基于STM32控制的自动往返电动小汽车

基于STM32控制的自动往返电动小汽车
基于STM32控制的自动往返电动小汽车

湖南科技大学信息与电气工程学院

《STM32控制自动往返小汽车》

设计报告

专业:电子信息工程

班级:二班

姓名:曾有根

学号:0904030218

指导教师:罗朝辉

自动往返电动小汽车

本设计民用STM32作为自动往返小汽车的检测和控制核心,辅以传感器、控制电路、显示电路等外围器件,构成了一个车载控制系统。路面黑线检测使用反射式红外传感器,利用PWM技术动态控制电动机的转速。基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,实现了小车在限速和压线过程中的精确控制。电动小汽车能够根据题目要求在直线方向上完成调速、急刹车、停车、倒车返回等各种运动形式;这辆小车还可以自动记录、显示一次往返时间和行驶距离,并用蜂鸣器提示返回起点。另外,我们经过MATLAB仿真后,成功地实现了从最高速降至低速的平稳调速。

本系统主要采用模糊控制算法进行速度调节。通过模糊控制和PWM脉宽调制技术的结合,提高了对车位置控制精度,并且实现了恒速控制。

关键词:PWM,STM32F103,电机,传感器

前言

嵌入式技术依靠其体积小、成本低、功能强等特点,适应了智能化发展的最新要求。单片机作为控制系统的微处理器,在数据处理和代码存储等方面都已经无法满足系统的要求,ARM微处理器资源丰富,具有良好的通用性。Cortex-M3是ARM公司最新推出的第一款基于ARMv7体系的处理器内核。它主要针对MCU领域,在存储系统、中断系统、调试接口等方面做了较大的改进,有别于过去的ARM7处理器;Cortex-M3具有高性能、低功耗、极低成本、稳定等诸多优点,非常适合汽车电子、工业控制系统、医疗器械、玩具等领域。基于Cortex-M3内核的STM32系列处理器于2007年由ST公司率先推出,它集先进Cortex-M3内核结构、出众创新的外设、良好的功耗和低成本于一体,极大的满足自动控制系统设计要求。作为先进的32位通用微控制器的领跑者,STM32以其出众的性能、丰富且灵活的外设、很高的性价比以及令人意外的功耗水准,使其自面世以来得到众多设计者的青睐,众多行业领导者纷纷选用STM32作为新一代产品的平台。因此将STM32F103应用于智能小车的控制系统是一种较好的选择。

基于此,本文提出了一个比较合理的智能小车系统设计方案。整个小车系统以STM32F103芯片为控制核心,附以外围电路,利用红外探测器、触角传感器采集外界信息和检测障碍物;充分利用STM32F103的串口、并口资源和高速的

运算、处理能力,来实现小车自动识别路线按迹行走、躲避障碍物,并且通过LCD显示器实时显示小车运动参数;配置STM32F103通用定时器为PWM输出模式产生PWM波,通过步进调节PWM波占空比参数控制电机的转速。

第一章系统方案论证与分析

根据题目中的设计要求,本系统主要由主控单片机模块、电源模块、电机驱动模块、黑线检测模块、测速模块以及液晶显示模块构成。本系统的方框图如下图所示:

1、主控单片机

根据题目要求,控制器主要用于控制电机的运动,黑线的检测以及相关信息的显示。对于控制器的选择主要有以下两种方案:

方案一:采用51系列单片机作为控制器。51系列单片机应用广泛,技术成熟,但是运行速度慢,内部资源较少,且只有2个定时计数器,不满足题目要求。

方案二:采用STM32作为控制器。基于Cortex- M3内核的STM32F10x系列芯片是新型的32位嵌入式微处理器,其性能优良,移植性好,提高了对直流

电机的控制效率,并对控制系统进行模块化设计,有利于智能小车的功能扩展和升级。

综上,我们选用了方案一,采用了STM32,该单片机价格便宜,资源足够。

2、电动机驱动模块

方案一:

采用达林顿管阵列ULN2003驱动芯片。ULN2003是7通道高电压、大电流驱动器,并联端口可以加大输出电流,对直流电机具有良好驱动能力。但其结构决定驱动直流电机只能是单方向的,不能驱动直流电机反转,这与题目要求不符。方案二:

采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:

采用双H桥驱动芯片L298。其内部包含4通道逻辑驱动电路,可以方便的驱动两个直流电机,或一个两相步进电机。L298的逻辑电平与51单片机匹配,可以与其直接相连。控制芯片的驱动使能端就可以控制驱动电机的速度。L298对直流电机具有良好的驱动控制能力,故这里选择方案三。

3、路面黑线检测模块选择

方案一:

采用发光二极管与光敏电阻,利用光敏电阻的阻值变化来控制信号。由于外界光亮条件不定,一旦光线条件改变很可能造成误判和漏判;虽然采取超高亮发光管可以降低一定的干扰,但这用将增加额外的功率损耗。

方案二:

