高中常见数列的公式及经典例题

高中常见数列的公式及经典例题
高中常见数列的公式及经典例题

高中常见数列的公式及经典例题

等差数列

1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)

2.等差数列的通项公式:

d n a a n )1(1-+= =n a d m n a m )(-+或 n a =pn+q (p 、q 是常数))

3.有几种方法可以计算公差d 4.① d=n a -1-n a ② d =11--n a a n ③ d =m

n a a m

n -- 4.等差中项:,,2

b a b

a A ?+=

成等差数列 5.等差数列的性质: m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 等差数列前n 项和公式

6.等差数列的前n 项和公式 (1)2)(1n n a a n S +=

(2)2

)1(1d n n na S n -+= (3)n )2d

a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式

8.对等差数列前项和的最值问题有两种方法:

(1) 利用n a :当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值

当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值(2) 利用n S :由n )2

d

a (n 2d S 12n -+=

二次函数配方法求得最值时n 的值 等比数列

1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:

1

-n n

a a =q (q ≠0) 2.等比数列的通项公式: )0(111≠??=-q a q a a n n , )0(1≠??=-q a q

a a m

n m n 3.{n a }成等比数列?

n

n a a 1+=q (+

∈N n ,q ≠0) “n a ≠0”是数列{n a }成等比数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列.

5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号). 6.性质:若m+n=p+q ,q p n m a a a a ?=?

7.判断等比数列的方法:定义法,中项法,通项公式法

8.等比数列的增减性:

当q>1, 1a >0或01, 1a <0,或00时, {n a }是递减数列; 当q=1时, {n a }是常数列; 当q<0时, {n a }是摆动数列; 等比数列前n 项和

等比数列的前n 项和公式:

∴当1≠q 时,q

q a S n n --=1)

1(1 ① 或q q a a S n n --=11 ②

当q=1时,1na S n =

当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②.

数列通项公式的求法

一、定义法

直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.

例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2

55a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d

∵931,,a a a 成等比数列,∴912

3

a a a =, 即)8()2(112

1d a a d a +=+d a d 12

=?

∵0≠d , ∴d a =1………………………………①

∵2

55a S = ∴211)4(2

4

55d a d a +=??+

…………② 由①②得:5

3

1=

a ,53=d

∴n n a n 5

3

53)1(53=?-+=

点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、公式法

若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式??

?≥???????-=????????????????=-2

1

11n S S n S a n n n 求解。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n

n n .求数列{}n a 的通项公式。

解:由1121111=?-==a a S a

当2≥n 时,有

,)1(2)(211n

n n n n n a a S S a -?+-=-=-- ,)1(22221----?+=n n n a a ……,.2212-=a a

经验证11=a 也满足上式,所以])1(2[3

212

---+=

n n n a 点评:利用公式???≥???????-=????????????????=-21

1n S S n S a n n

n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.

三、由递推式求数列通项法

对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 类型1 递推公式为)(1n f a a n n +=+

解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

(2004全国卷I.22)已知数列{}n a 中,12211,(1),k k k a a -==+-且a 2123k k k a a +=+,其中1,2,3,k =……,求数列

{}n a 的通项公式。P24(styyj )

例3. 已知数列{}n a 满足211=a ,n

n a a n n ++=+211,求n a 。 解:由条件知:1

1

1)1(112

1+-=+=+=-+n n n n n n a a n n 分

)1(,,3,2,1-??????=n n ,

)1(-n 个等式累加之,即

)()()()(1342312--+??????+-+-+-n n a a a a a a a a

所以n a a n 111-

=- 2

1

1=a ,n n a n 1231121-=-+=∴

类型2 (1)递推公式为n n a n f a )(1=+ 解法:把原递推公式转化为

)(1

n f a a n

n =+,利用累乘法(逐商相乘法)求解。 (2004全国卷I.15)已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1

