。多晶硅所使用的原材料来自硅砂(二氧化硅)。目前商业化的多晶硅依外观可分为块状多晶与粒状多晶。 多晶硅的品质规格: 多晶硅按外形可分为块状多晶硅和棒状多晶硅;等级分为一、二、三级免洗料。 多晶硅的检测: 主要检测参数为电阻率、碳浓度、N型少数载流子寿命;外形主要是块状的大小程度;结构方面要求无氧化夹层;表面需要经过酸腐蚀,结构需致密、平整,多晶硅的外观应无色斑、变色,无可见的污染物。 对于特殊要求的,还需要进行体内金属杂质含量的检测。 单晶硅棒品质规格: 单晶硅棒的主要技术参数 其中电阻率、OISF密度、以及碳含量是衡量单晶硅棒等级的关键参数。这些参数在单晶成型后即定 型,无法在此后的加工中进行改变。 测试方法: 电阻率:用四探针法。 OISF密度:利用氧化诱生法在高温、高洁净的炉管中氧化,再经过腐蚀后观察其密度进行报数。

碳含量:利用红外分光光度计进行检测。 单晶硅抛光片品质规格: 单晶硅抛光片的物理性能参数同硅单晶技术参数 单晶硅抛光片的表面质量:正面要求无划道、无蚀坑、无雾、无区域沾污、无崩边、无裂缝、无凹坑、无沟、无小丘、无刀痕等。背面要求无区域沾污、无崩边、无裂缝、无刀痕。 一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅 棒的市场需求也呈快速增长的趋势。 单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可 控制在Φ3~6英寸。外延片主要用于集成电路领域。 由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ 抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。 单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及 99%以上的集成电路用硅。 二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。 日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志 着我国单晶硅生产进入了新的发展时期。

直拉法单晶硅生长技术的现状

直拉法单晶硅生长技术的现状 摘要 综述了制造集成电路(IC)用直拉硅单晶生长的现状与发展。对大直径生长用磁场拉晶技术,硅片中缺陷的控制与利用(缺陷工程),大直径硅中新型原生空位型缺陷,硅外延片与SOI片,太阳电池级硅单和大直径直拉硅生长的计算机模拟,硅熔体与物性研究等进行了论述。 关键词:直拉硅单晶;扩散控制;等效微重力;空洞型缺陷;光电子转换效率;硅熔体结构 一、光伏产业的发展趋势,及对硅材料的前景要求,直拉法单晶硅生长技术是现在主流生长技术之一 光伏产业,是一种利用太阳能电池直接把光能转换为电能的环保型新能源产业。由于从太阳光能转换成电能的光电转换装置,是利用半导体器件的“光生伏打效应”原理进行光电转换的,因此把与太阳能发电系统构成链条关系的产业称为光伏产业。光伏产业的链条,包括:硅矿-硅矿石(石英砂)-工业硅(也称金属硅)-多晶硅、单晶硅-晶圆或多晶硅切片-太阳能电池-组件-发电系统。工业硅的纯度,一般为98-99.99%;太阳能级硅的纯度,一般要求在6N级即99.9999%以上。 与其他常规能源相比,光伏发电具有明显的优越性:一是高度的清洁性,发电过程中无损耗、无废物、无废气、无噪音、无毒害、无污染,不会导致“温室效应”和全球性气候变化;二是绝对的安全性,利用太阳能发电,对人、动物、植物无任何伤害或损害;三是普遍的实用性,不需开采和运输,使用方便,凡是有太阳照射的地方就能实现光伏发电,可广泛用于通信。交通、海事、军事等各个领域,上至航天器,下至家用电器,大到兆瓦级电站,小到玩具,都能运行光