采用红外线控制的反射式红外对管。红外对管只对红外线具有较高灵敏度,从而避免了外界光线的干扰;跑道黑带能够吸收红外线,而白色跑道能够反射红外线,从而检测到跑道黑带。

方案选择:光敏电阻的易干扰性和红外对管的单一灵敏行决定方案二具有较好控制作用。

4、里程计算与计时模块选择

方案一:

采用霍尔传感器。该器件内部由三篇霍尔金属板组成,当磁铁正对金属板时,由于霍尔效应,金属板发生横向导通,发出低电平信号。因此可以在车轮上安装微型磁铁,而将霍尔传感器安装在固定轴上,通过对脉冲的计数进行车速测量。方案二:

采用检测黑线的方法,每经过一条黑线就增加相应的里程数,并通过定时器计时。

方案选择:

相比而言,方案二不需要另外的传感器,计算方便,定时器也很精确,故选择方案二。

图2.1 电机控制系统框图

由系统框图可看出,小车整个控制系统设计主要包括电机驱动、液晶显示、键盘扩展电路、触角传感电路、红外收发检测电路等模块。整个系统的硬件电路设计原理图见附录,下面分别介绍各部分模块的设计。

一、主要电路设计

1、STM32F103及外围电路设计

本设计采用STM32F103为主控芯片,则STM32F103芯片的最小系统设计如图1.2、1.3所示。

图1.2 STM32F103芯片最小系统图

图1.3 STM32F103芯片最小系统图续

如图1.2、1.3,此部分电路包括系统时钟电路、实时时钟电路、JTAG调试接口电路,复位电路和启动模式选择电路。下面对部分电路设计做简要说明。

1.时钟电路

系统时钟电路选用8MHZ的HSE晶体作为振荡器晶振。如图2.2所示,由R113、Y100(HSE晶振)、C108及C109构成系统时钟电路。HSE晶体可以通过设置时钟控制寄存器里RCC_CR中的HSEON位被启动和关闭。实时时钟电路选择LSE时钟模式,如图2.2所示,由Y101(LSE晶振)、C112及C113构成LSE旁路,提供一个32.768kHz频率的外部时钟源。LSE晶体是一个32.768kHz 的低速外部晶体或陶瓷谐振器。它为实时时钟或者其他定时功能提供一个低功耗且精确的时钟源。

2.启动模式选择电路

如图2.3所示,通过BOOT[1:0]引脚可以选择三种不同启动模式。如下表2-1所示。

表2-1 启动模式

在系统复位后,SYSCLK的第4个上升沿,BOOT引脚的值将被锁存。此时可以通过设置BOOT1和BOOT0引脚的状态,来选择在复位后的启动模式。

2、电源电路设计

由于各电路模块所需电压不同,本设计需多种电源供电。STM32F103主控芯片采用3.3V供电,电机驱动采用5V与12V,红外收发检测电路采用5V与3.3V,液晶显示与触角传感电路均采用3.3V供电。外部电源采用12V的直流电压,因此根据设计要求,本设计进行了电源转换设计。

1. 采用KA7805芯片实现12V到5V的转换。KA7805的作用是输入大于5V 的直流电压,输出5V的直流电压,且管脚较少,易于连接和实现,稳定性高。图

2.4为KA7805芯片引脚接线图。

图2.4 KA7805引脚接线图

2.本设计采用LM1117-

3.3芯片将5V转换为3.3V,具体电路设计如图2.5 所示。

图2.5 LM1117-3.3引脚接线图

3、电机驱动电路设计

STM32F103芯片外部扩展的电机驱动电路采用L298芯片控制,其基本电路

图如图2.6。

图3.6 电机驱动电路基本电路原理图

如图2.6所示,小车运动状态通过电机A和B的不同方向转动来实现,电

机有正转、反转和停止三种状态,每个电机由一对I/O口进行控制。表2-2是I/O

端口状态与电机制动对照表。

表2-2 I/O端口状态与电机制动对照表

电机A IN1 IN2 电机B IN3 IN4

停止0 0 停止0 0

正转 1 0 正转 1 0

反转0 1 反转0 1

- 1 1 - 1 1

L298芯片采用5V(VSS)与12V(VS)直压供电,EN A和EN B分别用STM32F103主控芯片的TIM3_CH3和PB1/ADC_IN9/TIM3_CH4控制,产生PWM1和PWM2两路PWM波输出,IN1-IN4分别用PE3-PE6实现I/O输出控制电机转动方向。在L298与电机之间加入二极管,以保护电路。

4、液晶显示电路设计

液晶显示电路采用2.4寸TFT显示

5、红外探测电路设计

采用反射式光电开关来识别轨迹上的黑线标记信号,如图3 所示。这种光电开关的红外发射管和接收管位于同一侧,光敏三极管只能接收反射回的红外光。当车身下面是黑线时,由于黑线吸收部分光,光敏三极管接收到的红外光不能使光敏三极管导通,光电开关输出高电平,经非门输出低电平。反之,当车身下面是白色的地面时,红外发射管发射的光经其反射后,被接收管接受,光电开关输出低电平,经非门整形后输出高电平。将非门的输出接至CPU的INT1输入端.车在前进和后退过程中,小车每过一道黑线,便产生一次中断申请,从而调用相应的子程序,随着小车的不断行驶,相应的程序依次被调用执行,使小车在跑道上按设计要求时快、时慢、时前进、时后退.

