无刷直流电机中霍尔传感器空间安放位置研究

无刷直流电机中霍尔传感器空间安放位置研究
无刷直流电机中霍尔传感器空间安放位置研究

无刷直流电机中霍尔传感器空间安放位置研究

0 引言

霍尔位置传感器在无刷直流电机中起着检测转子磁极位置的作用,为逻辑开关电路提供的换向信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组的换向导通[1]。初步实验结果表明,电枢反应和位置传感器的改变对霍尔检测信号影响较大,直接影响了电机绕组的换流,引起电机力矩波动从而带来噪音。文中针对引起霍尔传感器位置检测误差的主要因素进行了分析,并且通过对样机电机的三维有限元仿真计算,得到了霍尔传感器检测漏磁场的分布,为霍尔传感器的安放位置提供了依据。

1 霍尔安放位置问题

1.1 产生霍尔传感器位置检测误差的因素

产生霍尔传感器位置检测误差的因素主要有以下两方面:①霍尔传感器的参数;②传感器安装位置处的磁场变化[2]。

①磁密滞环宽度

开关型霍尔元件只有在检测到磁场到达某一数值时,霍尔开关接通;而磁感应强度降低到某一数值以下,霍尔开关断开,因此输出信号的过零点与磁密过零点并不重合。而这些事件的触法点叫吸合点和释放点。开关型产品一般都给出吸合点和释放点的最大和最小磁感应强度,保证在最大吸合点和最小释放点所有开关接通或断开,但某一开关可能在这两个极限值之内吸合或释放。虽然某些产品不给出某一元件在两极限值之内的具体切换点,但保证有最小滞环,这一特性使得输出信号不会因为输入信号的微小波动而发生错误的跳变,以防抖动。实际应用中霍尔传感器的输出信号与绕组反电势之间期望的相位关系只能在一个方向上实现[3]。在另一个方向上将出现位置检测误差,如位置误差值为磁密滞环宽度,等于二倍的磁密门槛值;式中s 是从0 到D 值之间磁密随转子转角的平均变化率。如果传感器敏感的磁密按幅值为0.3T 的正弦函数变化,霍尔传感器的门槛值为0.01mT,则在一个电周期内位置误差为θ = arcsin(2*0.01/0.3)=3.85° 。

由式(1)可知,霍尔检测位置误差值可以通过选择滞环宽度小的霍尔传感器或者通过合理的计算安装位置处的磁密来选择合适的安装位置以获得高的磁密的变化率来进行抑制。

②霍尔传感器的磁密敏感区

永磁电机中的磁铁在霍尔传感器正面产生磁场,且随着所产生磁场大小的变化,霍尔传感器接通或断开。当磁感应强度B 与霍尔传感器的平面法线成一角度θ 时,实际上作用于霍尔传感器的有效磁场是其法线方向的分量,即Bcosθ 。因此,当霍尔传感器的安装有角度偏差时,传感器的有效磁场将发生变化,此时的偏差角为θ ,由此产生的误差值既取决于这个夹角θ ,又取决于敏感区法线方向上磁密的变化程度[4]。因此,可以通过尽可能的减小传感器的装配误差以起到抑制这种误差的效果。

1.2 转子磁钢所产生的磁场变化对霍尔检测误差的影响转子磁钢产生霍尔传感器检测位置所需的磁密,永磁体所产生磁场的不均匀或转子的不同心会造成一周内磁场变化的不一致;此外,传感器通常安装在永磁体电机的端部,直接用电机的转子作为自己的转子,感应出所需要的磁场,但是当绕组通电流后,强的端部电枢反应会使位置检测处的磁场严重畸变,造成位置检测误差[5]。

2 对永磁电机端部磁场进行三维有限元分析

2.1 永磁电机的三维有限元模型

对永磁电机中传感器安装区域内的磁场分析时不能忽略永磁体的边缘效应与铁磁材料的弥散效应,因此二维有限元法不适于在此进行磁场的定量计算。使用三维有限元法可以实现对整个电机端部磁场的定性和定量分析,进行不同位置处的磁场分析,以确定传感器的安装位置[6]。文中在定子

铁心上以一个大齿的中心线为起点,至相邻的槽中心线范围之间等间距取三条采样线,则永磁电机的三维模型及其采样线的选取如所示。

不计铁磁材料的饱和效应,依据叠加原理电机端部磁场可以认为是永磁体与电枢电流单独作用产生磁场的合成,对上述所建模型分别求解绕组不通电和绕组通电情况下采样线上的磁场分布,求解方法为转子旋转,当转子磁极中心线与某采样线重合时计算磁场,提取该采样线上磁感应强度分布曲线。电机模型的轴向尺寸关系如所示。由定子中心处作为轴向长度的始端,霍尔所检测漏磁场分布集中在z 轴L0~L0+ΔL范围内。

