驱动桥和差速器外文文献翻译

驱动桥和差速器外文文献翻译
驱动桥和差速器外文文献翻译

JG Hardt,DW Shea

Drive axle/differential

All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.

Powerflow

The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line.However,at the drive axle, the power must be turned at right angles(from the line of the driveshaft)and directed to the drive wheels.

This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.

Fig1 Drive axle

Rear-wheel drive

Rear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models.The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection,but the actuator is located at the front or the back of the adjacent shaft of the two bridges is arranged in series. Vehicle before and after the two ends of the driving force of the drive axle, is the sub-actuator and the transmission through the middle of the bridge. The advantage is not only a reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.

Fig2 Rear-wheel-drive axle

Some vehicles do not follow this typical example.Such as the older Porsche or Volkswagen vehicles which were rear engine, rear drive. These vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle,and halfshafts linking the transaxle to the drive wheels.

Differential operation

In order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a different or the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential,the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.

Fig3 Principle of differential

The accompanying illustration has been provided to help understand how this occurs.

1.The drive pinion, which is turned by the driveshaft,turns the ring gear.

2.The ring gear, which is attached to the differential case,turns the case.

3.The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.

4.The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .

5.Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.

6.The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.

7.When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft,since the input force of the pinion gears is divided equally between the two side gears.

8.When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .

Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors: equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice),is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.

Fig4 Conventional differential

Limited-slip and locking differential operation

Fig5 Limited-slip differential

Differential settlement of a car in the uneven road surface and steering wheel-driven speed at about the different requirements;but is followed by the existence of differential in the side car wheel skid can not be effective when the power transmission, that is, the wheel slip can not produce the driving force, rather than spin the wheel and does not have enough torque. Good non-slip differential settlement of the car wheels skid on the side of the power transmission when the issue, that is, locking differential, so that no longer serve a useful differential right and left sides of the wheel can be the same torque.

Limited-slip and locking differential operation can be divided into two major categories:

(1)mandatory locking type in ordinary differential locking enforcement agencies to increase, when the side of the wheel skid occurs, the driver can be electric, pneumatic or mechanical means to manipulate the locking body meshing sets of DIP Shell will be with the axle differential lock into one, thus the temporary loss of differential role. Relatively simple structure in this way, but it must be operated by the driver, and good roads to stop locking and restore the role of differential.

(2)self-locking differential installed in the oil viscosity or friction clutch coupling, when the side of the wheel skid occurs when both sides of the axle speed difference there,

coupling or clutch friction resistance on the automatic, to make certain the other side of the wheel drive torque and the car continued to travel. When there is no speed difference on both sides of the wheel,the frictional resistance disappeared,the role of automatic restoration of differentials. More complicated structure in this way, but do not require drivers to operate. Has been increasingly applied in the car. About non-slip differential, not only used for the differential between the wheels, but also for all-wheel drive vehicle inter-axle differential/.

Gear ratio

The drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. The role of the final drive is to reduce the speed from the drive shaft, thereby increasing the torque. Lord of the reduction ratio reducer, a driving force for car performance and fuel economy have a greater impact. In general, the more reduction ratio the greater the acceleration and climbing ability,and relatively poor fuel economy.However, if it is too large, it can not play the full power of the engine to achieve the proper speed. The main reduction ratio is more Smaller,the speed is higher,fuel economy is better,but the acceleration and climbing ability will be poor.

翻译

驱动桥和差速器

所有的汽车都装有不同类型的驱动桥和差速器来驱动汽车行驶。无论是前驱汽车,

后驱汽车还是四轮驱动的汽车,对于将发动机的动力转化到车轮上差速器都是不可缺少的部件。

动力的传递

驱动桥必须把发动机的动力转一个直角后传递出去,但人对于前轮驱动汽车发动

机输出的转矩与主减速器是在同一直线上的,但是发动机前置的后轮驱动的汽车发动机的动力必须以正确的角度传递出去,来驱动车轮。

图中所示是齿轮驱动的过程,即由一个相对小的齿轮驱动一个大齿轮(主动齿轮和从动齿轮),从动锥齿轮和差速器壳连接在一起,在半轴的根部有一对带有内花键

的半轴齿轮,半轴齿轮和半轴通过花键来连接在一起。当差速器壳旋转时,就驱动内部的半齿轮转动从而使半轴转动,将转矩传给车轮。

后驱动桥

后轮驱动的车辆大多是卡车,大型轿车和大部分跑车。典型的后轮驱动的车辆使用前置发动机和变速箱总成将转矩传输到后轮驱动桥。多驱动桥汽车中,在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递

