如何提升机器人伺服电机的响应性能

如何提升机器人伺服电机的响应性能
如何提升机器人伺服电机的响应性能

如何提升机器人伺服电机的响应性能

当前国内机器人发展迅猛,尤其是工业机器人领域。但在机器人的反应速度、精度上,国内外产品还是存在一定差距的,那么关键点是在哪呢?

关键在于机器人的核心零部件——伺服电机。机器人在运行过程中,是通过伺服电机的驱动实现多自由度的运动的。如果对机器人运行的动作速度、精度要求高的话,实际就是要求伺服电机的响应速度、控制精度要足够高。

而在机器人实际运行时,往往伺服电机是处于各种加减速、正反转状态,那就对伺服电机的短时过载能力、惯量适应范围、频率响应带宽、转速/扭矩响应时间提出了很高的要求。

其中一个非常重要的指标就是频率响应带宽,它决定了该伺服系统对指令的响应速度快慢,是机器人设计者的重要关注指标。

伺服电机频率响应带宽的定义:伺服系统能响应的最大正弦波频率就是该伺服系统的频率响应带宽。用专业一些的语言描述,就是幅频响应衰减到-3dB时的频率(-3dB带宽),或者相频响应滞后90度时的频率。

更具体一点,像机械部标准《交流伺服驱动器通用技术条件》(JB T 10184-2000)中规定了伺服驱动器带宽的测试方法:驱动器输入正弦波转速指令,其幅值为额定转速指令值的0.01倍,频率由1Hz逐渐升高,记录电动机对应的转速曲线,随着指令正弦频率的提高,电动机转速的波形曲线对指令正弦波曲线的相位滞后逐渐增大,而幅值逐渐减小。相位滞后增大至90度时的频率作为伺服系统90度相移的频带宽度;幅值减小至低频时0.707倍的频率作为伺服系统-3dB频带宽度。

频率响应带宽国标测试结果

可以说,频率响应带宽越快,伺服系统就可以对变化更快的指令实现及时响应,即使工业机器人的动作再复杂,也能及时响应,驱动机器人的每一个关节位置控制到位。

而影响频率响应带宽的因素有很多,像伺服驱动器或者控制系统参数、传动链的刚度或精度、传动间隙、负载惯量等都会对伺服系统的响应带宽产生影响。过去业内很多研究者由于缺乏测试装备,故只能通过加实际负载的测试来判断伺服系统及机器人的响应性能,属于定性分析,无法定量分析。因此国内的伺服系统目前在响应速度一块仍需加强,像一般的伺服电机,响应带宽最高只能做到几百Hz左右,比较优质的能做到1kHz;而国外的产品,如日系的安川、三菱、松下等,却在多年以前已突破2kHz的关卡。

针对机器人及伺服电机行业的用户需求,致远电子推出MPT混合型电机测试系统,面向伺服电机行业应用,可独家提供频率响应带宽、转速/扭矩控制响应等伺服电机前沿测试功能,满足国内外用户对于伺服电机产品的功能研究和产品研发需要,为中国的“智能制造”目标提供枪炮弹药。