2.2 齿槽对霍尔漏磁场检测的影响

当绕组不通电,仅有永磁体作用时,由永磁体产生的磁密矢量图、磁密分布云图以及磁密值沿轴向的变化如所示,其中图中line1、line2、line3 分别为齿中心线处采样线,齿槽中心线之间以及槽中心线处的采样线。由于霍尔传感器安装于绕组端部靠近定子铁心处,由图显示在仅有永磁体作用时,霍尔检测漏磁场受齿槽影响较小,因此在确定霍尔安装位置时可以不考虑齿槽的影响。

2.3 绕组端部电枢反应对霍尔检测漏磁场的影响

在考虑绕组端部电枢反应对霍尔检测漏磁场影响时,由于电枢电流是时变的,在不影响分析结果正确的前提下,建模时只采用三相绕组的一种通流状态来分析。绕组中电枢电流采用如下设置:a 相电流最大,b 相电流和c 相电流方向与a 相相反,幅值为峰值的一半。永磁体此时没有充磁,认为为空气。则定子铁心内的磁密矢量图、磁密分布云图以及磁密值沿轴向的变化如所示,由图中看出,电枢反应磁场相比永磁体产生的磁场小,且从中可以清楚的看到,当坐标点大于0 L 时,即处于定子端部表面上方时,电枢反应磁场衰减的很快,相比较而言,由于采样线line3 在定子的槽中心线处,采样磁感应强度值为主极磁场与电枢绕组磁场的线性叠加,所以相比较而言line3 上的磁感应强度与采样线line1、line2的磁感应强度比较,呈现出更大的递增趋势。这主要时因为定子铁心磁饱和导致铁心内磁感应强度不再呈线性增长。

现在考察霍尔检测磁场所在区间z = L0 ~ L0 + ΔL,由与知,如若霍尔传感器安装于采样线的z=11mm 位置时,霍尔检测的漏磁场的幅值

为B=0.45T~0.6T。此处的永磁无刷直流电机采用开关霍尔作为位置传感器,开关型霍尔工作时,所检测的漏磁场感应强度幅值必须大于使霍尔电压信号翻转的阀值磁感应强度。设阀值磁感应强度最大值为op B ,所检测的磁感应强度最大值为m B ,则必须满足m op B ≥ B ,否则开关型霍尔传感器将无法触发。

对比图中的各曲线,霍尔检测漏磁场幅值受一定的电枢反应的影响,因此理想霍尔安装的位置在定子的齿中心线line1 处,且在z 轴方向上z = L ~ L + ΔL的范围内越靠近z = L 位置处越好。

3 结论

文中主要针对引起霍尔传感器位置检测误差的各种主要因素进行了分析,并且通过对样机电机的三维有限元仿真计算,得到了霍尔传感器检测漏磁场的分布,总结影响霍尔传感器安装的最佳位置,为霍尔传感器的安放位置提供了依据。

计算机硕士论文

[参考文献] (References)

[1] 王萍,王正茂,姚刚等. 无刷直流电机中霍尔元件的空间配置[J]. 微电机,2003 年,第6 期:16-18.

[2] 徐征,李铁才. 霍尔传感器位置检测误差的分析及解决方案[J]. 中国电机工程学报,2004 年,第1 期:168-173.

[3] 谭建成. 多级分数槽集中绕组无刷电机霍尔传感器位置确定方法分析[J]. 微电机,2008 年:57-61.

[4] 李勇. 定位力矩HALL 元件信号误差对永磁同步电机噪声的影响研究[J]. 电子器件,2008 年,第3 期:1007-1010.

[5] 王俊. 霍尔传感器及其性能优化[J]. 电子元器件与可靠性,2008,第2 期:10-14.

[6] 涂翘甲. 无刷直流电机用开关型霍尔传感器[J]. 技术与开发,2007,第7 期:25-28.

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

2、霍尔位置传感器及弯曲法杨氏模量的测定

实验二 霍尔位置传感器及弯曲法杨氏模量的测定 实验原理 本实验在弯曲法测量固体材料杨氏模量的基础上,加装了霍尔位置传感器。通过霍尔位置传感器的输出电压与位移量线性关系的定标和微小位移量的测量,使学生了解和掌握微小位移的非电量电测新方法。 实验原理 1、 霍尔位置传感器 霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者 相垂直的方向上将产生霍尔电势差H U : B I K U H ??= (1) (1)式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为: Z dZ dB I K U H ??? ?=? (2) (2)式中Z ?为位移量,此式说明若dZ dB 为常数时,H U ?与Z ?成正比。 图1 为实现均匀梯度的磁场,可以如图1所示,两块相同的磁铁(磁铁截面积及表面磁感应强度相同)相对放置,即N 极与N 极相对,两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范围和测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差应该为零。当霍尔元件偏离中心沿Z 轴发生位移时,由于磁感应强度不再为零,霍尔元件也就产生相应的电势差输出,其大小可以用数字电压表测量。由此可以将霍尔电势差为零时元件所处的位置作为位移参考零点。 霍尔电势差与位移量之间存在一一对应关系,当位移量较小(mm 2<),这一对应关系具有良好的线性。