的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。

一些车辆不是这个典型的例子。如老式的保时捷或大众汽车引擎在汽车后面,是

后轮驱动。这些车辆使用的后方安装驱动桥与半轴来驱动车轮。另外,一些车辆是前置引擎,后桥与传动轴连接发动机来驱动车轮。

差速器

为了消除由于左右车轮在运动学上的不协调而产生左右车轮外径不同或滚动半径

不相等而要求车轮行程,汽车左右驱动轮间都装有差速器,后者保证了汽车驱动桥两

侧车轮在行程不等时具有以不同速度旋转的特性,从而满足了汽车行驶运动学要求。

如图所示说明了其工作情况

1.主动齿轮转动,从而驱动从动齿轮。

2.从动齿轮将转矩作用于差速器壳,使其转动。

1.位于差速器壳中的行星齿轮以适当的角度和半轴齿轮接触,并随的差速器壳转动。

2.行星齿轮(驱动齿轮)和十字轴连接,和十字轴一起转动。

3.半轴齿轮(被驱动齿轮)和行星齿轮啮合并且和从动齿轮及差速器壳作为一个整体一起转动。

4.半轴齿轮的内花键和半轴端部饿花键接在一起随着差速壳一起转动。

5.当两侧车轮转速相同时,行星齿轮和半轴齿轮无相对运动,左右齿轮力矩平均分配。

6.当汽车转弯时差速器开始起作用,是两侧的半轴以不同的转速旋转。

差速器很好的解决了汽车在不平路面及转向时左右驱动车轮转速不同的要求;

但随之而来的是差速器的存在使得汽车在一侧驱动轮打滑时动力无法有效传输,

也就是打滑的车轮不能产生驱动力,而不打滑的车轮又没有得到足够的扭矩。

防滑 差速 器 很好的解决了汽车在一侧车轮打滑时出现的动力传输的问题,也就是

锁止差速器,让差速器不再起作用,左右两侧的驱动轮均可得到相同的扭矩。

防滑差速器主要可分为两大类:

(1)强制锁止式在普通差速器上增加强制锁止机构,当发生一侧车轮打滑时,

驾驶员可通过电动、气动或机械的方式来操纵锁止机构,拨动啮合套将差速器壳与半

轴锁成一体,从而暂时失去差速的作用。这种方式结构比较简单,但必须由驾驶员进 行操作,并在良好路面上停止锁止,恢复差速器的作用。

(2)自锁式在差速器中安装粘性硅油联轴节或摩擦离合器,当发生一侧车轮打

滑时,两侧半轴出现转速差,联轴节或离合器就自动发生摩擦阻力,使另一侧车轮得

到一定的扭矩而驱动汽车继续行驶。当两侧车轮没有转速差时,摩擦阻力消失,自动

恢复差速器的作用。这种方式结构比较复杂,但不需要驾驶员进行操作。目前已越来

越多地在汽车上得到应用。 驱动汽车的轴间差速器中。

主减速比

防滑差速器不仅用于左右车轮间的差速器,也用于全轮

驱动桥都有一定得主减速比,这个数字(通常是一个整数和一个小数)实际上是

主减速器主动齿轮与从动齿轮的关系。例如,如果主减速比为 4.11 则说明从动齿轮

的齿数是主动齿轮齿数的 4.11 倍,换句话说就是主动齿轮轴转动 4 圈车轮才转动 1 圈。

主减速器的作用是降低从传动轴传来的转速,从而增大扭矩。主减速器的减

速比,对汽车的动力性能和燃料经济性有较大的影响。一般来说,主减速比越大, 加速性能和爬坡能力较强,而燃料经济性比较差。但如果过大,则不能发挥 发

其中一个驱动轮具有很好的摩擦力,而另一个却在冰上时,这是开式差速器存在的问 题。

防滑差速器

动机的全部功率而达到应有的车速。主减速比越小,燃料经济性较好,但加速性和爬坡能力较差。

机械毕业设计英文外文翻译403驱动桥和差速器

附录A 英文文献 Drive axle/differential All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels. Fig 1 Drive axle

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

驱动桥外文翻译

驱动桥设计 随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。驱动桥设计应当满足如下基本要求: 1、符合现代汽车设计的一般理论。 2、外形尺寸要小,保证有必要的离地间隙。 3、合适的主减速比,以保证汽车的动力性和燃料经济性。 4、在各种转速和载荷下具有高的传动效率。 5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性 好,制造容易,拆装,调整方便。 6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。通过各种传感器实现自动驾驶。除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。当然蓄电池是电动汽车的关键,电动汽车用的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌—空气电池、飞轮电池、燃料电池和太阳能电池等。在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。