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

2014年国内外著名机器人伺服电机制造企业名单资料

2014年国内外著名机器人伺服电机制造企业名单装备来源:OFweek工控网时间:2014/9/1责任编辑:yinpeipei 评论繁体

随着全球人力成本的上涨,制造业生存压力日益加大,机器人产业的发展迎来一个需求快速发展的阶段,新一代制造业中机器自动化将变得越来越重要。来自中国机器人产业联盟和国际机器人联合会的统计数据显示,2013年中国市场工业机器人销售总量比2012年增长约36%。中国不仅已经成为世界上最大的机器人市场,也是成长最快的市场。 伺服电机作为工业机器人的重要组成部分,其相关产业也是如火如荼,遍地开花。根据最新业内信息,小编盘点了2014年国内外著名机器人伺服电机制造企业。 2014年国内外著名机器人伺服电机制造企业名单 国内上市公司 新时达 上海新时达电气股份有限公司是专业研发生产销售工业控制、传动控制、运动控制和机器人产品并服务于全球的高新技术企业,创立于1995年。 上海新时达机器人有限公司是新时达股份全资子公司。2003年新时达收购了德国AntonSigrinerElektronikGmbH公司,秉承德国 Sigriner科学严谨的创新理念,不断追求卓越品质,分别在德国巴伐利亚与中国上海设立了研发中心,把全球领先的德国机器人技术引入中国。2013年在中国上海建立了生产基地,机器人产品系列已覆盖6kg~275kg。 自创立以来,新时达始终致力于产业自动化控制产物的研发、制造和销售。公司主营业务分三大类,一类是电梯控制产物以及电梯物联网,主要包罗电梯控制成套系统以及相关配件产物,遍及适用于种种电梯的制造、更新以及维修调养;第二类是节能与产业传动类产物,主要包罗高、低压种种产业控制变频器、电梯专用变频器、电梯一体化驱动控制器等,遍及适用于电梯、起重、口岸机械、橡塑、冶金、矿山、电力、市政、水泥、包装印刷、空压机、机床等各个行业;第三类是机器人与运动控制类产物,主要包罗六自由度产业机器人系列产物、

提高伺服电机动态性能的重要性

提高伺服电机动态性能的重要性 随着伺服电动机在工业中的广泛应用,高动态性能的的伺服驱动器和伺服电动机的设计和研究必将成为国内研究的一个热点,同时,如何提高伺服电动机的动态特性,也已经成为急待解决的问题。 伺服系统在动态调节过程中的性能指标称为动态性能指标,如超调量、跟随速度、跟随精度、调节时间、抗干扰能力等。 伺服系统最早被应用到军事、航天领域,伴随工业化的脚步,逐渐进入到工业领域和民用领域,在生产实践中,伺服系统的应用早已非常广泛。 1、在数控机床中,采用高端永磁交流伺服代替异步变频驱动似乎已成为标准。90年代以来,欧美各国致力开发应用高速数控机床,在相同分辨率的情况下,工作台的进给速度获得到大大提升。当今数控系统机床更是突出高速、高精度、高动态、高刚性的特点。我们已经看到国产伺服在经济型的数控机床上的应用,但在中高档机床上国产伺服仍达不到要求,性能是一个重要方面,稳定性和品牌效应也是短时间内无法跨越的障碍。 2、机器人也是伺服系统应用较多的领域,工业机器人拥有多个自由度,因此每台工业机器人需要的伺服电机少则3-4台,多则10台以上。目前工业机器人的拥有量已经超过100万台,而且每年的需求量仍在大幅度增加。国际上工业机器人巨头大多都有自己专属的伺服配套,近些年也开始有国内的伺服厂家开始走进机器人行业,尽管性能上还是有不小差距。 3、纺织行业的伺服应用比例很低,为了提高生产效率,部分纺织机械开始采用高档的伺服技术,但几乎用的都是进口品牌,价格因素导致伺服系统在纺织行业没有大面积普及应

用。若是国产伺服在保持价格优势的同时,提高产品性能,将会大大推动整个行业的发展。 除此之外,印刷机械、包装机械、医疗设备、冶金机械、自动化流水线等都对伺系统有很大的需求量。从中也可以看到提高伺服系统的性能对于各行业发展的重要性,除了价格因素之外,买家对于伺服电机的关注点主要有: ●动态响应快,动态响应是伺服系统重要的动态性能指标,要求系统跟随给定快、超 调量小、甚至无超调 ●精度高,伺服系统的精度是指输出量跟随给定值的精确程度,如精密加工的机床, 要求很高的定位精度 ●抗扰动能力强,在各种扰动作用下系统输出动态变化小,恢复时间快 ●与行业相关的解决方案,如电子凸轮、追剪、飞剪等控制技术的应用 伺服系统主要由伺服电机和驱动器两部分组成。驱动器在控制系统中作为命令元件,伺服电机在控制系统中作为执行元件,两者是控制系统的重要组成部分。伺服系统的的动态性能很多程度上取决于这两个部分。其中,响应带宽是衡量动态性能的一项重要指标,带宽越高,伺服系统的输出跟随输入指令的能力就越强,动态性能就越好。 《交流伺服驱动器通用技术条件》(JB T 10184-2000)中规定了伺服驱动器速度环带宽的测试方法:驱动器输入正弦波转速指令,其幅值为额定转速指令值的0.01倍,频率由1Hz 逐渐升高,记录电动机对应的转速曲线,随着指令正弦频率的提高,电动机转速的波形曲线对指令正弦波曲线的相位滞后逐渐增大,而幅值逐渐减小。相位滞后增大至90度时的频率作为伺服系统90度相移的频带宽度;幅值减小至低频时0.707倍的频率作为伺服系统-3dB 频带宽度。