第三章小车控制系统软件设计

采用单片机STM32为主控制器.采用C 语言进行软件编程实现各种算法和逻辑控制1 红外光电检测到的开关信号作为中断源, 送入STM32中断源

EXTI_Line0; STM32 再对中断请求做出响应, 并在GPIOB0和GPIOB1口输出控制驱动电路的脉冲和转速; 通过GPIOC0、GPIOC1、GPIOC4、GPIOC5驱动电路控制直流电机的转向; 显示模块以2.4寸tft为核心, 对记录的结果进行显示.

1、前进(带矫正)子程序

void qianjin()

{

while(1){

//检测到黑,发光12外13内

if(!GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_12) && GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_13)) // 12亮(高电平)13不亮(低电平){

GPIO_SetBits(GPIOC, GPIO_Pin_0);

GPIO_ResetBits(GPIOC, GPIO_Pin_1);

GPIO_SetBits(GPIOC, GPIO_Pin_4);

GPIO_ResetBits(GPIOC, GPIO_Pin_5);

}

else if (!GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_12) && !GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_13)) //都亮

{

GPIO_SetBits(GPIOC, GPIO_Pin_0);

GPIO_ResetBits(GPIOC, GPIO_Pin_1);

GPIO_ResetBits(GPIOC, GPIO_Pin_4);

GPIO_ResetBits(GPIOC, GPIO_Pin_5);

}

else if (GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_12) && !GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_13)) // 12亮(低电平)13不亮(高电平)

{

GPIO_ResetBits(GPIOC, GPIO_Pin_0);

GPIO_ResetBits(GPIOC, GPIO_Pin_1);

GPIO_SetBits(GPIOC, GPIO_Pin_4);

GPIO_ResetBits(GPIOC, GPIO_Pin_5);

}

if(flag==6)

{

// GPIO_SetBits(GPIOA , GPIO_Pin_4);

break;

}

}

}

2、后退(带矫正)子程序

void houtui()

{

while(1){

//检测到黑,发光12外13内

if(!GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_8) && GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_9)) // 12亮(高电平)13不亮(低电平){

GPIO_ResetBits(GPIOC, GPIO_Pin_1);

GPIO_ResetBits(GPIOC, GPIO_Pin_0);

GPIO_SetBits(GPIOC, GPIO_Pin_5);

GPIO_ResetBits(GPIOC, GPIO_Pin_4);

}

else if (!GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_8) && !GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_9)) //都亮

{

GPIO_SetBits(GPIOC, GPIO_Pin_1);

GPIO_ResetBits(GPIOC, GPIO_Pin_0);

GPIO_ResetBits(GPIOC, GPIO_Pin_5);

GPIO_ResetBits(GPIOC, GPIO_Pin_4);

}

else if (GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_12) && !GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_13)) // 12亮(低电平)13不亮(高电平)

{

GPIO_SetBits(GPIOC, GPIO_Pin_1);

GPIO_ResetBits(GPIOC, GPIO_Pin_0);

GPIO_SetBits(GPIOC, GPIO_Pin_5);

GPIO_ResetBits(GPIOC, GPIO_Pin_4);

}

if(flag==12)

{

GPIO_SetBits(GPIOA , GPIO_Pin_4);

break;

}

}

}

3、横线检测并调速程序

void EXTI0_IRQHandler(void)

{

if ( EXTI_GetITStatus(EXTI_Line0) != RESET ) { EXTI_ClearITPendingBit(EXTI_Line0);

flag++;

if(flag==2||flag==4) //||flag==3||flag==4

{

pulse = 3000;

TIM_SetCompare3(TIM3,pulse);

TIM_SetCompare4(TIM3,pulse);

}

if(flag==3) //||flag==3

{

pulse = 2850;

TIM_SetCompare3(TIM3,pulse);

TIM_SetCompare4(TIM3,pulse);

}

if(flag==5)

{

pulse = 2650;

TIM_SetCompare3(TIM3,pulse);

}

if(flag==9)

{

pulse = 2900;//2350

TIM_SetCompare3(TIM3,pulse);

TIM_SetCompare4(TIM3,pulse);

}

if(flag==8||flag==10) //flag==7||

{

pulse = 3000; //2600

TIM_SetCompare3(TIM3,pulse);

TIM_SetCompare4(TIM3,pulse);

}

if(flag==11||flag==7)

{

pulse = 2850; //2600

TIM_SetCompare3(TIM3,pulse);

TIM_SetCompare4(TIM3,pulse);

}

if(flag==12)