毕业论文外文翻译-浅谈差速器

浅谈差速器 普通行星齿轮差速器由行星架(差速器壳),半轴齿轮等零件组成。它将发动机的动力,直接驱动差速器壳体内的轴,再由行星齿轮驱动左、右两半轴,并分别驱动左、右车轮。差速器的设计应满足:左半轴转速与右半轴转速之和等于两倍的行星架转速。当两侧车轮以纯滚动的形式做等距行驶时,会减少轮胎和路面的摩擦.差速器的这种调整是自动的,这里涉及到“最小能耗原理”,即地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放入一个碗内,豆子会自动停留在碗底,而不会留在碗壁,因为碗底是能量消耗最低的位置(位能),它会自动选择静止(动能最小)而不会不断地运动。同样的道理,汽车转弯时所有的驱动轮,左、右车轮与行星架的速度是相等的,而在汽车转弯时的三个平衡状态被破坏,导致内侧轮转速减小,横向轮RPM增加。 汽车差速器是驱动桥的主要部件。其功能是传递两侧半轴的动力,同时允许两半轴以不同的速度旋转,同时能够满足按照国家标准的自动的最低能量消耗的趋势,在转弯时自动接受转向半径来调整右轮转速,由于横向摩擦轮拖动现象,内侧车轮有滑动现象,现在两个驱动轮可以产生两个相反方向的附加力,因此符合最小的能源消耗原理, 这不可避免地导致了两侧车轮的速度差,从而摧毁了三个平衡关系,并通过半轴齿轮体现出来。迫使行星齿轮产生自转,使外侧半轴转速更快,内侧半轴减速,从而实现两侧车轮转速的差异。 如果任意一侧驱动轴上的驱动轮都使用一个整体的刚性连接,那么这两个轮子只能以相同的角度旋转。所以,当车辆的转向轮驱动时,由于外侧车轮比内侧车轮横过的距离大,将使外侧车轮在滚动的同时产生延迟,内侧车轮在滚动的同时产生滑动。即使车轮在凹凸不平的道路上跑直线,因为虽然道路是直,但轮胎滚动半径范围(轮胎制造误差,磨损不同,通过不均或气压不等所造成的车轮滑动)轮毂时,不仅会加剧轮胎的磨损滑动,增加动力性和燃油消耗,还能使车辆的转向困难,制动性能变得差.为了使车轮尽可能不会发生滑动的结构,必须保证车轮可以以不同的角度旋转。 轴间差速器:通常驾驶的轿车轮毂轴承支撑在主轴上,能够以任何角度旋转,驱动车轮分别与两根半轴刚性连接,在两根半轴之间有一个差速器,这种差速器称为轴间差速器。 如果使后轮轴成为一个整体,他将无法使两侧的车轮转速有差异,即不能做自动调整。为了解决这个问题,早在一百年前,法国雷诺汽车公司创始人路易斯·雷诺设计了一个差速器。 现代汽车上的差速器通常是根据其工作特性分为齿轮式差速器和限滑差速器两大类。 1.开模差速器 诺基开模差速器的结构是典型的行星齿轮组的结构,只有太阳轮和小齿轮环外

外文文献翻译:汽车的发展

The development of automobile As the world energy crisis and the war and the energy consumption of oil -- and are full of energy in one day someday it will disappear without a trace. Oil is not inresources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society people invented the electric car. Electric cars will become the most ideal of transportation. In the development of world each aspect is fruitful especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications the application of the electronic device cars and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance but also improve the automobile fuel economy performance reliability and emission spurification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system electronic control ignition system electronic control automatic transmission electronic control ABS/ASR control system electronic control suspension system electronic control power steering system vehicle dynamic control system the airbag systems active belt system electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response the use function of quick car high reliability guarantees of engine power and reduce fuel consumption and emission regulations meet standards. The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example automatic transmission in road can not on the clutch can achieve automatic shift and engine flameout not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter gear transmission pump hydraulic control system electronic control system and oil cooling system etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going and stability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height low set to gas or oil cylinder filling or oil. If is opposite gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car car motions of state and optimum control performance and increased automobile adhesion controlling and stability. Besides these appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passengers safety and greatly reduce automobile in collision of drivers and passengers in the buffer to protect the safety of life. Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