第二讲机器人的伺服电机

机器人的伺服电机 机器人的伺服电机是用来将机器人大脑发出的运动指令转换为运动动作的部件,相当于人的肌肉的作用。本讲教你如何连接、调整以及测试机器人伺服电机。为此,你需要理解和掌握控制伺服电机方向、速度和运行时间的相关PBASIC 指令及其编程技术。由于精确地控制伺服电机是决定机器人性能的关键,所以,在把伺服电机安装到机器人底盘之前先熟悉这些内容是非常重要而且必需的。 连续旋转伺服电机简介 机器人伺服电机有很多种,本讲要介绍的主要是能够使你的轮式机器人两个轮子不停旋转的连续旋转伺服电机,如图2-1所示。图中指出了该伺服电机的外部配件,这些配件将在本讲或后续章节中用到。 任务1:将伺服电机连接到教学板 在本任务中首先将伺服电机连接到电源和BASIC Stamp模块的I/O口,然后搭建一个LED 电路来监视BASIC Stamp模块发送到伺服电机的运动控制信号。 连接伺服电机所需的零部件 ●帕拉斯公司生产的连续旋转伺服电机2个; ●搭建LED电路所需的零配件(LED和470欧姆电阻)2套 连接伺服电机到 教学底板 把三位开关拨至0位切断教学底板的电源(图2?2)。 图2-3显示的是教学板上伺服电机接线端子。你可以用板上的跳线 来选择伺服电机的供电电源是来自机器人套件中的电池盒Vin还是来 自外接直流电源Vdd。要移动跳线帽,你必须向上把跳线帽从原来短 接的2个脚上拔下来,然后把跳线帽压进你想短接的2个脚上去。 如果使用6V电池组,将两个伺服电机接线端子之间的跳线帽接Vin,参照图2-3(左图)所示。 如果使用7.5 V、1000 mA的直流电源,将跳线帽接Vdd,参照图2-3(右图)所示。

伺服电机原理及选型规则

伺服电机原理及选型规则
2011-8-4 8:00:00 来源:
[摘要]:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 [关键词]:伺服系统 发动机 马达 变速装置 伺服电机 什么是伺服电机? 伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。 伺服电机的分类:直流伺服电机和交流伺服电机。 直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。具有起动转 矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷 的磨损和易产生火花会影响其使用寿命。 近年来出现的无刷直流伺服电机避免了电刷 摩擦和换向干扰, 因此灵敏度高, 死区小, 噪声低, 寿命长, 对周围电子设备干扰小。 直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机 电时间常数一般大约在十几毫秒到几十毫秒之间。而某些低惯量直流伺服电机(如空 心杯转子型、印刷绕组型、无槽型)的时间常数仅为几毫秒到二十毫秒。 小功率规格的直流伺服电机的额定转速在 3000r/min 以上,甚至大于 10000r/min。因此作为液压阀的控制器需配用高速比的减速器。而直流力矩伺服电机 (即低速直流伺服电机)可在几十转/分的低速下,甚至在长期堵转的条件下工作, 故可直接驱动被控件而不需减速。 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护, 但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感 的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩 稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换 相。 电机免维护, 效率很高, 运行温度低, 电磁辐射很小, 长寿命, 可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同 步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着 功率增大而快速降低。因而适合做低速平稳运行的应用。 交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的 U/V/W 三相电形成电磁场,转子 在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈 值与目标值进行比较, 调整转子转动的角度。 伺服电机的精度决定于编码器的精度 (线