{

pulse = 0; //2600

TIM_SetCompare3(TIM3,pulse);

TIM_SetCompare4(TIM3,pulse);

}

}

}

4、显示子程序

void ILI9325_PutString(u16 x, u16 y, u8 *s, u16 fColor, u16 bColor)

{

u8 row=0;

while(*s)

{

if( *s < 0x80)

{

ILI9325_PutChar(x+(row<<3),y,*s,fColor,bColor);

s++;row++;

}

else

{

ILI9325_PutGB16x16(x+(row<<3),y,(u8*)s,fColor,bColor);

s+=2;row+=2;

}

}

}

第四章结论

本文根据设计内容和要求,制定了设计方案,并逐步完成了硬件和软件部分的设计。整个系统以STM32为主控芯片,实现对小车简单运动的控制,其中硬件部分包括STM32F103及外围电路、电平转换电路、电机驱动电路、液晶显示电路、红外循迹检测电路、触角传感避障电路、键盘扩展电路,完成各部分电路设计并使用PROTEL画出电路设计原理图;软件部分在STM32集成开发环境Keil4 MDK下编写各模块程序,包括PWM波输出模块、液晶显示模块、键盘扫描模块、自由行走避障模块和红外循迹模块,并通过主控制程序将各模块融合一起。整个设计将硬件与软件相结合,实现对小车的控制,使小车能够做出前进、后退、左转、右转等动作,并通过液晶显示器实时显示小车的运动参数,同时可通过键盘输入对小车行走模式进行切换及对小车速度进行调节,并且能够在不同模式下通过传感检测电路实现简单的避障和循迹功能。论文基本完成了硬件和软件的设计,并使之符合设计要求。

本设计与实际应用相结合,利用高性能的STM32F103芯片,辅以各种传感器来检测路面、障碍物等周围环境,通过高可靠性的软件设计,来实现小型电动车的智能控制,具有很强的现实意义。随着智能控制技术与传感检测技术的飞速发展,作为智能机器人雏形的智能小车在探测、考古、娱乐各领域得到广泛应用,尤其在足球机器人研究方面有很好的发展前景。在智能机器人发展如火如荼之期,智能小车控制系统的研制为其提供了更有利的研制手段和方法,将有助于推动智能机器人的发展。由于初次接触STM32F10x系列芯片,对其先进的中断响应系统未能很好掌握,传感信号的接收选择了一般I/O口,不过基于STM32F103的高性能,其反应速度还是可以满足设计要求,但要充分利用芯片资源及更好的实时控制在这部分还有待改进;另外,对于小车转弯过程的车速未做区别对待,在本次设计中将PWM波占空比控制在1/2以下,使小车不会因速度过高而导致转弯过程中其方向不易控制。总的来说,设计方案是比较完善的,基本上达到了设计要求。

基于STM32 智能抓物小车的设计 电子设计II课程报告

摘要 本实验主要分析把握对象的智能车基于STM32F103的设计。智能系统的组成主要包括STM32F103控制器、伺服驱动电路、红外检测电路、超声波避障电路。本试验采用STM32F103微处理器作为核心芯片,速度和转向的控制采用PWM技术,跟踪模块、检测、障碍物检测和避免功能避障模块等外围电路,实现系统的整体功能。 小车行驶时,避障程序跟踪程序,具有红外线跟踪功能的汽车检测电路。然后用颜色传感器识别物体的颜色和抓取。在硬件设计的基础上提出了实现伺服控制功能,简单的智能车跟踪和避障功能的软件设计和控制程序,在STM32集成开发环境IAR编译,并使用JLINK下载程序。 关键词:stm32;红外探测;超声波避障;颜色传感;舵机控制

ABSTRACT This experiment mainly analyzed the grasping object intelligent car based on STM32F103 design. The composition of the intelligent system mainly includes STM32F103 controller, servo drive circuit, infrared detection circuit, ultrasonic obstacle avoidance circuit. This test uses the STM32F103 microprocessor as the core chip, the speed and steering control using PWM technology, tracking module and detection, obstacle avoidance module for obstacle detection and avoidance function, other peripheral circuit to achieve the overall function of the system. The car is moving, obstacle avoidance procedures prior to tracking program, car tracking function with infrared detection circuit. Then use color sensor to recognize object color and grab. On the basis of the hardware design is proposed to realize the servo control function, simple intelligent car tracking and obstacle avoidance function of the software design, and the control program is compiled in the STM32 integrated development environment IAR, and download the program using Jlink. Key words: STM32; infrared detection; ultrasonic obstacle avoidance; color sensing; steering control

基于STM32的智能小车摄像头循迹系统

分类号编号 烟台大学 毕业论文(设计) 基于STM32的智能小车 摄像头循迹系统 Intelligent Car Tracking System Based on STM 32 Camera 申请学位:工学学士 院系:光电信息科学技术学院 专业:电子信息工程 姓名:王坤 学号: 200813503229 指导老师:杨尚明(教授) 2012年5 月21 日 烟台大学EDA实验室