英语专业毕业论文翻译类论文

英语专业毕业论文翻译 类论文 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

毕业论文(设计)Title:The Application of the Iconicity to the Translation of Chinese Poetry 题目:象似性在中国诗歌翻译中的应用 学生姓名孔令霞 学号 BC09150201 指导教师祁晓菲助教 年级 2009级英语本科(翻译方向)二班 专业英语 系别外国语言文学系

黑龙江外国语学院本科生毕业论文(设计)任务书 摘要

索绪尔提出的语言符号任意性,近些年不断受到质疑,来自语言象似性的研究是最大的挑战。语言象似性理论是针对语言任意性理论提出来的,并在不断发展。象似性是当今认知语言学研究中的一个重要课题,是指语言符号的能指与所指之间的自然联系。本文以中国诗歌英译为例,探讨象似性在中国诗歌翻译中的应用,从以下几个部分阐述:(1)象似性的发展;(2)象似性的定义及分类;(3)中国诗歌翻译的标准;(4)象似性在中国诗歌翻译中的应用,主要从以下几个方面论述:声音象似、顺序象似、数量象似、对称象似方面。通过以上几个方面的探究,探讨了中国诗歌翻译中象似性原则的重大作用,在诗歌翻译过程中有助于得到“形神皆似”和“意美、音美、形美”的理想翻译效果。 关键词:象似性;诗歌;翻译

Abstract The arbitrariness theory of language signs proposed by Saussure is severely challenged by the study of language iconicity in recent years. The theory of iconicity is put forward in contrast to that of arbitrariness and has been developing gradually. Iconicity, which is an important subject in the research of cognitive linguistics, refers to a natural resemblance or analogy between the form of a sign and the object or concept. This thesis mainly discusses the application of the iconicity to the translation of Chinese poetry. The paper is better described from the following parts: (1) The development of the iconicity; (2) The definition and classification of the iconicity; (3) The standards of the translation to Chinese poetry; (4) The application of the iconicity to the translation of Chinese poetry, mainly discussed from the following aspects: sound iconicity, order iconicity, quantity iconicity, and symmetrical iconicity. Through in-depth discussion of the above aspects, this paper could come to the conclusion that the iconicity is very important in the translation of poetry. It is conductive to reach the ideal effect of “the similarity of form and spirit” and “the three beauties”. Key words: the iconicity; poetry; translation

驱动桥5000字外文翻译文献

As the bearing cage rotates, read the value 7. indicated on the scale. Preload normally is specified as torque re-8. quired to rotate the pinion bearing cage, so take a reading only when the cage is rotating. Starting torque will give a false reading. To calculate the preload torque, measure the 9. diameter of the bearing cage where the cord was wound. Divide this dimension in half to get the radius. 10. U se the following procedure to calculate the bearing preload torque:Standard. Pull (lb) 3 radius (inches) 5 preload (lb-in.)or Preload (lb-in.) 3 0.113 (a conversion constant) 5 preload (N .m) Install the yoke, flat washer, and nut. Tighten 6. the nut snugly. Tap the end of the input shaft lightly to seat the bearings. Measure the input shaft endplay again with 7. the dial indicator. If endplay is still incorrect, repeat steps 3 through 7. With the endplay correct, seal the shim pack 8. to prevent lube leakage. Then torque the i nput shaft nut and cover capscrews to the correct value. 24.5 A XLE ADJUSTMENTS AND CHECKS This section introduces the differential carrier adjust-ments, checks, and tests that the truck technician must be capable of performing; some have been r eferred to previously in the text. For the most part, the procedures described here are general in nature. The truck technician should refer to OEM service l iterature for specific procedures.PINION BEARING PRELOAD Most differential carriers are provided with a press-fit outer bearing on the drive pinion gear. Some older rear drive axles use an outer bearing, which slips over the drive pinion. The procedures for adjusting both types follow. Press-Fit Method Adjustment To adjust the pinion bearing preload using the press-fit method, use the following procedure: Assemble the pinion bearing cage, bearings, 1. spacer, and spacer washer (without drive pin-ion or oil seal). Center the bearing spacer and spacer washer between the two bearing cones (Figure 24–49). When a new gear set or pinion bearings are 2. used, select a nominal size spacer based on OEM specifications. If original parts are used, use a spacer removed during disassembly of the drive. Place the drive pinion and cage assembly in a 3. press, with the gear teeth toward the bottom.Apply and hold the press load to the pinion 4. bearing. As pressure is applied, rotate the bearing cage several times so that the bear-ings make normal contact. While pressure is held against the assembly, wind 5. a cord around the bearing cage several times.Attach a spring scale to the end of the cord 6. (Figure 24–50). Pull the cord with the scale on a horizontal line. FIGURE 24–49 Assembly of the pinion bearing cage. (Courtesy of Dana Corporation) FIGURE 24–50 Cage in press to check bearing p reload. Sleeve must apply