菲仕伺服电机原理

菲仕伺服电机原理 一、产品简介 菲仕伺服电机与国内外同类产品相比具有很高的力矩/体积和功率比,低速时具有最好的稳定性,从面克服机械传动装置的诸多限制,使众多的应用场合采用直接驱动技术,满足高端机械设备对精度、速度和效率的要求,满足了用户对节能和环保的苛刻要求。菲仕系列产品,设计额定力矩从1N.M到10000N.M,额定功率从100W到5MW,将势必成为中国功率规格系列最全的高性能伺服系统产品,并可以直接和全面地取代进口伺服系统产品。 二、电机产品系列化定型研制工艺流程 三、工作原理 交流伺服电动机在没有控制电压时,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电在定子内绕组形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 四、设计参数的选取及设备结构 伺服电机主要由定子铁芯及绕组、永磁体转子模块、高精度轴承及轴承支架、电气插头及接线盒等附件组成,如下图所示:

1、定子铁芯 1)、矽钢冲片采用高速冲床进行,冲片和叠片在冲压过程中一次完成,大大的提高了生产效率。高速冲片代替以往的粉末冶金制造铁芯使铁芯的电磁特性不再受粉末成分和烧结条件的影响,使铁芯的电磁特性得以稳定。在组装和总装过程中也不会因操作不慎而使铁芯缺角少肉而影响质量,使操作过程得以简化; 2)、我们对比了高速冲片与低速冲片对电机的性能的影响,数据表明高速冲片制作的铁芯,电机的漏磁及涡流损耗大大减少,电机整体发热量大大降低,故选用了从英国进口过来的高速冲床及长寿命模具,来保证矽钢冲片的稳定性及低损耗性。 3)、我们对比了0。5MM高速冲片与0。3MM高速冲片对电机的性能的影响,数据表明0。3MM高速冲片制作的电机的漏磁及涡流损耗更进一步减少,电机整体发热量也进一步降低,故选用了0。3MM矽钢片的模具。 2、定子绕组 电机所采用的力矩绕组设计是一种具有特殊Ke和Kt常数的绕组,可适用于无齿轮传动的低速场合和直接驱动。取消减速机构可以增强力矩和刚性以及获得低速下的良好的运动平稳性。而且绕组采用符合DIN530标准的H级,保证了电机能在很高的温度情况下正常运行;特殊的高频绕组设计,适合于长配线时的高频PWM波形。 3、永磁体转子组件 1)具有设计专利技术的转子模块扣套设计保证了磁钢的机械固定,而

伺服电机的选型和计算

电机的选择: (1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2 式中 M-----电动机轴转距; F------使机械部件沿直线方向移动所需的力; L------电动机转一圈(2πrad )时,机械移动的距离 2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。 实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算: z z M h h F M B sp SP ao P K 2 11122? ??? ??++=η ππ M 1-----等速运动时的驱动力矩(N.mm) π 2h F sp ao K ---双螺母滚珠丝杠的预紧力矩(N.mm) F ao ------预紧力(N),通常预紧力取最大轴向工作载荷 F max 的1/3,即 F ao = 3 1 F max 当F max 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查: h sp -----丝杠导程(mm); K--------滚珠丝杠预紧力矩系数,取0.1~0.2; P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=; W 1-----移动部件重力(N),包括最大承载重力; P 1 -------有夹板夹持时(如主轴箱)的夹板夹持力; μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ; η1 -------滚珠丝杠的效率,取0.90~0.95; M B ----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题) z 1 --------齿轮1的齿数 z 2 --------齿轮2的齿数 最后按满足下式的条件选择伺服电机 M M s ≤1 M s -----伺服电机的额定转距