基于直流无刷电机霍尔信号的位置估算

基于直流无刷电机霍尔信号的位置估算 技术领域 本发明涉及一种利用低分辨率霍尔位置信号,通过一定算法,来比较精确地估计转子位置和转速。以便能够对直流无刷电机采用矢量控制。 背景技术 目前,直流无刷电机在电动车领域应用较广,一者该类型电机功率密度高、调速性能好,二者是其成本较低,有些配置较低成本的霍尔位置传感器。 一般情况下直流无刷电机采用方波驱动,控制简单。然其换向间的电流突变,会造成较大的转矩脉动,产生较大的噪声污染。采用正弦波驱动,即矢量控制,所产生的转矩脉动明显小于方波驱动。但是矢量控制需要连续的、高精度的位置信息,本文介绍的算法就是针对简单的霍尔信号来估算出较高精度的转子位置信号。 发明内容 本文针对的对象有霍尔位置传感器的直流无刷电机中,三个霍尔元件HA 、HB 、HC 在空间上依次间隔120°电角度。输出的信号也是依次间隔120°,脉宽180° 电角度的方波。如下图1所示。 PWM1 PWM2 PWM3 PWM4 PWM5 Hall A Hall B Hall C PWM6 图1 方波驱动霍尔信号与PWM 信号对应图

由上图可知,三相霍尔信号每60°跳变一次,分别对应一个电周期的六个状态(15°、45°、105°、165°、225°、285°、345°)。这里看出霍尔传感器的分辨率仅为60°。 为了获取高分辨率的转子位置,本文提出基于转子平均转速(60°间的平均转速)来估算转子位置。 设i θ为霍尔信号跳变时刻对应转子位置,1-i ω为转子在i θ和1-i θ之间的平均转速,1-i T 为转子在i θ和1-i θ之间的间隔时间,那么有: 113/--=i i T πω (1) 为得到当前某一位置时刻的转子转速,引入转子转速平均加速度a ,有 2/)(21211-----+-=i i i i i T T a ωω (2) 那么可算出转子当前某一位置的瞬时转速为: k i i i i ip kT a T a 11112/----++=ωω (3) 其中,k T 为采样周期,k 为当前时刻到i θ对应时刻的采样次数。 当前转子位置为 21111)(21 )2/(k i k i i i i ip i ip kT a kT T a dt ----+++=+=?ωθωθθ (4) 对转子位置每60°进行重新校正,引入转子平均加速度计算得到的转子位置,在转速动态调整时,转子位置计算偏差得到较好抑制。

无刷无霍尔直流电机 ma

目录 1直流无刷无霍尔电机原理 (2) 2 总体设计方案 (3) 3 硬件设计 (4) 3.1 单片机最小系统 (4) 3.2 电源模块 (5) 3.3 JY01A驱动IC (5) 4小结 (7) 5 附录 (8) 5.1 程序 (8) 5.2主程序流程图 (11) 5.3 元件清单 (12) 5.4 原理图 (13)

5.5 PCB图 (14) 1.直流无刷无霍尔电机原理 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。 2.总体设计方案 本系统由单片机最小系统、电源模块和JY01A驱动IC等硬件电路部分以及相应的软件部分构成。本设计采用单片机作为主控芯片,用编程的方法来模拟无刷电机的控制逻辑,其特点是使用灵活,通过修改程序可适应不同规格的无刷电机,增加系统功能方便,JY01A驱动电路,具备调速,正反转,过流保护,短路保护,欠压保护等功能,工作稳定,防干扰能力强等特点。电源电路给单片机和驱动电路提供36V电压。

直流无刷电机反电动势过零检测方法汇总

直流无刷电机反电动势过零检测方法汇总 Modified by JACK on the afternoon of December 26, 2020

直流无刷电机反电动势过零检测方法 一般的永磁无刷直流电机是由三相逆变桥来驱动的,根据转子位置的不同,为了产生最大的平均转矩,在一个电角度周期中,具有6个换相状态。在任意一个时间段中,电机三相中都只有两相导通,每相的导通时间间隔为120°电角度。例如,当A相和B相已经持续60°电角度时,C相不导通。这个换相状态将持续60°电角度,而从B相不导通,到C相开始导通的过程,称为换相。换相的时刻取决于转子的位置,也可以通过判断不导通相过零点的时刻来决定。通过判断不导通相反电动势过零点,是最为常用也最为适合的无位置传感器控制方法。 反电动势过零点的检测方法是,通过测量不导通相的端电压,与电机的绕组中点电压进行比较,以得到反电动势的过零点。但对于小电枢电感的永磁无刷直流电机,在许多情况下,绕组中点电压难以获取,并且需要使用电阻分压和进行低通滤波,这样会导致反电动势信号大幅地衰减,与电机的速度不成比例,信噪比太低,另外也会给过零点带来更大的相移。 与上面的方法相比,更为常用的是虚拟中点电压法。假设A相和B相导通,则A和B两相电流大小相等,方向相反,C相电流为零,则根据永磁无刷直流电机数学模型有