基于STM32的智能小车摄像头循迹系统 姓名:王坤 导师:杨尚明(教授) 2012年5 月21 日 烟台大学EDA实验室

烟台大学毕业论文(设计)任务书院(系):光电信息科学技术学院 姓名王坤学号200813503229 毕业届别2012 专业电子信息工程 毕业论文(设计) 基于STM32的智能小车摄像头循迹系统题目 指导教师杨尚明学历本科职称教授所学专业无线电技术 具体要求(主要内容、基本要求、主要参考资料等): 主要内容:设计一个抗干扰能力强的智能小车循迹系统。 基本要求:通过对本课程的设计,能够利用OV7670实现黑白线信息采集;并且能够达到一定的抗干扰效果;能够实现实时采集外界环境信息的效果。 主要参考资料: [1]陈启军.嵌入式系统及其应用:基于Cortex-M3内核和STM32F103系列微控制器的系统设计与开发. [M].北京: 同济大学出版社,2008. [2]谭浩强. C语言程序设计. [M].北京: 清华大学出版社,2010. [3]曾星星. 基于摄像头的路径识别智能车控制系统设计[J].湖北汽车工业学院学报, 2008(6): P76-80. 进度安排: 第一阶段:1~4周通过资料、网络、导师了解本设计所需要的知识、资料、相关软件及设计思路方案; 第二阶段:5~8周请教老师查阅资料按要求并由实际情况逐渐得出设计方案及方法;第三阶段:9~11周根据方案在老师的指导下完成相关的软硬件设计; 第四阶段:12~13周撰写论文(分初稿、定稿、审合、打印论文); 第五阶段:14周进行优化调试达到目标并进行论文答辩。 指导教师(签字): 年月日 院(系)意见: 教学院长(主任)(签字): 年月日 备注:

基于stm32的智能小车设计毕业设计

海南大学 毕业论文(设计) 题目:基于stm32的智能小车设计学号:20112834320005 姓名:陈亚文 年级:2011级 学院:应用科技学院(儋州校区) 学部:工学部 专业:电子科学与技术 指导教师:张健 完成日期:2014 年12 月 1 日

摘要 本次试验主要分析了基于STM32F103微处理器的智能小车控制系统的系统设计过程。此智能系统的组成主要包括STM32F103控制器、电机驱动电路、红外探测电路、超声波避障电路。本次试验采用STM32F103微处理器为核心芯片,利用PWM技术对速度以及舵机转向进行控制,循迹模块进行黑白检测,避障模块进行障碍物检测并避障功能,其他外围扩展电路实现系统整体功能。小车在运动时,避障程序优先于循迹程序,用超声波避障电路进行测距并避障,在超声波模块下我们使用舵机来控制超声波的发射方向,用红外探测电路实现小车循迹功能。在硬件设计的基础上提出了实现电机控制功能、智能小车简单循迹和避障功能的软件设计方案,并在STM32集成开发环境Keil下编写了相应的控制程序,并使用mcuisp软件进行程序下载。 关键词:stm32;红外探测;超声波避障;PWM;电机控制

Abstract This experiment mainly analyzes the control system of smart car based on microprocessor STM32F103 system design process. The composition of the intelligent system mainly including STM32F103 controller, motor drive circuit, infrared detection circuit, circuit of ultrasonic obstacle avoidance. This experiment adopts STM32F103 microprocessor as the core chip, using PWM technique to control speed and steering gear steering, tracking module is used to detect the black and white, obstacle avoidance module for obstacle detection and obstacle avoidance function, other peripheral extended circuit to realize the whole system function. When the car is moving, obstacle avoidance program prior to tracking, using ultrasonic ranging and obstacle avoidance obstacle avoidance circuit, we use steering gear under ultrasonic module to control the emission direction of ultrasonic, infrared detection circuit is used to implement the car tracking function. On the basis of the hardware design is proposed for motor control function, simple intelligent car tracking and obstacle avoidance function of software design, and in the STM32 integrated development environment under the Keil. Write the corresponding control program, and use McUisp program download software. Keywords:STM32;Infrared detection;Ultrasonic obstacle avoidance;PWM;Motor control

基于STM32控制的自动往返电动小汽车

湖南科技大学信息与电气工程学院 《STM32控制自动往返小汽车》 设计报告 专业:电子信息工程 班级:二班 姓名:曾有根 学号:0904030218 指导教师:罗朝辉