伏发电;四是资源的充足性,太阳能是一种取之不尽用之不竭的自然能源。据计算,仅一秒钟发出的能量就相当于1.3亿亿吨标准煤燃烧时所放出的热量。而到达地球表面的太阳能,大约相当于目前全世界所有发电能力总和的20万倍。地球每天接收的太阳能,相当于全球一年所消耗的总能量的200倍。人类只要利用太阳每天光照的5%,就可以解决和满足全球所需能源。正因为如此,加上由于传统的化石能源是不可再生资源,越来越接近枯竭,世界各国越来越达成必须加快发展新的替代能源的共识,从而加大了政策扶持的力度,世界光伏产业呈现出蓬勃发展的势头,光伏产业正在向大批量生产和规模化应用发展,其运用几乎遍及所有用电领域。 从整体来看,世界各国对太阳能光伏发电的政策扶持力度在逐年加大。各国的补贴政策主要分为两类:一类是对安装光伏系统直接进行补贴,如日本;另一类是对光伏发电的上网电价进行设定,如德国、西班牙等国。而美国加利福尼亚州,则是将两种政策混合执行。 光伏科技的进步,使光电转换效率不断提高、光能发电成本不断降低。技术进步是降低光伏发电成本,提高光能利用效率、促进光伏产业和市场发展的重要因素。几十年来围绕着降低成本的各种研究开发项工作取得了显著成就,表现在电池效率不断提高。硅片厚度持续降低、产业化技术不断改进等方面,对降低光伏发电成本起到了决定性的作用。 多晶硅是太阳能电池必不可少的基础材料,其占到太阳能电池成本的80%,每生产1兆瓦太阳能电池需要12-14吨多晶硅。多晶硅主要采用化学提纯、物理提纯两种方法进行生产,其中化学提纯方法主要有西门子法(气象沉淀反应法)、硅烷热分解法、流态化床法,物理提纯方法主要有区域熔化提纯法(FZ)、定向凝固多晶硅锭法(筹造法)等等。 二、直拉法单晶生长技术的机械设备 上海汉虹的FT-CZ2008A、FT-CZ2208AE、FT-CZ2208A,西安理工大学的TDR80A-ZJS、TDR80B-ZJS、TDR80C-ZJS、TDR85A-ZJS、TDR95A-ZJS、TDR112A-ZJS,美国KAYEXCG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg,以及其他厂家的

硅的基础知识和太阳能单晶拉制基础知识及操作

硅的基础知识和太阳能单晶拉制基础知识及操作 ------余新明----- 硅的基础知识 硅在元素周期表中的序号是14,相对原子量为28,密度2.32-2.34克/厘米。常温下是固体,熔点是1410~1414度,沸点则要2355度。 硅是IV族元素,外层有四个电子,所以,外层有五个电子的V 族元素就被称为施主元素,因为多余的那个好象是做善事一样可以共大家使用,产生导电性。而外层只有三个电子的III族元素,则被成为受主元素,因为外面少一个电子,好象有一个空穴一样,所以周围的硅原子所带有的外层的电子老是要来填满它,这样,那个空穴就好象也会到处跑,像个正电子一样,电子和空穴就被统称为载流子。 最常被用来作为施主杂质的元素是磷,主要原因是它无毒而且比较容易得到,进行掺杂也比较容易。最常被用来作为受主杂质的元素是硼,主要原因也和磷一样,但它比磷还有一个更加明显的优点,就是,它在硅中的分凝系数很接近于1。----这是什么意思呢? 掺杂时,要将硅和杂质一起熔化,然后拉单晶。而单晶是从上到下逐渐生长的,所有的杂质元素在硅晶体的生长时,在硅的晶体和液体的界面上(固液界面),在固体和液体中的浓度是不同的,其在固体中的浓度与在液体中的浓度之比,就称为分凝系数。分凝系数越接近与1,则在固体和液体中的比例一样,这样所拉出的单晶的杂质浓度就越均匀。而分凝系数越接近于零,则在固体和液体的比例差别越大,这样,先拉出来的单晶的头部,杂质就会很少,而到单晶的底部,杂质浓度就会很大。 硼在固液界面静止情况下的分凝系数为0.8,在固液界面运动的时候,会超过0.9,所以,拉制的单晶里,从头到尾,所掺杂的硼的浓度很均匀。而磷的分凝系数为0.36,在实际拉晶时,分凝系数可以超过0.5,虽然小了些,但在V族元素里,已经是分凝系数最大的元素了 硅单晶的主要技术参数硅单晶主要技术参数有导电类型、电阻率与均匀度、非平衡载流子寿命、晶向与晶向偏离度、晶体缺陷等。 导电类型导电类型由掺入的施主或受主杂质决定。P型单晶多掺硼,N型单晶多掺磷,外延片衬底用N型单晶掺锑或砷。 电阻率与均匀度拉制单晶时掺入一定杂质以控制单晶的电阻率。由于杂质分布不匀,电阻率也不均匀。电阻率均匀性包括纵向电阻率均匀度、断面电阻率均匀度和微区电阻率均匀度。它直接影响器件参数的一致性和成品率。 非平衡载流子寿命光照或电注入产生的附加电子和空穴瞬即复合而消失,它们平均存在的时间称为非平衡载流子的寿命。非平衡载流子寿命同器件放大倍数、反向电流和开关特性等均有关系。寿命值又间接地反映硅单晶的纯度,存在重金属杂质会使寿命值大大降低。 晶向与晶向偏离度常用的单晶晶向多为 (111)和(100)。晶体的轴与晶体方向不吻合时,其偏离的角度称为晶向偏离度。 晶体缺陷生产电子器件用的硅单晶除对位错密度有一定限制外,不允许有小角度晶界、位错排、星形结构等缺陷存在。位错密度低于 200/厘米2者称为无位错单晶,无位错硅单晶占产量的大多数。在无位错硅单晶中还存在杂质原子、空位团、自间隙原子团、氧碳或其他杂质的沉淀物等微缺陷。微缺陷集合成圈状或螺旋状者称为旋涡缺陷。热加工过程中,硅单晶微缺陷间的相互作用及变化直接影响集成电路的成败。 太阳能单晶拉制基础知识及操作