___n a ?=?

? 12

n n =≥ P24(styyj ) 例4. 已知数列{}n a 满足321=a ,n n a n n a 1

1+=+,求n a 。 解:由条件知

1

1+=

+n n

a a n n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即 又321=

a ,n

a n 32=∴ (2).由n n a n f a )(1=+和1a 确定的递推数列{}n a 的通项可如下求得:

由已知递推式有1)1(--=n n a n f a , 21)2(---=n n a n f a ,???,12)1(a f a =依次向前代入,得

1)1()2()1(a f n f n f a n ???--=,

简记为111

))((a k f a n k n -=∏= )1)(,1(0

1

=∏≥=k f n k ,这就是叠(迭)代法的基本模式。

(3) 递推式:()n f pa a n n +=+1 解法:只需构造数列{}n b ,消去()n f 带来的差异. 例5.设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

解:设B An b a B ,An a b n n n n --=++=则,将1,-n n a a 代入递推式,得

1++=∴n a b n n 取…(1)则13-=n n b b ,又61=b ,故n n n b 32361?=?=-代入(1)得132--?=n a n n

说明:(1)若)(n f 为n 的二次式,则可设C Bn An a b n n +++=2;(2)本题也可由

1231-+=-n a a n n ,1)1(2321--+=--n a a n n (3≥n )两式相减得2)(3211+-=----n n n n a a a a 转化为q pb b n n +=-1求之.

例6.已知31=a ,n n a n n a 2

31

31+-=+ )1(≥n ,求n a 。 解:1231

32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---=

3437

52633134

8531n n n n n --=

????=---。

类型3 递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中p

q

t -=

1,再利用换元法转化为等比数列求解。 (2006.重庆.14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =

P24(styyj )

例7. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .

解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=?-=+t t a a n n .故递推公式为

)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且

23

3

11=++=++n n n n a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=?=n n n b ,所以321

-=+n n a .

类型4 递推公式为n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数)

(2006全国I.22)(本小题满分12分)

设数列{}n a 的前n 项的和1412

2333

n n n S a +=

-?+,1,2,3,n =

(Ⅰ)求首项1a 与通项n a ; P25(styyj )

解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以1

+n q

,得:

q

q a q p q a n n n n 1

11+?=++ 引入辅助数列{}n b (其中n

n n q

a b =),得:q b q p b n n 1

1+=+再应用类型3的方法解决。 例8. 已知数列{}n a 中,6

5

1=

a ,11)21(31+++=n n n a a ,求n a 。

解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(3

2

211+?=?++n n n n a a

令n n n a b ?=2,则1321+=+n n b b ,应用例7解法得:n n b )32

(23-= 所以n n n

n n b a )31(2)21(32-==

类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++

其中s ,t 满足?

??-==+q st p

t s ,再应用前面类型3的方法求解。

(2006.福建.理.22)(本小题满分14分) 已知数列{}n a 满足*

111,21().n n a a a n N +==+∈

(I )求数列{}n a 的通项公式; P26(styyj )

例9. 已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

1

3212+=++,求n a 。 解:由n n n a a a 3

1

3212+=

++可转化为)(112n n n n sa a t sa a -=-+++ 即n n n sta a t s a -+=++12

)(???

????

-==+?3132st t s ?????-==?311t s 或????

?=-=131t s 这里不妨选用??

???-==311t s (当然也可选用????

?

=-

=131t s ,大家可以试一试),则

)(3

1112n n n n a a a a --=-+++{}n n a a -?+1是以首项为112=-a a ,公比为31

-的等比数列,所以

11)3

1

(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,

即2101)3

1()31()31(--+??????+-+-=-n n a a 3

11)31(11

+--=-n

又11=a ,所以1)3

1

(4347---=n n a 。

类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =)

解法:利用???≥???????-=????????????????=-)2()

1(11n S S n S a n n

n 进行求解。

(2006.陕西.20) (本小题满分12分)

已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n P24(styyj )

例10. 已知数列{}n a 前n 项和2

2

14--

-=n n n a S .