自动往返电动小汽车 本设计民用STM32作为自动往返小汽车的检测和控制核心,辅以传感器、控制电路、显示电路等外围器件,构成了一个车载控制系统。路面黑线检测使用反射式红外传感器,利用PWM技术动态控制电动机的转速。基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,实现了小车在限速和压线过程中的精确控制。电动小汽车能够根据题目要求在直线方向上完成调速、急刹车、停车、倒车返回等各种运动形式;这辆小车还可以自动记录、显示一次往返时间和行驶距离,并用蜂鸣器提示返回起点。另外,我们经过MATLAB仿真后,成功地实现了从最高速降至低速的平稳调速。 本系统主要采用模糊控制算法进行速度调节。通过模糊控制和PWM脉宽调制技术的结合,提高了对车位置控制精度,并且实现了恒速控制。 关键词:PWM,STM32F103,电机,传感器 前言 嵌入式技术依靠其体积小、成本低、功能强等特点,适应了智能化发展的最新要求。单片机作为控制系统的微处理器,在数据处理和代码存储等方面都已经无法满足系统的要求,ARM微处理器资源丰富,具有良好的通用性。Cortex-M3是ARM公司最新推出的第一款基于ARMv7体系的处理器内核。它主要针对MCU领域,在存储系统、中断系统、调试接口等方面做了较大的改进,有别于过去的ARM7处理器;Cortex-M3具有高性能、低功耗、极低成本、稳定等诸多优点,非常适合汽车电子、工业控制系统、医疗器械、玩具等领域。基于Cortex-M3内核的STM32系列处理器于2007年由ST公司率先推出,它集先进Cortex-M3内核结构、出众创新的外设、良好的功耗和低成本于一体,极大的满足自动控制系统设计要求。作为先进的32位通用微控制器的领跑者,STM32以其出众的性能、丰富且灵活的外设、很高的性价比以及令人意外的功耗水准,使其自面世以来得到众多设计者的青睐,众多行业领导者纷纷选用STM32作为新一代产品的平台。因此将STM32F103应用于智能小车的控制系统是一种较好的选择。 基于此,本文提出了一个比较合理的智能小车系统设计方案。整个小车系统以STM32F103芯片为控制核心,附以外围电路,利用红外探测器、触角传感器采集外界信息和检测障碍物;充分利用STM32F103的串口、并口资源和高速的

基于STM32F103单片机的智能购物车系统设计

基于STM32F103单片机的智能购物车系统设计 【摘要】本文针对传统的超市购物车进行改进,通过无线通信和RFID技术的引入,使购物车具有最佳购物路线查询、商品信息查询、结算等功能,从而一定程度上缓解了购物高峰期出现的付款等待时间过长问题,大大减轻了付款时收银员的压力。 【关键词】智能;购物车;RFID 0 前言 随着经济的发展和人民生活水平的提高,人们的购物需求也逐渐增长,与此同时超市应运而生。经过几十年的发展,超市的经营模式已经深入人心,超市也已经成为人们日常消费最重要的场所之一。随着超市规模的发展壮大和质量上的保障,越来越多的人们选择在超市购买食品及生活用品。下班时间、节假日或超市促销活动时成为了超市购物的高峰期,此时收银台必定会出现排队长龙,即使所有收银台开放也无法明显缓解付款时的压力。有些顾客即使购买很少量的商品也需要等上很长时间,怨言不断。为了解决付款排队等待时间过长的问题,智能购物车是一个不错的选择。 智能购物车将RFID技术和ZigBee技术相结合,将无线通信的便利和快捷应用在选择商品和付款环节上。 1 系统总体结构 智能购物车系统在传统购物车上安装可触摸的电子系统,其功能是当购物车启动时显示超市近期的促销信息,用户可以通过触摸屏查找所需商品的位置及路线,当用户将商品放入购物车时,液晶屏可以显示此商品的相关信息(商品名称、价格、生产日期、保质期等),并实时显示购物车中商品的总额。用户结账时,通过购物车的无线通信模块将商品总金额传输到收银台,实现一键式付款,大大提高了商品结账的速度,有效的缓解了购物高峰期带来的压力。 本系统由中央信息处理系统、RFID模块、ZigBee通信模块、输入与显示系统等组成[1]。中央信息处理系统是核心控件,实现对数据的处理和各组成部分的控制。RFID模块用于对商品信息进行查询。ZigBee通信模块将商品的总额传输至收银台。触摸屏便于使用户进行功能上的切换,从而显示促销信息、商品信息、购物路线等。系统总体框图如图1所示。 图1 系统总体框图 2 硬件设计 下面分别对系统的各组成部分的硬件结构进行设计。

基于stm32的智能循迹小车的设计

燕山大学 课程设计说明书 题目:基于STM32的智能循迹小车的设计 学院(系):理学院 年级专业:12级智能传感器 学号:120108040006 学生姓名:贺红红 指导教师:杜会静徐超 教师职称:副教授讲师