根据上述方程,将不导通相的端电压与所计算的虚拟中点电压进行比较,也可以获得反电动势的过零点。这种方法十分简单,实现也比较方便。但是,由于无刷直流电机按一定频率进行PWM斩波控制,其计算出的虚拟中点电压也会随着PWM的高低电平而发生相同频率的在电源和地电平之间的变化。这样,就会带来极大的共模电平和高频噪声,会影响反电动势过零点检测的精确性。同样,和中点比较法一样,这种方法也必须要对绕组端电压进行分压和低通滤波。 这样,在一个PWM周期中,电枢绕组相电流就必然存在断续状态。速度提高时,电枢绕组中会产生峰峰值极大、频率很高的反电动势。由于以上特点,一些普遍采用的BLDC无位置传感器的控制方法均不适合。现有的无位置传感器的控制方法,如端电压检测法和转子位置估计法等,将很难得到良好的控制效果,其理由如下所述: 首先,无刷直流电机要求在电机转速提高的过程中,采用现有的端电压与中点电压比较的方法,要对三相绕组进行分压阻容滤波,计算出不导通相反电动势的过零点,再延后一定时间进行换相。但是,这样得到的反电动势过零点会因为无刷直流电机转速提高而产生过大的相移,导致当检测到反电动势过零点后,真正的换相点已经过去,从而造成换相失误。另外,现有的转子位置估

无刷直流电机中霍尔传感器空间安放位置研究

无刷直流电机中霍尔传感器空间安放位置研究 0 引言 霍尔位置传感器在无刷直流电机中起着检测转子磁极位置的作用,为逻辑开关电路提供的换向信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组的换向导通[1]。初步实验结果表明,电枢反应和位置传感器的改变对霍尔检测信号影响较大,直接影响了电机绕组的换流,引起电机力矩波动从而带来噪音。文中针对引起霍尔传感器位置检测误差的主要因素进行了分析,并且通过对样机电机的三维有限元仿真计算,得到了霍尔传感器检测漏磁场的分布,为霍尔传感器的安放位置提供了依据。 1 霍尔安放位置问题 1.1 产生霍尔传感器位置检测误差的因素 产生霍尔传感器位置检测误差的因素主要有以下两方面:①霍尔传感器的参数;②传感器安装位置处的磁场变化[2]。 ①磁密滞环宽度 开关型霍尔元件只有在检测到磁场到达某一数值时,霍尔开关接通;而磁感应强度降低到某一数值以下,霍尔开关断开,因此输出信号的过零点与磁密过零点并不重合。而这些事件的触法点叫吸合点和释放点。开关型产品一般都给出吸合点和释放点的最大和最小磁感应强度,保证在最大吸合点和最小释放点所有开关接通或断开,但某一开关可能在这两个极限值之内吸合或释放。虽然某些产品不给出某一元件在两极限值之内的具体切换点,但保证有最小滞环,这一特性使得输出信号不会因为输入信号的微小波动而发生错误的跳变,以防抖动。实际应用中霍尔传感器的输出信号与绕组反电势之间期望的相位关系只能在一个方向上实现[3]。在另一个方向上将出现位置检测误差,如位置误差值为磁密滞环宽度,等于二倍的磁密门槛值;式中s 是从0 到D 值之间磁密随转子转角的平均变化率。如果传感器敏感的磁密按幅值为0.3T 的正弦函数变化,霍尔传感器的门槛值为0.01mT,则在一个电周期内位置误差为θ = arcsin(2*0.01/0.3)=3.85° 。 由式(1)可知,霍尔检测位置误差值可以通过选择滞环宽度小的霍尔传感器或者通过合理的计算安装位置处的磁密来选择合适的安装位置以获得高的磁密的变化率来进行抑制。 ②霍尔传感器的磁密敏感区 永磁电机中的磁铁在霍尔传感器正面产生磁场,且随着所产生磁场大小的变化,霍尔传感器接通或断开。当磁感应强度B 与霍尔传感器的平面法线成一角度θ 时,实际上作用于霍尔传感器的有效磁场是其法线方向的分量,即Bcosθ 。因此,当霍尔传感器的安装有角度偏差时,传感器的有效磁场将发生变化,此时的偏差角为θ ,由此产生的误差值既取决于这个夹角θ ,又取决于敏感区法线方向上磁密的变化程度[4]。因此,可以通过尽可能的减小传感器的装配误差以起到抑制这种误差的效果。 1.2 转子磁钢所产生的磁场变化对霍尔检测误差的影响转子磁钢产生霍尔传感器检测位置所需的磁密,永磁体所产生磁场的不均匀或转子的不同心会造成一周内磁场变化的不一致;此外,传感器通常安装在永磁体电机的端部,直接用电机的转子作为自己的转子,感应出所需要的磁场,但是当绕组通电流后,强的端部电枢反应会使位置检测处的磁场严重畸变,造成位置检测误差[5]。 2 对永磁电机端部磁场进行三维有限元分析 2.1 永磁电机的三维有限元模型 对永磁电机中传感器安装区域内的磁场分析时不能忽略永磁体的边缘效应与铁磁材料的弥散效应,因此二维有限元法不适于在此进行磁场的定量计算。使用三维有限元法可以实现对整个电机端部磁场的定性和定量分析,进行不同位置处的磁场分析,以确定传感器的安装位置[6]。文中在定子