(1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2

2

14--

-=n n n a S 得:1

112

14-++-

-=n n n a S

于是)21

2

1()(1

2

11--++-

+-=-n n n n n n a a S S

所以1

1121

-+++

-=n n n n a a a n n n a a 2

1211

+=?+. (2)应用类型4的方法,上式两边同乘以1

2+n 得:222

11

+=++n n n n a a

由12

1412

1111=?-

-==-a a S a .于是数列{}n n

a 2是以2为首项,2为公差的等差数列,所以n n a n n 2)1(222=-+=12

-=?n n n

a

类型7 双数列型

解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。 例11. 已知数列{}n a 中,11=a ;数列{}n b 中,01=b 。当2≥n 时,)2(3

1

11--+=n n n b a a ,)2(3111--+=n n n b a b ,

求n a ,n b . 解:因=

+n n b a ++--)2(3111n n b a )2(3

1

11--+n n b a 11--+=n n b a 所以=+n n b a 11--+n n b a 1112222=+=+=???=+=--b a b a b a n n 即1=+n n b a …………………………………………(1) 又因为=

-n n b a -+--)2(3

111n n b a )2(3111--+n n b a )(31

11---=n n b a

所以=

-n n b a )(3

111---n n b a =-=--))31(222n n b a ……)()31

(111b a n -=-

1)31(-=n .即=-n n b a 1)3

1

(-=n ………………………(2) 由(1)、(2)得:])31(1[211-+=n n a , ])3

1

(1[211--=n n b

四、待定系数法(构造法)

求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法。

1、通过分解常数,可转化为特殊数列{a n +k }的形式求解。一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=1

-p q

,从而得等比数列{a n +k }。

例12、数列{a n }满足a 1=1,a n =

2

1

a 1-n +1(n ≥2),求数列{a n }的通项公式。 解:由a n =21a 1-n +1(n ≥2)得a n -2=2

1

(a 1-n -2),而a 1-2=1-2=-1,

∴数列{ a n -2}是以21

为公比,-1为首项的等比数列

∴a n -2=-(21)1-n ∴a n =2-(2

1

)1-n

说明:这个题目通过对常数1的分解,进行适当组合,可得等比数列{ a n -2},从而达到解决问题的目的。 例13、数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。

解:由0731=-++n n a a 得3

7

3

11+

-=+n n a a 设a )(311k a k n n +-=++,比较系数得3

73=--k k 解得47

-=k

∴{47-n a }是以31-为公比,以43

471471-=-=-a 为首项的等比数列

∴1)3

1(4347--?-=-n n a 1)31

(4347--?-=?n n a

例14.已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .

解:设)(31t a t a n n +=++,则1231=?+=+t t a a n n ,

?

+=++)1(311n n a a {}

1+n a 是以

)1(1+a 为首项,以

3为公比的等比数列

???=?+=+--111323)1(1n n n a a 1321-?=-n n a

点评:求递推式形如q pa a n n +=+1(p 、q 为常数)的数列通项,可用迭代法或待定系数法构造新数列

)1(11p

q

a p p q a n n -+=-++来求得,也可用“归纳—猜想—证明”法来求,这也是近年高考考得很多的一种题型.

例15.已知数列{}n a 满足11=a ,123-+=n n

n a a )2(≥n ,求n a .

解:将123-+=n n n a a 两边同除n 3,得

n n n n a a 32131-+=?1

1

33213

--+=n n n n a a 设n n n a b 3

=,则1321-+=n n b b .令)(321t b t b n n -=--?t b b n n 31

321+=-

?3=t .条件可化成)3(3

231-=--n n b b ,数列{}3-n b 是以3833311-=-=-a b 为首项,32

为公比的等比数

列.1)32

(383-?-=-n n b .因n n n a b 3

=,

)3)3

2

(38(331+?-==∴-n n n n n b a ?2123++-=n n n a .