伺服电机的一般调试步骤

运动控制器以模拟量信号控制伺服电机的一般调试步骤 运动控制器控制伺服电机通常采用两种指令方式: 1,数字脉冲这种方式与步进电机的控制方式类似,运动控制器给伺服驱动器发送“脉冲/方向”或“CW/CCW”类型的脉冲指令信号;伺服驱动器工作在位置控制模式,位置闭环由伺服驱动器完成。日系伺服和国产伺服产品大都采用这种模式。其优点是系统调试简单,不易产生干扰,但缺点是伺服系统响应稍慢。 2,模拟信号这种方式下,运动控制系统给伺服驱动器发送+/-10 V的模拟电压指令,同时接收来自电机编码器或直线光栅等位置检测元件的位置反馈信号;伺服驱动器工作在速度控制模式,位置闭环由运动控制器完成。欧美的伺服产品大多采用这种工作模式。其优点是伺服响应快,但缺点是对现场干扰较敏感,调试稍复杂。 以下介绍运动控制器以模拟量信号控制伺服电机的一般调试步骤:1、初始化参数 在接线之前,先初始化参数。 在控制器上:选好控制方式;将PID参数清零;让控制器上电时默认使能信号关闭;将此状态保存,确保控制器再次上电时即为此状态。在伺服驱动器上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下MI NAS A4系列伺服驱动器的速度指令增益参数Pr50用来设置1V指令电压对应的电机转速(出厂值为500),如果你只准备让电机在100

0转以下工作,那么,将这个参数设置为111。 2、接线 将控制器断电,连接控制器与伺服之间的信号线。以下的连线是必须的:控制器的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,将电机和控制器上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制器是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置 3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制器打开伺服的使能信号。此时伺服电机应该以一个较低的速度转动,这就是所谓的“零漂”。一般控制器上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制器或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制器或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求

伺服电机如何进行选型知识讲解

伺服电机选型技术指南 1、机电领域中伺服电机的选择原则 现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。 各种电机的T-ω曲线 (1)传统的选择方法 这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度ω(t),角加速度α(t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。很显然。电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。用ω峰值,T峰值表示最大值或者峰值。电机的最大速度决定了减速器减速比的上限,n上限=ω峰值,最大/ω峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。 (2)新的选择方法 一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。 在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。选择一个合适的传动比就能平衡这相反的两个方面。通常,应用有如下两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。一是,从电机得到的最大速度小于电机自身的最大速度ω电机,最大;二是,电机任意时刻的标准扭矩小于电机额定扭矩M额定。

工业机器人的驱动方式

题目 1、工业串联机器人常用的驱动方式、传动系统、传感器类型 比较 2、智能移动机器人的驱动方式、传动系统、传感器类型 比较 3、现在机器人的控制系统、控制结构 概述 机器人问世已有几十年 但没有一个统一的意见。原因之一是机器人还在发 展 另一原因主要是因为机器人涉及到了人的概念 成为一个难以回答的哲学问 题。也许正是由于机器人定义的模糊 才给了人们充分的想象和创造空间。 美国机器人协会 RIA) 一种用于移动各种材料、零件、工具或专用装置的 通过程序动作来执行各种任务 并具有编程能力的多功能操作机。 美国家标准局 一种能够进行编程并在自动控制下完成某些操作和移动作业 任务或动作的机械装置。 1987年国际标准化组织(ISO)对工业机器人的定义 “工业机器人是一种具 有自动控制的操作和移动功能 能完成各种作业的可编程操作机。 日本工业标准局 一种机械装置 在自动控制下 能够完成某些操作或者动 作功能。 英国 貌似人的自动机 具有智力的和顺从于人的但不具有人格的机器。 中国 我国科学家对机器人的定义是 “机器人是一种自动化的机器 这种 机器具备一些与人或生物相似的智能能力 如感知能力、规划能力、动作能力和协同能力 是一种具有高度灵活性的自动化机器”。 尽管各国定义不同 但基本上指明了作为“机器人”所具有的二个共同点 (1) 是一种自动机械装置 可以在无人参与下 自动完成多种操作或动作功 能 即具有通用性。 (2)可以再编程 程序流程可变 即具有柔性(适应性 。 机器人是20世纪人类伟大的发明 比尔?盖茨预言 机器人即将重复PC机 崛起的道路 彻底改变这个时代的生活方式。 机器人学集中了机械工程、材料科学、电子技术、计算机技术、自动控制理 论及人工智能等多学科的最新研究成果 代表了机电一体化的最高成就 是当代 科学技术发展最活跃的领域之一。 概述 驱动方式 现代工业机器人的驱动方式主要有三种 气动驱动、液压驱动和电动驱动。 气动驱动 机器人气动驱动系统以压缩空气为动力源。气动驱动机器人具有气源方便 系统结构简单 动作快速灵活 不污染环境以及维护方便、价格便宜、适合在恶劣工况 高温、有毒、多粉尘 条件下工作等特点。常用于冲床上下料 小零件装配、食品包装及电子元件输送等作业中。由于气体可压缩 遇阻时具有容让性 因此也常用作机器人手爪的驱动源。 气动驱动系统的组成 1 气源 气动机器人可直接使用工厂压缩空气站的气源 或自行设置气源