单晶硅制备方法

金属 单晶硅制备方法 我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 单晶硅,英文,Monocrystallinesilicon。是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到%,甚至达到%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。 单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。 单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。 直拉法 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单晶。 直拉法制成的单晶完整性好,直径和长度都可以很大,生长速率也高。所用坩埚必须由不污染熔体的材料制成。因此,一些化学性活泼或熔点极高的材料,由于没有合适的坩埚,而不能用此法制备单晶体,而要改用区熔法晶体生长或其他方法。

单晶硅基本资料

1.单晶硅 基本概念 单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。其主要用途是用作半导体材料和利用太阳能光伏发电、供热?等。由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 单晶硅可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。 在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。北京2008年奥运会将把“绿色奥运”做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻 具体介绍 我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 单晶硅,英文,Monocrystallinesilicon。是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到%,甚至达到%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。 单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。 单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。

区熔单晶硅和直拉单晶硅

区熔单晶硅和直拉单晶硅 随着科技的发展,单晶硅在光电子、半导体和太阳能等领域得到了广泛应用。区熔单晶硅和直拉单晶硅是制备单晶硅的两种常用方法。本文将对这两种方法进行介绍和比较。 区熔单晶硅是一种传统的制备单晶硅的方法,其工艺流程相对复杂。首先,将多晶硅块放入电炉中进行预热,使其温度达到熔点以上。然后,在石墨坩埚中加入一定量的硅酸钠和硅酸钾,形成熔体。接下来,将熔体慢慢降温,使其形成一定的过饱和度。在过饱和度的作用下,硅原子会逐渐凝结成为单晶。最后,通过拉扯和修整等工艺步骤,获得所需的单晶硅。 相比之下,直拉单晶硅是一种更为先进的制备方法。该方法利用了材料的表面张力和凝固过程的控制,使得单晶硅的制备更加稳定和高效。直拉单晶硅的工艺流程较为简单,首先将多晶硅块放入石墨坩埚中,在高温条件下熔化。然后,通过控制石墨坩埚和陶瓷模具之间的距离,使得硅液形成一定的凝固界面。接着,慢慢提拉陶瓷模具,使硅液凝固成长条状。最后,通过切割和修整等工艺步骤,获得所需的单晶硅。 区熔单晶硅和直拉单晶硅的主要区别在于工艺流程和单晶质量。区熔单晶硅的工艺流程相对复杂,需要较长的制备时间,并且由于熔体的不稳定性,容易产生晶体缺陷。而直拉单晶硅的工艺流程较为