点评:递推式为11+++=n n n q pa a (p 、q 为常数)时,可同除1

+n q ,得 111+?=++n n n n q a q p q a ,令n

n

n q

a b =从而化归为q pa a n n +=+1(p 、q 为常数)型. 2、通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解。这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得

q h k p k h =-=+,,可解得k h ,。

(2006.福建.文.22)(本小题满分14分)已知数列{}n a 满足*

12211,3,32().n n n a a a a a n N ++===-∈

(I )证明:数列{}1n n a a +-是等比数列;

(II )求数列{}n a 的通项公式;

例16、数列{}n a 满足23,5,21221+-==++n n a a a a n a =0,求数列{a n }的通项公式。

分析:递推式02312=+-++n n n a a a 中含相邻三项,因而考虑每相邻两项的组合,即把中间一项1+n a 的系数分解成1和2,适当组合,可发现一个等比数列}{1--n n a a 。 解:由02312=+-++n n n a a a 得0)(2112=---+++n n n n a a a a 即)n n n n a a a a -=-+++112(2,且32512=-=-a a ∴}{1n n a a -+是以2为公比,3为首项的等比数列

∴1123-+?=-n n n a a

利用逐差法可得112111)()()(a a a a a a a a n n n n n +-++-+-=-++ =223232

3021

+?++?+?-- n n

=2)1222

(321

+++++?-- n n

=22

1213+--?

n

=123-?n ∴1231-?=-n n a

例17、数列{}n a 中,n n n a a a a a +===++122123,2,1,求数列{}n a 的通项公式。

解:由n n n a a a +=++1223得,3

1

3212n n n a a a +=

++设)(112n n n n ka a h ka a -=-+++ 比较系数得31

32=-=+kh h k ,,解得31,1-==h k 或1,31=-=h k

若取3

1,1-==h k ,则有)(31

112n n n n a a a a --=-+++

∴}{1n n a a -+是以31

-为公比,以11212=-=-a a 为首项的等比数列

∴11)3

1

(-+-=-n n n a a

由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---

=11)3

1()31()31()31(232++-+-++-+--- n n

=1311)31(11

++---n =11)31(43471)31(143---?-=+??????--n n

说明:若本题中取1,31=-=h k ,则有n n n n a a a a 3

1

31112+=++++即得

}31{1n n a a ++为常数列,n n a a 311++ 13

1

-+=n n a a 1231a a +==

3

7

312=+=故可转化为例13。

例18.已知数列{}n a 满足11=a ,22=a ,n n n a a a 3

1

3212+=++求n a .

解:设)(112n n n n sa a t sa a -=-+++?

n n n sta a t s a -+=++12)(???

????

-==+?3132st t s ?????-==?311t s 或????

?=-=131t s 则条件可以化为)(3

1112n n n n a a a a --=-+++{}n n a a -?+1是以首项为112=-a a ,公比为31

-的等比数列,所以

11)31(-+-=-n n n a a .问题转化为利用累加法求数列的通项的问题,解得1)3

1

(4347---=n n a .

点评:递推式为n n n qa pa a +=++12(p 、q 为常数)时,可以设)(112n n n n sa a t sa a -=-+++,其待定常数s 、t 由p t s =+,q st -=求出,从而化归为上述已知题型.

五、特征根法

1、设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。作出一个方程

,d cx x +=则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +=≠=时当,其中}{n b 是以c 为公比的等比

数列,即01111,x a b c b b n n -==-.

例19.已知数列}{n a 满足:,4,N ,23

111=∈--=+a n a a n n 求.n a

解:作方程.2

3,2310-=--

=x x x 则 当41=a 时,.2

11

23,1101=+=≠a b x a

数列}{n b 是以3

1

-

为公比的等比数列.于是

.N ,)3

1

(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n

2、对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02

=--q px x ,叫做数列{}n a 的特征方程。若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1

211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当

21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和

2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)

。 例20:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。 解法一(待定系数——迭加法) 由025312=+-++n n n a a a ,得