如何提升机器人伺服电机的响应性能

如何提升机器人伺服电机的响应性能 当前国内机器人发展迅猛,尤其是工业机器人领域。但在机器人的反应速度、精度上,国内外产品还是存在一定差距的,那么关键点是在哪呢? 关键在于机器人的核心零部件——伺服电机。机器人在运行过程中,是通过伺服电机的驱动实现多自由度的运动的。如果对机器人运行的动作速度、精度要求高的话,实际就是要求伺服电机的响应速度、控制精度要足够高。 而在机器人实际运行时,往往伺服电机是处于各种加减速、正反转状态,那就对伺服电机的短时过载能力、惯量适应范围、频率响应带宽、转速/扭矩响应时间提出了很高的要求。 其中一个非常重要的指标就是频率响应带宽,它决定了该伺服系统对指令的响应速度快慢,是机器人设计者的重要关注指标。

伺服电机频率响应带宽的定义:伺服系统能响应的最大正弦波频率就是该伺服系统的频率响应带宽。用专业一些的语言描述,就是幅频响应衰减到-3dB时的频率(-3dB带宽),或者相频响应滞后90度时的频率。 更具体一点,像机械部标准《交流伺服驱动器通用技术条件》(JB T 10184-2000)中规定了伺服驱动器带宽的测试方法:驱动器输入正弦波转速指令,其幅值为额定转速指令值的0.01倍,频率由1Hz逐渐升高,记录电动机对应的转速曲线,随着指令正弦频率的提高,电动机转速的波形曲线对指令正弦波曲线的相位滞后逐渐增大,而幅值逐渐减小。相位滞后增大至90度时的频率作为伺服系统90度相移的频带宽度;幅值减小至低频时0.707倍的频率作为伺服系统-3dB频带宽度。 频率响应带宽国标测试结果 可以说,频率响应带宽越快,伺服系统就可以对变化更快的指令实现及时响应,即使工业机器人的动作再复杂,也能及时响应,驱动机器人的每一个关节位置控制到位。 而影响频率响应带宽的因素有很多,像伺服驱动器或者控制系统参数、传动链的刚度或精度、传动间隙、负载惯量等都会对伺服系统的响应带宽产生影响。过去业内很多研究者由于缺乏测试装备,故只能通过加实际负载的测试来判断伺服系统及机器人的响应性能,属于定性分析,无法定量分析。因此国内的伺服系统目前在响应速度一块仍需加强,像一般的伺服电机,响应带宽最高只能做到几百Hz左右,比较优质的能做到1kHz;而国外的产品,如日系的安川、三菱、松下等,却在多年以前已突破2kHz的关卡。

伺服电机选型计算公式

伺服电机选型计算公式 伺服电机选择的时候,首先一个要考虑的就是功率的选择。一般应注意以下两点: 1。如果电机功率选得过小.就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。 2。如果电机功率选得过大.就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较: P=F*V/100 (其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s) 此外.最常用的是采用类比法来选择电机的功率。所谓类比法,就是与类似生产机械所用电机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。试车的目的是验证所选电机与生产机械是否匹配。 验证的方法是:使电机带动生产机械运转,用钳形电流表测量电机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。 如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大,则表明所选电机的功率合适。如果电机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电机的功率选得过大,应调换功率较小的电机。 如果测得的电机工作电流比铭牌上标出的额定电流大40%以上.则表明电机的功率选得过小,应调换功率较大的电机。 实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。即T = 9550P/n 式中: P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。