燕山大学课程设计(论文)任务书院(系):理学院基层教学单位:12级智能传感器 学号120108040006 学生姓 名 贺红红专业(班级)12级智能传感器 设计题 目 基于STM32的智能循迹小车的设计 设计技术参数 设计参数: 以SMT32作为主控制器,由红外传感器作为检测工具,两者相辅相成,控制电机电机转动。 设计要求1.按要求组装好小车,编写程序,使得小车按下按键后停两秒自启,并沿 着黑胶带行驶,到达终点线后停止。 2.在满足1的条件下,调试小车,使小车走的快而稳。 工作量15个工作日 平均每个工作日约8小时 工 作计划2015/6/27---2015/7/1 焊接STM32开发板,组装小车。 2015/7/2---2014/7/10 学习STM 32开发板的使用,进行编程练习。调试小车2015/7/11 课设结题答辩。 参考资料[1]《控制电机》杨渝钦 [2]《 STM32系列ARM Cortex-M3微控制器原理与实践》王咏虹徐炜郝立平 [3]《Cortex-M3嵌入式处理器原理与应用》范书瑞 [4] 《电子元器件与实用电路基础》韩广兴 指导教师签字基层教学单位主任字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日

基于STM32的智能循迹小车的设计 贺红红 理学院12级智能传感器 摘要:主要分析了基于STM32的小车控制系统的设计过程,此系统主要包括STM32控制器、按键控制电路、电机驱动电路、红外探测电路等。以STM32为主控芯片及其外围扩展电路实现系统整体功能,用红外探测电路实现小车循迹功能,小车速度由PWM波控制,控制电动小车的速度及转向,从而使小车顺利通过直线,虚线,十字路口,S弯,实现循迹功能。在硬件设计的基础上实现了电机控制功能,LED显示功能,以及小车简单循迹的软件设计方案。 关键字:STM32 电机传感器 PWM KEIL Design of intelligent tracking car based on STM32 Abstract:.Mainly analyzes the design process of the car control system based on STM32, this system mainly includes the STM32 controller, button control circuit, motor drive circuit, infrared detection circuit, etc. STM32 as main control chip and extend the peripheral circuit to realize the whole system function, the function of infrared detection circuit is used to implement the car tracking, vehicle speed is controlled by a PWM wave, control the speed of the electric car and steering, which makes the car pass straight line, dotted line, intersection, S bending, realize the tracking function. On the basis of the hardware design to realize the function of motor control, LED display function, and software design scheme of simple car tracking. Keywords:STM32、The motor、The sensor、PWM、KEIL. 学习目的 1.学习STM32工作原理及使用方法; 2. 学习计算机程序设计; 3. 学习编程并掌握软件调试。二〇一九年十二月二十六日 学习软件 Keil uVision、串口猎人 学习任务 学会利用STM32和红外线传感器设计智能循迹小车

基于STM32的智能小车控制系统设计

www?ele169?com | 21电子电路设计与方案 0 引言 移动机器人已经渗透到工业生产、物流、搬运、医疗等 社会的每个方面[1]。智能小车作为一种轮式机器人也得到了 广泛的应用研究[2]。控制系统是智能小车的关键构成部分, 能够在较为复杂的环境中,将小车按照预定的轨迹运行,或者运行到预先设定的位置,实现小车精确的速度与位置的控制,对智能小车系统起着至关重要的作用[3] 。因此,本文以四轮轮式结构智能小车为研究对象,采用STM32系列单片 机作为控制核心,结合CAN 总线通信接口,设计一种基于STM32的智能小车控制系统,该系统功能强大且扩展性好, 具有一定的实用价值。1 系统介绍 智能小车的控制系统是整个智能小车设计过程中最为重 要的一环。智能小车是在它的统一协调控制下完成行走、 避障、 自主循迹等任务,它的好坏直接关系着智能小车的性能好坏, 控制系统的设计方法也决定着智能小车的功能特点。图1 控制系统结构框图 通常,智能小车应具备自主定位、障碍物实时检测、自 动避障、速度检测以及无线通信等功能。根据上述功能的要求,本文所设计的控制系统的硬件模块主要包括:主控模块、障碍物检测模块、速度检测模块、无线通信模块、电源模块以及电机驱动模块等部分。控制系统的结构如图1所示。为了方便后续的功能的扩展,在实际设计过程中,各模块的软硬件设计均采用相对独立的模块化设计方法。2 系统硬件设计 ■2.1 电源模块电源模块主要为控制系统提供工作的电压。根据各个组成部分的功能,电源模块应提供电机驱动所需的12V、STM32主控核心所需的3.3V、其他芯片工作所需的5V 三种幅值的电压。因此,采用12V 的航模电池作为供电电源,5V 与3.3V 电源转换电路如图2所示。为了增加电源的可靠性,减少外界扰动的影响,在稳压芯片7805和LM1117的 输入和输出两侧均布置有电容。图2 电源模块电路 ■2.2 障碍物检测模块智能小车要具备自主避障的能力,必须在其行进过程中能够时刻检测到障碍物的信息,为此就需要设计相应的障碍物检测模块。常用的传感器主要有超声波、激光以及红外测距传感器。鉴于超声传感器使用方便、实时性强和性价比高等优点,本文选用型号为HC-SR04的超声测距模块,得到智能小车在行进过程中遇到的障碍物的信息。所使用的测距模块如图 3所示。其中VCC 为5V 电源输入接5V 电源即可, GND 为接地线,回响信号输出ECHO 与触发控制信号输入TRIG 与STM32的I/O 口连接即可。基于STM32的智能小车控制系统设计王嘉俊 (山西省清徐梗阳中学,山西清徐,030400)摘要:本文设计一种基于STM32的智能小车控制系统。该系统采用STM32单片机作为控制核心,通过HC-SR04超声波传感器实时检测障碍物信息,采用光电编码器得到转速信息构成闭环控制系统,使得智能小车的控制更为精确,通过CAN总线和无线通信模块实现操作人员对智能小车的有线和无线通信。该系统设计简单、可扩展性好且控制精度高,具有一定应用价值。关键词:智能小车;STM32;转速检测;避障