)(3

2

112n n n n a a a a -=

-+++, 且a b a a -=-12。

则数列{}n n a a -+1是以a b -为首项,

3

2

为公比的等比数列,于是 11)3

2

)((-+-=-n n n a b a a 。把n n ,,3,2,1???=代入,得

a b a a -=-12,

)32

()(23?-=-a b a a ,

234)3

2

()(?-=-a b a a ,

21)3

2

)((---=-n n n a b a a 。

把以上各式相加,得

])3

2()32(321)[(21-+???+++-=-n n a b a a )(3

21)32(11

a b n ---=

-。 a b b a a a b a n n n 23)3

2

)((3)]()32(33[11-+-=+--=∴--。

解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:

02532=+-x x 。

3

2,121=

=x x , ∴1

211--+=n n n Bx Ax a 1)3

2(-?+=n B A 。

又由b a a a ==21,,于是 故1)3

2)((323--+-=n n b a a b a

3、如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h

ra q

pa a n n n ++=

+1(其中p 、q 、r 、h 均为常数,

且r h a r qr ph -

≠≠≠1,0,),那么,可作特征方程h rx q

px x ++=,当特征方程有且仅有一根0x 时,则01n a x ????-??

是等差数列;当特征方程有两个相异的根1λ、2λ时,则12n n a x a x ??

-??-??

是等比数列。

(2006.重庆.文.22).(本小题满分12分)

数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足求数列}{n a 的通项公式. 解:由已知,得125168n n n a a a ++=

-,其特征方程为25168x x x +=-,解之,得15

24

x x ==或

116()122168n n n a a a +-∴-=-,15

12()544168n n n

a a a +-∴-=- 1111

12255244n n n n a a a a ++-

-∴=--

,111111422()552244n n n n a a a a ---

∴=?=--- 125

24

n n n a -+=+。 P26 (styyj)

例21、已知数列}{n a 满足性质:对于,3

24

,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.

解: 数列}{n a 的特征方程为,3

24

++=

x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有

∴.N ,)5

1(521

∈-=

-n c n n ∴.N ,1)5

1(521

)51

(5221

1112∈----?-=--=--n c c a n n n n

n λλ 即.N ,)5(24

)5(∈-+--=n a n

n n

例22.已知数列}{n a 满足:对于,N ∈n 都有.3

25

131+-=

+n n n a a a

(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在?

解:作特征方程.3

25

13+-=

x x x 变形得,025102=+-x x

特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答.

(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λ

λr p r

n a b n --+-=

)

1(11 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,5

17

51--=

+=

n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,8

1

1)1(11N n n r p r n a b n ∈-+=--+-=

λλ

令,0=n b 则.7n n ?-=∴对于.0b N,n ≠∈n

∴.N ,743

558

1111

∈++=+-+

=+=

n n n n b a n

n λ (4)、显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8

1

51)1(111∈-+-=--+-=

n n a r p r n a b n λλ令,0=n b 则得

N ,1

13

51∈--=

n n n a 且n ≥2. ∴当1

13

51--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在.

于是知:当1a 在集合3{-或,:113

5N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.

说明:形如:)(11b a k ma a n n n +=

--递推式,考虑函数倒数关系有)11(11m a k a n n +=-?

m

k a k a n n +?=-111令n n a b 1

=则{}n b 可归为q pa a n n +=+1型。(取倒数法)

例23:1,1

3111

=+?=

--a a a a n n n

解:取倒数:

1

111

3131---+

=+?=n n n n a a a a ?

?????∴n a 1是等差数列,3)1(111?-+=n a a n 3)1(1?-+=n 231

-=

?n a n 六、构造法

构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助

模型,如某种数量关系,某个直观图形,或者某一反例,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构

造法往往给人耳目一新的感觉.

1、构造等差数列或等比数列

由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.

例24: 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422

=+成立,

求{}n a 的通项an.

解:n n n S a a 422

=+?112

142---=+n n n S a a , ∴n n n n n n n a S S a a a a 4)(422112

12=-=-+----

0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差的等差数列,且

24211121=?=+a a a a . ∴n n a n 2)1(22=-+=

例25: 数列{}n a 中前n 项的和n n a n S -=2,求数列的通项公式n a .