简单,制备时间较短,并且由于凝固过程的控制,可以得到较高质量的单晶硅。 区熔单晶硅和直拉单晶硅在产量和成本方面也有一定差异。区熔单晶硅的产量较低,而且由于工艺复杂,生产成本相对较高。而直拉单晶硅由于工艺简单,可以实现大规模生产,降低成本。 在应用方面,两种单晶硅的性能也有所不同。区熔单晶硅的晶体结构相对松散,导致电子迁移率较低,适用于一些对电子迁移率要求不高的应用,如太阳能电池。而直拉单晶硅的晶体结构较为致密,电子迁移率较高,适用于一些对电子迁移率要求较高的应用,如集成电路。 区熔单晶硅和直拉单晶硅是制备单晶硅的两种常用方法。区熔单晶硅具有传统工艺和较低成本的特点,适用于一些对电子迁移率要求不高的应用;而直拉单晶硅具有先进工艺和较高质量的特点,适用于一些对电子迁移率要求较高的应用。随着技术的发展,两种方法都在不断改进和优化,以满足不同领域的需求。

单晶硅项目建议书

单晶硅项目简介 一、项目简介 1、项目内容利用研究院的自有技术,引进资金,合作建设一条年产15吨单晶硅生产线。 2、项目特点该项目符合国家产业政策,是国家重点支持的高新技术产业。该产品被列入国家高新技术产品出口目录,属国家鼓励支持出口创汇产品。 3、项目基础本项目技术成熟,设备调研已经结束。 二、产品简介 硅单晶被称为现代信息社会的基石。硅单晶按照制备工艺的不同可分为直拉(CZ)单晶硅和区熔(FZ)单晶硅,直拉单晶硅被广泛应用于微电子领域,微电子技术的飞速发展,使人类社会进入了信息化时代,被称为硅片引起的第一次革命。 区熔单晶硅是利用悬浮区熔技术制备的单晶硅。它的用途主要包括以下几个方面。 1、制作电力电子器件电力电子技术是实现电力管理,提高电功效率的关键技术。飞速发展的电力电子被称为“硅片引起的第二次革命”,大多数电力电子器件是用区熔单晶硅制作的。电力电子器件包括普通晶闸管(SCR)、电力晶体管GTR、GTO以及第三代新型电力电子器件——功率场效应晶体管(MOSFET)和绝缘栅双极晶体管(IGBT)以及功率集成电路(PIC)等,广泛应用于高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电气工程中。制作电力电子器件,是区熔单晶硅的传统市场,也是本项目产品的市场基础。

2、制作高效率太阳能光伏电池太阳能目前已经成为最受关注的绿色能源产业。美国、欧洲、日本都制定了大力促进本国太阳能产业发展的政策,我国也于2005年3月份通过了《可再生能源法》。这些措施极大地促进了太阳能电池产业的发展。据统计,从1998—2004年,国际太阳能光伏电池的市场一直保持高速增长的态势,年平均增长速度达到30%,预计到2010年,仍将保持至少25%的增长速度。晶体硅是目前应用最成熟,最广泛的太阳能电池材料,占光伏产业的85%以上。美国SunPower公司最近开发出利用区熔硅制作太阳能电池技术,其产 1 业化规模光电转换效率达到20%,为目前产业化最高水平,其综合性价比超过直拉单晶硅太阳能电池(光电转换效率为15%)和多晶硅太阳能电池(光电转换效率为12%)。这项新技术将会极大地扩展区熔硅单晶的市场空间。据估计,到2010年,其总的市场规模到将达到电力电子需求规模,这是本项目新的市场机会。 3、制作射频器件和微电子机械系统(MEMS)区熔单晶还可以用来制作部分分立器件。另外采用高阻区熔硅制造微波单片集成电路(MMIC)以及微电子机械系统(MEMS)等高端微电子器件,被广泛应用于微波通讯、雷达、导航、测控、医学等领域,显示出巨大的应用前景。这也是区熔单晶的又一个新兴的市场机会。 4、制作各种探测器、传感器,远红外窗口探测器、传感器是工业自动化的关键元器件,被广泛应用于光探测、光纤通讯、工业自动化控制系统中以及医疗、军事、电讯、工业自动化等领域。高纯的区熔硅单晶是制作各种探测器、传感器的关键原材料,其市场增长趋势也很明显。 三、市场分析 1、国际市场据SEMI统计,2003年世界区熔硅单晶的市场规模约为1000吨。其生产商主要为日本信越化学、小松公司,丹麦TOPSIL、德国瓦克等几家大公司,这四家企业生产的区熔单晶硅产量约占总产量的85%。国际上电力电子器件制造工