霍尔位置传感器原理和应用

霍尔位置传感器原理和应用 一.霍尔位置传感器的特点: 霍尔位置传感器是一种检测物体位置的磁场传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔位置传感器以霍尔效应原理为其工作基础。 霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采取了各种补偿和保护措施的霍尔位置传感器的工作温度范围可达到-55℃~150℃。 按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。前者输出模拟量,后者输出数字量。 霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。 二.霍尔位置传感器的原理: 2.1霍尔效应和霍尔元件

在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。 2.2 霍尔集成电路 霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。

霍尔位置传感器的定标和杨氏模量的测定

霍尔位置传感器的定标和杨氏模量的测定 通过弯梁法测量固体材料的杨氏模量,可以学习和掌握基本长度和微小位移量测量的方法和手段,提高学生的实验技能,是大学物理实验中一个十分重要的项目。传统的弯梁法测量固体材料杨氏模量实验是采用光杠杆放大的方法测量微小位移量。随着科学技术的发展,微小位移量的测量技术愈来愈先进,在弯梁法测量固体材料杨氏模量的基础上,通过位移传感器的输出电压与位移量线性关系的定标和微小位移量的测量,有利于联系科研和生产实际,使学生了解和掌握微小位移的非电量电测新方法。 【实验目的】 1.本实验要求掌握用米尺、游标卡尺、螺旋测微计、读数显微镜测量长度的方法。 2.用弯曲法测出金属黄铜(或可锻铸铁)的杨氏模量。 【实验原理】 1.位移传感器 位移传感器是将霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者相垂直的方向上将产生霍尔电势差U H H U K I B = (1) 式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为 H dB U KI Z dZ ?=? (2) 式中△U 为位移量,此式说明若dB dZ 为常数时,△U H 与△Z 成 正比。取比例系数为κ,则 H U Z κ?=? (3) 为实现均匀梯度的磁场,可以如图1 所示,两块相同的磁铁(磁铁截面积及表面磁感应强度相同) 相对放置,即N 极与N 极相对( S 极与S 极相对),两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范围的测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差 图1

无刷直流电机转子位置检测的新方法

无刷直流电机转子位置检测的新方法 作者:山东大学陈瑜黄玉王兴华 要 摘要:介绍了无刷直流电机无位置传感器转子位置检测的一种新方法。该方法利用非导通相反电势逻辑电平经逻辑处理后得到一脉冲列,采用PLL锁相技术将脉冲列倍频,通过倍频电路计数器的计数值可以精确检测转子位置。利用数字比较技术将计数值与锁存器中的预置数值比较,可以精确控制绕组电流的最佳换向时刻。通过调节锁存器中的预置值可以方便地调节换向角,非常适用于无刷直流电机的各种控制算法。同时该方法克服了外同步起动过程中易产生的振荡和失步现象。通过实验证明该方法是正确的、有效的。 关键词:无刷电机;无位置传感器;检测 1引言 无刷直流电机运行时需要采用位置传感器检测转子磁场位置信号,以控制逆变器功率管的换流,实现电机的自同步运行。传统的位置传感器是采用电子式或机电式传感器件直接测量,如霍尔效应器件(HED)、光学编码器、旋转变压器等。然而,这些传感器有以下缺点: ①分辨率低或运行特性不好,有的对环境条件很敏感,如振动、潮湿和温度变化都会使性能下降。 ②增加了电气连接数目,给抗干扰设计带来一定困难。 ③占用电机结构空间,限制了电机的小型化。 因此,无刷直流电机的无位置传感器化技术近年来日益受到人们的关注,国内外研究人员在这方面进行了积极的研究,提出了诸多方法,主要可分为反电势法、电感法、磁链法、旋转坐标系法、观测器法、卡尔曼滤波器法等[1~4]。反电势法简单、可靠,得到了广泛应用,其它方法由于计算复杂、对参数的鲁棒性差等原因应用较少。但反电势法的缺点是: ①低速时反电势小,难以得到有效转子位置信号,系统低速性能差。 ②需用低通滤波器去掉端电压中高频噪声并移相30°以满足换流要求,对滤波器要求较高,同时滤波器容易产生移相误差,而且移相误差大小与速度有关,难以补偿[5]。 ③对换相角调节困难,无法控制换相角γ(超前或滞后)的大小。 ④若采用外同步脉冲起动,当驱动信号由外同步脉冲驱动向内同步脉冲驱动切换时,由于切换点的相位误差易产生振荡甚至失步[6]。 针对以上问题,本文提出了一种新型转子位置检测的方法,以三相6拍运行的无刷直