ABB工业机器人配置伺服焊枪的步骤

Tune 枪的一般步骤 1. 加载伺服焊钳的配置文件 1.1 文件位置: Controller hd0a:\RobotWare_5.xx\ utility\ AdditionalAxis\ DM1\ServoGun 个人电脑(PC) C:\Program Files\ABB Industrial IT\Robotics IT\ MediaPool\RobotWare_5.14 \utility\AdditionalAxis\ DriveSystem 09 \ ServoGun\DM1 (有三个文件,根据伺 服枪的硬件连接选择合适的文件加载)。 1.2 文件名: MxLyBzS_DMd.CFG 注: x: motor (logical axis)7轴y: measurement link 第一 个接口 a) z: board position 1板d: drive module 1 1.3 加载步骤: ABB - Control Panel - Configuration -File - Load Parameters-Load parameters and replace duplicates – Load。 2. 定义伺服枪的伺服电机参数(极对数、极对数、最大电流、相电压、电阻、 电感、Stall torque(失速转矩) 1.1 伺服电机参数设置: 极对数(pole pairs):获取方法有两种;一般可以找焊钳生产厂商索取,或者根据 经验尝试,一般为2、3、4、5、6中的一个值。 最大电流(Max Current):根据电机上铭牌值写入即可,也可以找焊钳厂家索取。 电阻(phase resistance):=Rw/2 ΩRw的值找厂家索取 电感(phase inductance):=Lw/2 H Lw的值找厂家索取 失速转矩(Stall torque):Stall torque:失速转矩也称堵转力矩,指在电机轴 被外力锁定的约束下,已目标温升为约束,可连续输出力矩的最高值,堵转力矩一 般高于额定转矩,改力矩受限于电机的电磁结构和热电阻等因素。 Ke值:永磁电机的反电动势常数Ke。Ke和Kt之间满足 Ke= Kt/√3关于伺服电机中的Ke、和Kt解释; 永磁电机的反电动势常数KE 只要电机在转动,必然会有线圈切割磁力线,所以会有反电动势产生。对于具体的某型号电机,其转

伺服电机 让你的机器人更有力量(一)

伺服电机让你的机器人更有力量(一) 发表日期:2010-11-01 16:50:52 来源:《无线电》杂志作者:托德库尔特译/夏明新【大中小】浏 览:12918次评论:0条

当你听见电机运动时的那种标志性的“吱、吱、吱”声时,是否会想起机器人或者玩具里的伺服电机?遥控伺服电机是为无线控制的车模、航模而设计的,已经成为制作自动控制系统、电影效果、木偶效果的一种常见材料。 伺服电机不像常见的电机那样转,而是根据收到的命令来旋转,或者停止在0°~180°角的某个角度。伺服电机是让一个东西动起来的最简单的方法之一,而且可以选的伺服电机种类也很多。 伺服电机还可以经过稍稍的改动就变成高质量的、数字控制的变速电机。这篇文章里我会解释如何使用伺服电机,也会讲解如何让伺服电机连续转动。

理解伺服电机 无线伺服电机运用了多种技术,包括了直流电机、传动机构、传感器以及控制电路。这是一种伺服系统,利用了反馈控制环来调节系统功能。伺服系统典型的例子是温控加热系统,里面的温度传感器提供反馈,而加热元件提供输出,根据温度传感器得到的信息选择启动或关闭加热元件。对于无线伺服电机来说,传感器的输入是一个电位器,用于度量电机的旋转位置。控制电路读到电位器的阻值,然后根据目标位置调节电机的转向与转速。图A是一个标准的伺服电机的展开图以及闭环反馈控制环路。 选择伺服电机 伺服电机的形状及大小各异(见图B),常见的是标准伺服电机(1)。最小的伺服电机是微电机(2,3),最大的是高扭矩的(4)。所有的这些伺服电机都有同样的三线控制,因此根据需要更换小型或大型的伺服电机还是很方便的。 除了大小和重量之外,伺服电机还有两项重要的指标——扭矩和转速,这些由伺服电机中的电机和传动机构来决定。扭矩就是伺服电机的力,标准的伺服电机工作在5V的时候扭矩为 5.5kgf.cm。标准的速度是工作在5V的时候,需要0.2s/60。总体来说,大个的伺服电机速度比较慢,但是扭矩大。你在明确自己需要什么之后,就可以选择伺服电机的个头、等级了(标准型/微型/高扭矩型),然后在可选的里面挑个最便宜的。这些项目里我用的是微型的HexTronik HXT500伺服电机,扭矩为0.8 kgf.cm,转速为0.1s/60。