区域熔融法单晶硅

区域熔融法单晶硅 区域熔融法是一种制备单晶硅的方法,其广泛应用于半导体行业。本文将介绍区域熔融法的原理、工艺流程以及应用领域。 一、原理 区域熔融法是通过在硅棒上加热并控制温度,使其部分熔化,然后慢慢降温,使熔融硅重新凝固形成单晶硅。这种方法的关键在于控制熔化和凝固的温度梯度,以获得高质量的单晶硅。 二、工艺流程 区域熔融法的工艺流程通常包括以下几个步骤: 1. 准备硅棒:选择高纯度的硅材料,通过化学方法去除杂质,然后将硅材料熔融并拉制成硅棒。 2. 加热硅棒:将硅棒放入石英坩埚中,并通过感应加热或电阻加热的方式升温,使硅棒部分熔化。 3. 控制温度梯度:通过控制石英坩埚中的温度分布,使硅棒上部分熔化,而下部保持凝固状态。这样就形成了一个温度梯度,从而促使熔融硅向下凝固。 4. 慢慢降温:在保持温度梯度的情况下,逐渐降低整个系统的温度,使熔融硅逐渐凝固成单晶硅。 5. 切割和抛光:将凝固后的单晶硅切割成所需尺寸,并进行表面抛

光,以获得光滑的单晶硅片。 三、应用领域 区域熔融法制备的单晶硅在半导体行业有着广泛的应用。它是制造集成电路和太阳能电池的关键材料之一。 1. 集成电路制造:单晶硅被用作制造集成电路的基底材料。通过在单晶硅上进行掺杂和刻蚀等工艺,可以制造出各种功能的晶体管和电子元件。 2. 太阳能电池:单晶硅可以将光能转化为电能,因此被广泛应用于太阳能电池的制造。将单晶硅片进行P型和N型掺杂,并添加金属电极,形成PN结构,从而实现光电转换。 3. 其他应用:单晶硅还被用作制造光学器件、传感器、激光器等。 四、总结 区域熔融法是一种制备高质量单晶硅的重要方法,它通过控制温度梯度,使熔融硅逐渐凝固成单晶硅。这种方法在半导体行业有着广泛的应用,特别是在集成电路和太阳能电池的制造中。未来随着科学技术的不断发展,区域熔融法有望进一步提高单晶硅的质量和生产效率,推动半导体行业的发展。