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

直流有刷电机与直流无刷电机的对比

直流有刷电机与直流无 刷电机的对比 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

无刷直流电机与有刷直流电机的对比直流有刷电机和无刷电机的区别是是否配置有常用的电刷换向器。有刷直流电机的换向一直是通过石墨电刷与安装在转子上的环形换向器相接触来实现的。 而直流无刷电机则通过霍尔传感器把转子位置反馈回到控制电路,使其能够获知电机相位换向的准确时间。大多数无刷电机生产商生产的电机都具有三个霍尔效应定位传感器。由于无刷电机没有电刷,故也没有相关接口,因此更干净,噪声更小,事实上无需维护,寿命更长。 直流无刷是基于交流调速原理基础上制造出来的,性能方面既有直流电机的启动转矩大,转速稳定调速方便,又有交流电机的结构简单没有易损件(没有直流电机的碳刷)价格方面因为需要专门的驱动故价格要比普通直流电机高3~4倍左右。不过调速方面因为直流无刷电机大部分都自带驱动电路(可以调速,当然也有恒速的)所以驱动起来只要给他接上额定电压后,输入调速PWM信号就可以了。这点无需再添加专门的驱动电路,另外直流无刷电机因为有霍尔元件做反馈,所以转速几乎是稳定恒速的。 一、无刷电机与有刷电机的性能比较 1、摩擦大、损耗大 有些朋友在用有刷电机的时候经常碰到这个问题,那就是使用电机一段时间后,需要打开电机来清理电机的碳刷,费时费力,维护强度不亚于一次家庭大扫除。 2、发热大、寿命短 由于有刷电机的结构原因,电刷和换向器的接触电阻较大,容易发热,而永磁体是热敏元件,如果温度太高,磁钢是会退磁的,使电机性能下降,影响有刷电机的寿命。 3、效率低、输出功率小 上面说到的有刷电机发热问题,很大程度是因为电流做功在电机的内阻上了,所以

无刷电机结构图及里面的霍尔信号工作原理

无刷电机结构图及里面的霍尔信号工作原理 (2009-05-30 17:33:55) 转载 标 签: 教育 霍耳的红线一般接5-12v直流电。推荐5-7v。 霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。 霍耳信号传递给控制器,控制器通过粗线(不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。 电动车用无刷直流电机工作原理 摘要: 无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。. 关键词:无刷直流电机永磁同步电机直流变频钕铁硼 abstract: brushless direct current motor has the same dc motor output characteris tics, also named bldc. bldc have higher output torque in low speed, higher efficiency and better speed precision than any control modes of frequency converter drives. this chapte r introduce capacity up to 400kw for the industrial application. key words:brushless direct current motor permanent magnetic synchronous motor bldc ndfeb [中图分类号]tm921 [文献标识码]b 文章编号1561-0330(2003)06-00 1 无刷直流电动机简介 无刷直流电动机的学名叫“无换向器电机”或“无整流子电机”,是一种新型的无级变速电机,它由一台同步电机和一组逆变桥所组成,如图1所示。它具有直流电机那样良好的调速特性,但是由於没有换向器,因而可做成无接触式,具有结构简单,制造方便,不需要经常性维护等优点,是一种现想的变速电机。 在工作原理上有二种不同的工作方式: (1)直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”,如图1所示。是将三相交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。(2)交流无刷电动机:它是利用交-交变频器向同步机供给交流电。

无刷无霍尔直流电机

课程设计 学院电气学院 班级10自一 姓名胜梁建伟 学号10020514 10020515

目录 一、直流无刷无霍尔电机原理 (3) 二、总体设计方案 (4) 三、硬件电路 (4) 3.1 单片机系统 (4) 3.2电源模块 (5) 3.3 驱动电路 (6) 四、小结 (7) 附录Ⅰ实验程序 (8) 附录Ⅱ元器件清单 (12) 附录Ⅲ原理图 (14) 附录ⅣPCB图 (15)

一、直流无刷无霍尔电机原理 1)无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 2)无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 3)电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机装有位置传感器。 4)驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 5)为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。 6)无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。 7)为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁

无刷直流电机结构、类型和基本原理

无刷直流电机结构、类型和基本原理 2009年10月14日 无刷直流电动机 一、概述 直流电动机的主要优点是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。 随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简单、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。 元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。 二、无刷直流电动机的基本结构和类型 (一)基本结构 无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。

电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成的一对磁极。转子位置传感器也由定子、转子两部分组成。定子安装在主电动机壳内,转子和主转子同轴旋转。它的作用是把主转子的位置检测出来.变成电信号去控制电子开关电路,故也称转子位置检测器。电子开关电路中的功率开关元件分别与主定子上各相绕组相连接.通过位置传感器输出的信号,控制三极管的导通和截止.从而使主定子上各相绕组中的电流也随着转子位置的改变,按一定的顺序进行切换,实现无接触式的换向。 l.电机本体 元刷直流电动机是将普通直流电动机的定予与转子进行了互换。其转子为永久磁铁,产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。 无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

无刷直流电动机中的霍尔位置传感器

永磁无刷直流电机专辑 无刷直流电动机中的霍尔位置传感器 蔡耀成 (常州微特电机总厂,江苏常州213011) Ha ll Positi on Sen sors i n Brushless DC M otor Cai Y aocheng (Changzhou M icro&SpecialM otors General Factory,J iangsu Changzhou213011) 【摘 要】 无刷直流电动机中使用的位置传感器有许多种类,而霍尔位置传感器因具有结构简单,安装方便灵活,易于机电一体化等优点,目前已越来越得到广泛的应用。该文对这类传感器的结构、工作原理、设计原则等方面做较详细的介绍。 【关键词】 无刷直流电动机 霍尔位置传感器 中图分类号:T M38 文献标识码:A 文章编号:1004-7018(1999)05-0014-05 【Abstract】 T here are m any positi on sens ors used in brush less DC motors.Featuring si m p le structure,easy to mount and m echano-electronized,H all sens ors are becom ing more and more w idely used.T h is article w ill give a detailed introducti on to constructi on,operati on and design p rinci p les of these H all sens ors. 【Keywords】 brush less motor H all positi on sens or 1前 言 位置传感器是组成无刷直流电动机系统的三大部分之一,也是区别于有刷直流电动机的主要标志。其作用是检测主转子在运动过程中的位置,将转子磁钢磁极的位置信号转换成电信号,为逻辑开关电路提供正确的换相信息,以控制它们的导通与截止,使电动机电枢绕组中的电流随着转子位置的变化按次序换向,形成气隙中步进式的旋转磁场,驱动永磁转子连续不断地旋转。 位置传感器的种类很多,有电磁式、光电式、磁敏式等。它们各具特点,然而由于磁敏式霍尔位置传感器具有结构简单、体积小、安装灵活方便、易于机电一体化等优点,目前得到越来越广泛的应用。本文将对这种位置传感器的结构原理,构成原则等作一分析。2霍尔传感器 磁敏式传感器是一种以磁场激发的磁敏元器件,它是名目繁多的传感器中重要的一个家族。磁敏传感器的种类很多,有磁阻元件、磁敏二极管、磁敏三极管、磁抗元件、方向性磁电元件、霍尔元件、霍尔集成电路,以及利用这些元器件二次集成的磁电转换组件。其中以霍尔效应原理构成的霍尔元件、霍尔集成电路、霍尔组件统称为霍尔效应磁敏传感器,简称霍尔传感器。 2.1半导体中的霍尔效应 1879年美国霍普金斯大学的霍尔(E.H.H all)发现,当磁场中的导体有电流通过时,其横向不仅受到力的作用,同时还出现电压。这个现象后来被称为霍尔效应。随后人们又发现,不仅是导体,而且在半导体中也存在霍尔效应,并且霍尔电势更明显,这是由于半导体有比导体更大的霍尔系数的缘故。 众所周知,任何带电粒子在磁场中沿着与磁力线垂直的方向运动时,都要受到磁场的作用力,该力称为洛伦兹力,其大小可用下式表示: F=qvB(1) 式(1)表明,洛伦兹力的大小与粒子的电荷量q,粒子的运动速度v及磁感应强度B成正比。 图1是在一长方形半导体薄片上加上电场E x 后的情况。在没有外加磁场时,电子沿外加电场E x 的相反方向运动,形成一股沿电场方向的电流I,如图1a所示。当加以与外电场垂直的磁场B时,运动着的电子受到洛伦兹力的作用将向左边偏移,并在该侧面形成电荷积累,如图1b所示。由于该电荷的积累产生了新的电场,称为霍尔电场。该电场使 收稿日期:19990802

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 : 又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电, 但是, 注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC, 采用方波自控式永磁同步 电机,以霍尔传感器取代碳刷换向器, 以钕铁硼作为转子的永磁材料; 产品性能超越传统直流电机的所有优点, 同时又解决了直流电机碳刷滑环的缺点, 数字式控 制, 是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性, 非常适合使用在24 小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载; 低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动; 其稳速运转精度比直流有刷电机更高, 比矢量控制或直接转矩控制速度闭环的变频驱动还要高, 性能价格比更好, 是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