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍 一、伺服电机? 伺服驱动器的控制原理 伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。 1、永磁式同步伺服电动机的基本结构 图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 图1 永磁式同步伺服电动机的结构 图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为: (1-1)

图 2 永磁同步电动机的工作原理 电磁转矩与定子电流大小的关系并不是一个线性关系。事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。显然,只有q轴分量才能产生电磁转矩。 由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q 轴分量和d轴分量加以控制,才能实现电磁转矩的控制。这种按励磁磁场方向对定子电流磁势定向再行控制的方法称为“磁场定向”的矢量控制。 2、位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。 图 3 ? 稳态误差接近为零; ? 动态:在偏差信号作用下驱动电机加速或减速。

伺服电机及选型

伺服电机及选型 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

伺服电机 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 “伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。 伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。等于是把电机旋转的详细信息反馈回去,形成闭环。这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。 一、伺服电机分类 1、直流伺服 结构简单控制容易。但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。而且碳刷需要维护更换。机械换向器的换向能力,也限制了电动机的容量和速度。

2、交流伺服 分为永磁同步伺服电机和异步伺服电机。目前运动控制基本都用同步电机。 永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。特点如下: 1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。 2、启动扭矩大,可以带动大惯量的物体进行运动。 ? 3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。 ? 4、运行效率高。 ? 5、可支持低速长时间运行。 ? 6、断电无自转现象,可快速控制停止动作。 7、控制和响应性能比异步伺服电机高很多。 二、伺服电机计算 2.1、电机转矩

机器人用电机简介

机器人用电机简介 教育部近日公布了2015年度普通高等学校本科专业备案和审批结果,东南大学机器人工程专业是名副其实的“新专业”,这也将为机器人的发展打下坚实的人才基础。 从东北大学设立目前全国唯一的机器人学院,到东南大学设立机器人工程专业,我们看得出高校正在为培养机器人方面人才尽心尽力,这也预示着“机器人新时代”真的越来越近了。 通俗上理解的的机器人是内部有计算机,通过感知设备对环境进行识别;然后,利用认知技术对环境情况进行判断;最后,通过对环境的判定,机器人调用电机使用机械手去完成指令。但是其涉及到包括机械、控制、仪器、计算机在内的各种高科技技术。而现在我们就来简单了解一下机器人在机械方面的主要应用——机器人用电机。 机器人用电机主要是用在机械臂的节点处,带动机械臂运动,完成相应的工作任务。较为常用的电机有一下几种: 1.1 普通电机/减速电机 普通电机是我们平时间的比较多的小电机,很多电动用品里面都有,其特点是转速快,扭矩小,一般只有两个引脚。而减速电机则是普通电机+减速箱,减小转速,增加扭矩,应用更加广泛。 图1 1.2 步进电机 步进电机相对普通电机来说,可以实现开环控制,即通过驱动器信号输入端输入的脉冲数量和频率实现步进电机的角度和速度控制,无需反馈信号。可以通过控制脉冲个数来控制角位移量,达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,达到调速的目的。 图2

1.3 伺服电机 目前在运动精度和响应时间要求较高的机器人上选用的都是伺服电机。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。在自动控制系统中,可把所收到的电信号转换成电动机轴上的角位移或角速度输出,在精度、转速、适应性以及稳定性方面,较其他类型电机都有明显优势。 图3系统组成框图 随着机器人行业的兴起,相信电机行业也会有更大的发展空间。但是,数量的增加可能就会疏忽了质量的控制,无论是步进电机还是伺服电机,都是有许多性能参数需要判断和检测,例如扭矩转速等电机参数,电压电流等电气参数以及响应时间等瞬态参数;而致远电子的MPT混合型电机测试系统也在机器人时代渐行渐近的时候,为机器人的“手脚”——电机提供全面的测试方案。这台机器人“正不正经”?MPT告诉你。

相关文档
最新文档