解:∵

1

21111=?-==a a S a 当n ≥2时,

[]12

1

2)1(221111+=

?++-=----=-=----n n n n n n n n n a a a a a n a n S S a )2(2121-=-?-n n a a

令2-=n n a b ,则12

1

-=

n n b b ,且1211-=-=b {}n b 是以21为公比的等比数列,11)21()21(1---=?-=n n n b

∴1)2

1

(2--=n n a .

2、构造差式与和式

解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.

例26: 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,(n ∈N*),求数列的通项公式an. 解:由题设得0))((11=--+--n a a a a n n n n . ∵0>n a ,01>-n a ,∴01>+-n n a a . ∴n a a n n =--1

2

)

1(321)()()(123121+=

++++=-+-+-+=-n n n a a a a a a a a n n n 例27: 数列{}n a 中,3,121==a a ,且n n n a n a n a )2()3(12+-+=++,(n ∈N*),求通项公式n a . 解: =-++12n n a a =-++))(2(1n n a a n ))(1)(2(1--++n n a a n n

∴!!3!21)()()(123121n a a a a a a a a n n n +++=-++-+-+=-(n ∈N*) 3、构造商式与积式

构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.

例28: 数列{}n a 中,211=

a ,前n 项的和n n a n S 2

=,求1+n a . 解:12

21221)1()1()1(----=-?--=-=n n n n n n n a n a n a n a n S S a

1

1

1+-=?-n n a a n n ,

∴11

2211a a a

a a a a a n n n n n ??=--- )1(12131211+=?-?+-=n n n n n n ∴)

2)(1(1

1++=+n n a n

4、构造对数式或倒数式

有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.

例29: 设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a

a

,)1(log 21log 122+=+-n n a

a

,设1log 2+=n a

n b , 则12-=n n b b

{}n b 是以2为公比的等比数列,11log 121=+=b .

11221--=?=n n n b ,1221log -=+n a n

,12

log 12-=-n a n , ∴1

212

--=n n a

例30: 已知数列{}n a 中,21=a ,n ≥2时1

33

711+-=

--n n n a a a ,求通项公式.

解:∵1344111+-=---n n n a a a ,两边取倒数得

4

3

11111+-=--n n a a . 可化为等差数列关系式.

∴1

35

3++=n n a n

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

高中数列经典题型-大全教学教材

高中数列经典题型-大 全

收集于网络,如有侵权请联系管理员删除 高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

收集于网络,如有侵权请联系管理员删除 解法一(待定系数——迭加法):数列{}n a : ),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x 。 32,121==x x Θ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 13212+=++,求n a 。 类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2()1(11n S S n S a n n n 与 例:已知数列{}n a 前n 项和2214-- -=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公 式n a . 类型7 b an pa a n n ++=+1)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令 )()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。 例:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

高中一年级数学数列部分经典习题及答案

.数 列 一.数列的概念: (1)已知* 2()156n n a n N n = ∈+,则在数列{}n a 的最大项为__(答:125 ); (2)数列}{n a 的通项为1 += bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,数λ的取值围(答:3λ>-); 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 (1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值围是______(答: 8 33 d <≤) 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2 n n n S na d -=+ 。 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+ ≥∈,32n a =,前n 项和15 2 n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答: 2* 2* 12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和 211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____ (答:27) (2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

高中数学-数列经典例题(裂项相消法)(1)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{ 1+n n a a 的前100项和为() A .100101 B .99101 C .99100 D .1011002.数列,) 1(1+= n n a n 其前n 项之和为,109则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为()A .-10B .-9C .10D .9 3.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{ n b 的前n 项和.4.正项数列}{n a 满足02)12(2=---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ;(Ⅱ)令,)1(1n n a n b +=求数列}{n b 的前n 项和n T .5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 11*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T .6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令),(1 1*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .7.在数列}{n a 中n n a n a a 211)11(2,1,+ ==+.(Ⅰ)求}{n a 的通项公式;(Ⅱ)令,2 11n n n a a b -=+求数列}{n b 的前n 项和n S ;

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

高中数列题型大全

高中数列题型大全Newly compiled on November 23, 2020

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a : ),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x 。

相关文档
最新文档