汽车保险中英文对照外文翻译文献

汽车保险中英文对照外文翻译文献(文档含英文原文和中文翻译)

汽车保险 汽车保险是在事故后保证自己的财产安全合同。尽管联邦法律没有强制要求,但是在大多数州(新罕布什和威斯康星州除外)都要求必须购买汽车保险;在各个州都有最低的保险要求。在鼻腔只购买汽车保险的两个州,如果没有足够的证据表明车主财力满足财务责任法的要求,那么他就必须买一份汽车保险。就算没有法律规定,买一份合适的汽车保险对司机避免惹上官和承担过多维修费用来说都是非常实用的。 依据美国保险咨询中心的资料显示,一份基本的保险单应由6个险种组成。这其中有些是有州法律规定,有些是可以选择的,具体如下: 1.身体伤害责任险 2.财产损失责任险 3.医疗险或个人伤害保护险 4.车辆碰撞险 5.综合损失险 6.无保险驾驶人或保额不足驾驶人险 责任保险 责任险的投保险额一般用三个数字表示。不如,你的保险经纪人说你的保险单责任限额是20/40/10,这就代表每个人的人身伤害责任险赔偿限额是2万美元,每起事故的热身上海责任险赔偿限额是4万美元,每起事故的财产损失责任险的赔偿限额是1万美元。 人身伤害和财产损失责任险是大多数汽车保险单的基础。要求汽车保险的每个州都强令必须投保财产损失责任险,佛罗里达是唯一要求汽车保险但不要求投保人身伤害责任险的州。如果由于你的过错造成了事故,你的责任险会承担人身伤害、财产损失和法律规定的其他费用。人身伤害责任险将赔偿医疗费和误工工资;财产损失责任险将支付车辆的维修及零件更换费用。财产损失责任险通常承担对其他车辆的维修费用,但是也可以对你的车撞坏的灯杆、护栏、建筑物等其他物品的损坏进行赔偿。另一方当事人也可以决定起诉你赔偿精神损失。

驱动桥设计_毕业设计论文

驱动桥设计 摘要 现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。 汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。在追求高效节能\高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。 本文通过查阅相关的文献,介绍了EHPS系统的结构组成和工作原理,在参考现有车型的结构数据的基础上,设计计算转向系的主要参数,确定转向器的结构参数和动力转向部分结构参数,在分析其助力特性的基础上,设计合理的助力特性曲线,并通过MATLAB作出助力特性图,同时提出一种基于车速和转向盘转动角速度的控制策略,根据EHPS系统的特点,通过AMESim和Simulink建立整个系统的模型。通过联合仿真可以得出EHPS系统比HPS系统能提供更好的助力特性和转向路感。 关键词:EHPS;助力特性;结构设计;AMESim与Simulink建模 ABSTRACT

High effective energy saving,high comfort performance and high security are thegoals of contemporary.The first goal closely concerns with environment protecting,is also the popular topic around the world.The last two goals are the important subjects must be researched and solved in making automobile high performance.To make the steering system high performance is that the system can carry out mufti-goals control according to the vehicle states and drive requirements to acquire the steering handiness,better road feeling,better anti-interfering performance and faster response. The motor turing system is the essential part which affects the automobile operation stability,the travel security and the driving comfortablet.Nowadays we pursue highly effective energy conservation,the high comforrtableness and high secure.The electrically hydraulic power steering (EHPS) taking as one kind of new automobile power steering system,it takes the power steering engineering research the focal point by its energy conservation,the environmental protection,the better handling characteristic and changes the road feeling. According to consult relevant literature, this paper introduces the structure and the principle of EHPS, bases the further study of EHPS on the structural parameter date of a certain type of the light lorry, calculates the main parameters of steering system and power steering and devises the hydraulic circuit of EHPS. On the basis of the analysis of EHPS, this paper designs a reasonable EHPS power curve, including plotting the curve with the technique of MATLAB. Taking into account the steady steering and emergency steering, it advances the control strategy plan based on speed, steering wheel angle velocity, the steering wheel torque. Based on the structural characteristics of EHPS, this paper proposed AMESIM and SIMULINK joint simulation of the entire EHPS system. Accord to the result we can know that EHPS can offer more secure handle, more saving energy and way feeling. Key words:EHPS;Characteristics of power; Structure design; AMESim and Simulink Modeling

相关文档
最新文档