区熔法制备单晶硅

集成电路制造工艺 ------区熔法制备单晶硅 班级:电艺3091 学号:38# 姓名:赵剑 指导老师:张喜凤 日期:2010.04.25

区熔法制备单晶硅 作者:赵剑 (陕西国防工业职业技术学院电艺309138 西安户县 710300) 【摘要】区熔法晶体生长是在本文中介绍的技术历史上早期发展起来的几种工艺之一,仍然在特殊需要中使用。直拉法的一个缺点是坩埚中的氧进入到晶体中,对于有些器件,高水平的氧是不能接受的。对于这些特殊情况,晶体必须用区熔法技术来生长以获得低氧含量晶体。 【关键词】区熔法、直拉法、单晶硅 1引言 集成电路通常用硅制造,硅是一种非常普遍且分布广泛的元素。石英矿就是一整块二氧化硅。尽管硅化物储量丰富,但硅本身不会自然生长,一般用大量存在的二氧化硅作原料,经过一系列的工艺步骤就可以得到多晶硅,多晶硅经过提纯就变成了高纯度的可以制作集成电路的单晶硅。目前制备单晶硅的常用方法有直拉法和区熔法。 本文主要介绍区熔法制备单晶硅。 2单晶硅的制备 区熔法又分为两种:水平区熔法和立式悬浮区熔法。前者主要用于锗、GaAs 等材料的提纯和单晶生长。后者主676要用于硅,这是由于硅熔体的温度高,化学性能活泼,容易受到异物的玷污,难以找到适合的舟皿,不能采用水平区熔法。然而硅又具有两个比锗、GaAs优越的特性:即密度低(2.33g/cm3和表面张力大(0.0072N/cm),所以,能用无坩埚悬浮区熔法。该法是在气氛或真空的炉室中,

利用高频线圈在单晶籽晶和其上方悬挂的多晶硅棒的接触处产生熔区,然后使熔区向上移动进行单晶生长。由于硅熔体完全依靠其表面张力和高频电磁力的支托,悬浮于多晶棒与单晶之间,故称为悬浮区熔法。 2.1区熔法制备单晶硅 利用多晶锭分区熔化和结晶半导体晶体生长的一种方法。区熔法是利用热能在半导体棒料的一端产生一熔区,再熔接单晶籽晶。调节温度使熔区缓慢地向棒的另一端移动,通过整根棒料,生长成一根单晶,晶向与籽晶的相同。区熔法又分为两种:水平区熔法和立式悬浮区熔法。前者主要用于锗、GaAs等材料的提纯和单晶生长。后者主676要用于硅,这是由于硅熔体的温度高,化学性能活泼,容易受到异物的玷污,难以找到适合的舟皿,不能采用水平区熔法。然而硅又具有两个比锗、GaAs优越的特性:即密度低(2.33g/cm3和表面张力大(0.0072N/cm),所以,能用无坩埚悬浮区熔法。该法是在气氛或真空的炉室中,利用高频线圈在单晶籽晶和其上方悬挂的多晶硅棒的接触处产生熔区,然后使熔区向上移动进行单晶生长。由于硅熔体完全依靠其表面张力和高频电磁力的支托,悬浮于多晶棒与单晶之间,故称为悬浮区熔法。 熔区悬浮的稳定性很重要,稳定熔区的力主要是熔体的表面张力和加热线圈提供的磁浮力,而造成熔区不稳定的力主要是熔硅的重力和旋转产生的离心力。要熔区稳定地悬浮在硅棒上,前两种力之和必须大于后两种力之和。采用单匝盘形加热线圈,熔区上方的多晶棒和下方的单晶棒的直径均可大于线圈的内径。区熔时熔区不与任何异物接触,不会受到玷污,还有硅中杂质的分凝效应和蒸发效应,生长出的单晶纯度很高。用中子嬗变掺杂方法,就能获得电阻率高、均匀性好的硅单晶。可用于高电压大功率器件上,如可控硅、可关断晶闸管等。这些器件被广泛地用在近代的电力机车、轧钢机、冶金设备、自动控制系统以及高压输配电系统中。 来生长单晶体的方法。将棒状多晶锭熔化一窄区,其余部分保持固态,然后使这一熔区沿锭的长度方向移动,使整个晶锭的其余部分依次熔化后又结晶。区熔法可用于制备单晶和提纯材料,还可得到均匀的杂质分布。这种技术可用于生产纯度很高的半导体、金属、合金、无机和有机化合物晶体(纯度可达10-6~10-9)。在头部放置一小块单晶即籽晶,并在籽晶和原料晶锭相连区域建立熔区,移动晶锭或加热器使熔区朝晶锭长度方向不断移动。 区域熔化法是按照分凝原理进行材料提纯的。杂质在熔体和熔体内已结晶的固体中的溶解度是不一样的。在结晶温度下,若一杂质在某材料熔体中的浓度为

相关主题
相关文档
最新文档