霍尔传感器直线电机位置检测

电流检测部分 本控制系统中永磁直线电机的两相电枢电流通过霍尔电流传感器得到,另外一相电流通过计算得到。电流传感器采用LEM公司生产的LTSR -6-NP型电流传感器,该产品具有高精度,高线性度,高响应速度,高频率带宽,高电流过载能力,低温漂,低接入损耗,以及对外部信号的高抗干扰能力,非常适合在永磁电机伺服系统中使用。根据选择不同的引脚接法,该产品可以提供三种不同的额定采样电流值,分别为2A、3A和6A电流有效值,对应的最大采样电流值分别为6.4A,9.6A 和19.2A。由于该传感器输出电压范围为0.5~4.5V,而 TMS320LF240DSP的AD输入信号只能在0V—+3.3V之间,所以需要将传感器的输出电压经过运放电路处理后,再输入DSP的AD口,具体电路如图4—10所示.

一种低成本的线性霍尔位置检测方法在永磁直线电机伺服控制系统中,无论采用何种控制方式,都需要准确检测出电机动子位置。可以说,位置检测部分是伺服控制系统中非常关键的组成部分,直接影响着电机控制精度和系统运行性能。目前,在直线运动控制系统中,最常见的位置检测方法是采用直线光栅,但是光栅的成本很高,对安装要求也很高;也有增加额外机械结构,将直线运动转变成旋转运动,然后用旋转编码器进行位置检测的方法,显然该方法在成本和精度上都存在缺点;还有采用无位置检测的方法,但是目前所有无位置检测方法的在电机低速段效果都不是很理想,而直线电机恰恰需要频繁的起动和停止,采用无位置检测方法获得理想的效果难度较大,尚未有实用的解决方案提出。因此,本节将介绍一种低成本的利用线性霍尔元件对永磁直线电机进行位置检 测的方法。 §4.6.1线性霍尔位置检测方法的基本原理 线性霍尔元件可以用来检测磁通密度,在一定磁场强度范围内,其输出电压与被检磁场磁通密度成线性关系.永磁直线同步电机气隙磁场为正弦分布,因此很容易通过检测气隙磁场磁通密度的方法来确定电机动子的位置。本节以空心式圆筒型永磁直线电机为例,具体介绍该方法。电机及霍尔元件的安装位置示意图如图4—18所示.因为电机只沿Z轴方向做运动,所以只需要检测电机动子在z轴上的位置。在第三章中,已经分析了该电机气隙磁密Br,沿Z轴基本成正弦分布,在一对极范围内,也就是一个周期内,Br不是Z的单值函数,因此不

无刷直流电机中的霍尔传感器分析与设计

无刷直流电机中的霍尔传感器分析与设计 针对无刷直流电机中霍尔传感器安装工艺上的缺陷,设计实现了一个基于虚拟仪器架构的逻辑信号检测分析仪对电机霍尔传感器信号进行检测。采用AT89S52单片机作为信号采集器,通过RS232串口实现单片机与PC通信,应用VB 设计图形化的界面对采集的数据进行分析。 无刷直流电机(BLDC)应用中,常采用霍尔传感器来检测电机转子的实际位置,给电子换向提供依据。然而,由于制造工艺的限制,霍尔传感器的安装有可能会产生物理位置偏差,从而造成电子换向的时间发生偏差,影响电机的转速和平稳度。为了能检测出这个制造工艺上的缺陷,在工业上采用了专用的电机检测设备,然而这些设备结构复杂、体积庞大、价格昂贵。本文基于虚拟仪器架构的设计思想,设计了一个低成本的逻辑信号检测分析仪来检测电机霍尔传感器信号。 1.系统方案 本设计采用廉价的51 单片机作为信号采集器,51单片机将采集的数据通过RS232串口发送给PC,PC再对这些数据进行记录和分析并且绘制波形。硬件部分的结构如图1所示。 利用51单片机的P1口作为信号采样口,可以同步采集8路逻辑信号,然后通过RS232串口,将同一时刻采集到的8路逻辑电平作为一个字节的8个bit传送给PC。 图1 硬件结构图。 2.软件部分 2.1单片机部分 AT89S52单片机是一种低功耗高性能的CMOS 8位微控制器,其具有8KB可擦写1000次的在线可编程ISP 闪存、3级程序存储器加密、 256B内部ARM、32 条可编程I/O线、3个16位定时器#计数器、8 个中断源、UART串行通道等特点。在AT89S52单片机上,采用P1口作为采样口,Timer()为等待时间计时器,Timer2用于串口波特率的定时器。串行口数据通信协议是:数据传输速率为57600b/s 8位数据位,1位停止位,无奇偶校验位。串行口通信初始化程序为:

相关文档
最新文档