基于STM32的智能小车摄像头循迹系统毕业论文设计

烟台大学 毕业论文(设计) 基于STM32的智能小车 摄像头循迹系统 Intelligent Car Tracking System Based on STM 32 Camera 申请学位:工学学士 院系:光电信息科学技术学院 专业:电子信息工程

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于stmf的蓝牙控制小车

项目报告 题目:基于stm32f4的蓝牙控制小车学校:中南民族大学 指导教师: 视频观看地址:

题目:基于stm32f4的蓝牙控制小车 关键词:STM32F4 L298N FBT06_LPDB 蓝牙串口通信android 摘要 “基于stm32f4的蓝牙控制小车”是一个基于意法半导体与ARM公司生产的STM32F4 DISCOVERY开发板的集电机驱动模块、电源管理模块、stm32f4主控模块、蓝牙串口通信模块、android控制端模块。电机驱动模块使用了两个L298N 芯片来驱动4路电机,使能端连接4路来自主控板的PWM波信号,8个输入端接主控板的8个输出端口;电源管理模块使用了芯片进行12V到5V的转换,12V 用于电机模块的供电,5V用于蓝牙模块、传感器等的供电;主控模块采用了MDK 编辑程序,然后下载到主控板,实现硬件与软件的交互;蓝牙串口通信模块则是采用了FBT06_LPDB针插蓝牙模块,与主控板进行串口通信,同时与android 手机进行通信;android控制端模块是一个集开启蓝牙、搜索蓝牙、控制小车等功能。用户可以通过android控制端进行控制小车的运动,实现一些用户需要的功能和服务。 1.引言 蓝牙的创始人是瑞典爱立信公司,蓝牙技术是一种无限数据与语音通信的开放性全球规范,它以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接。手机之间通过蓝牙实现数据共享成为常理,将手机变为遥控器为人们的生活带来无限方便。遥控小车在工业、国防、科研等领域应

用越来越广泛,例如说:消防遥控小车、探测小车等。本文详细阐述了使用蓝牙通信的手机遥控小车前行、倒退、左转、右转和停止等功能的软硬件设计过程。 2. 系统方案 该系统分为电机驱动模块、电源管理模块、主控板、蓝牙通信模块、android 控制端等5个模块,如图所示: 图 系统模块图

毕业设计基于stm32的智能小车设计说明

摘要 本次试验主要分析了基于STM32F103微处理器的智能小车控制系统的系统设计过程。此智能系统的组成主要包括STM32F103控制器、电机驱动电路、红外探测电路、超声波避障电路。本次试验采用STM32F103微处理器为核心芯片,利用PWM技术对速度以及舵机转向进行控制,循迹模块进行黑白检测,避障模块进行障碍物检测并避障功能,其他外围扩展电路实现系统整体功能。小车在运动时,避障程序优先于循迹程序,用超声波避障电路进行测距并避障,在超声波模块下我们使用舵机来控制超声波的发射方向,用红外探测电路实现小车循迹功能。在硬件设计的基础上提出了实现电机控制功能、智能小车简单循迹和避障功能的软件设计方案,并在STM32集成开发环境Keil下编写了相应的控制程序,并使用mcuisp软件进行程序下载。 关键词:stm32;红外探测;超声波避障;PWM;电机控制

Abstract This experiment mainly analyzes the control system of smart car based on microprocessor STM32F103 system design process. The composition of the intelligent system mainly including STM32F103 controller, motor drive circuit, infrared detection circuit, circuit of ultrasonic obstacle avoidance. This experiment adopts STM32F103 microprocessor as the core chip, using PWM technique to control speed and steering gear steering, tracking module is used to detect the black and white, obstacle avoidance module for obstacle detection and obstacle avoidance function, other peripheral extended circuit to realize the whole system function. When the car is moving, obstacle avoidance program prior to tracking, using ultrasonic ranging and obstacle avoidance obstacle avoidance circuit, we use steering gear under ultrasonic module to control the emission direction of ultrasonic, infrared detection circuit is used to implement the car tracking function. On the basis of the hardware design is proposed for motor control function, simple intelligent car tracking and obstacle avoidance function of software design, and in the STM32 integrated development environment under the Keil. Write the corresponding control program, and use McUisp program download software. Keywords:STM32;Infrared detection;Ultrasonic obstacle avoidance;PWM;Motor control

相关文档
最新文档