荧光原位杂交技术
荧光原位杂交技术原理

荧光原位杂交技术原理
荧光原位杂交技术(fluorescence in situ hybridization,FISH)
是一种用于检测和定位靶标DNA序列的方法。
其原理是利用
荧光标记的DNA探针与靶标DNA特异性结合,通过荧光显
微镜观察细胞核内荧光信号的强度和位置,从而确定目标
DNA序列在细胞核中的位置和数量。
荧光原位杂交技术的步骤包括标记DNA探针、固定细胞样品、使细胞核开放透明化、探针与目标DNA杂交、洗涤去掉无特
异连接的探针、显微镜观察和分析。
在标记DNA探针的过程中,将目标DNA序列特异性引物和
荧光标记的核苷酸引物结合,通过聚合酶链反应使DNA探针
荧光标记。
标记DNA探针可以选择性地与目标DNA序列进
行互补结合。
固定细胞样品后,可以通过化学方法将细胞膜破裂并使细胞核透明化,使DNA探针能够更好地进入细胞核。
随后将标记好
的DNA探针加入样品中,在适当的温度下进行DNA杂交反应。
如果目标DNA序列在细胞核中存在,则DNA探针与目
标DNA序列结合,形成探针-目标DNA复合物。
在杂交反应后,需要进行洗涤步骤以去除无特异连接的DNA
探针。
这样可以提高荧光信号的特异性和强度。
最后,利用荧光显微镜观察样品中的荧光信号。
荧光探针与目标DNA序列结合后会发出特定颜色的荧光信号,可以通过观
察荧光信号的位置和强度来确定目标DNA序列在细胞核中的位置和数量。
荧光原位杂交技术可以应用于医学诊断、基因定位等领域,成为研究细胞遗传学和基因组学的重要工具。
荧光原位杂交(fish)

荧光原位杂交技术荧光原位杂交技术(fluorescence in situ hybridization),简称FISH。
是利用荧光标记的特异核酸探针与细胞内相应的靶DNA分子或RNA分子杂交,通过在荧光显微镜或共聚焦激光扫描仪下观察荧光信号,来确定与特异探针杂交后被染色的细胞或细胞器的形态和分布,或者是结合了荧光探针的DNA区域或RNA分子在染色体或其他细胞器中的定位。
中文名fish外文名fluorescent in situ hybridization建立时间1986年发展历程1969年,Pardue和John等两个研究小组开始采用放射性标记DNA或28S RNA发明了原位杂交技术(ISH)。
尽管当时原位杂交技术已经具有较高的特异性和灵敏度,但鉴于放射性同位素自身特性的局限,如安全性、空间分辨率低、不稳定性等问题,这项技术仅限于实验室研究方面的应用。
1986年科研工作者开始利用异硫氰酸盐荧光素来标记探针,并在荧光显微镜下进行观察分析,建立了荧光原位杂交技术(FISH)。
1989年,Delong首次使用荧光标记寡核苷酸探针检测单个微生物细胞。
由于FISH技术具有敏感度高、信号强、背景低、快速等优点,该方法在环境微生物的检测中得到了广泛的应用。
随着科技的迅速发展,FISH探针标记物越来越多,不仅从单一荧光发展到多色荧光检测,而且应用范围也进一步扩大,不仅可以用于分裂相细胞而且可以用于间期细胞检测,为FISH技术的临床应用打下了坚实的基础。
操作步骤编辑播报(1)样品的固定;(2)样品的制备和预处理;(3)预杂交;(4)探针和样品变性;(5)用不同的探针杂交以检测不同的靶序列;(6)漂洗去除未结合的探针;(7)检测杂交信号,进行结果分析·荧光信号观察:将处理好的样品置于荧光显微镜下,选择分散较好的区域来观察。
三色(或者更多)荧光激发下,观察到不同颜色的荧光图像。
通常选用20X物镜来扫描样品杂交区域,40X或100X物镜下观察样品,从一定的方向进行计数,并对计数情况进行分析。
荧光原位杂交技术在基因检测中的应用研究

荧光原位杂交技术在基因检测中的应用研究荧光原位杂交技术(FISH)是一种生物学技术,用于检测细胞和组织中的基因、染色体和蛋白质。
FISH技术是一种高分辨率的技术,能够针对单个基因分子或染色体进行检测,从而提高了基因检测的准确性和可靠性。
FISH技术的普及率越来越高,已经成为现代分子生物学领域中不可缺少的技术手段之一。
1. FISH技术的原理FISH技术是利用DNA分子的互补配对原理,将携带有荧光标记的探针与靶标DNA序列进行高度特异性的杂交反应,从而实现对靶标DNA序列的检测。
FISH技术的探针可以是DNA、RNA或蛋白质,根据探针的种类和用途不同,FISH技术也可分为基于DNA的FISH、基于RNA的FISH和基于蛋白质的FISH等多种类型。
基于DNA的FISH是最为常用的一种FISH技术,其原理是将DNA探针与靶标DNA杂交并检测荧光信号强度,以便确定目标DNA序列的分布情况、质量和数量。
2. FISH技术的应用FISH技术在基因检测中的应用非常广泛,可以用于研究各种遗传疾病、染色体异常、癌症等疾病。
FISH技术还可以用于分子诊断、肿瘤学、遗传咨询和生殖医学等领域。
下面将介绍FISH技术在遗传病、染色体异常和癌症等方面的应用。
2.1 遗传病的FISH检测遗传病是由基因异常导致的疾病,FISH技术可以用于检测遗传病相关的基因突变或染色体异常。
例如,FISH技术可以用于检测布氏菌和伤寒杆菌等病原微生物的存在,从而确定感染者的诊断和治疗方案。
FISH技术还可以用于分析多种遗传性疾病的基因突变和染色体缺陷,例如:唐氏综合症、先天性心脏病等。
2.2 染色体异常的FISH检测染色体异常是指染色体数量和结构异常,FISH技术可以用于检测染色体异常和定位染色体断点。
例如,FISH技术可以用于检测癌症细胞中的染色体缺失、重复和易位现象,从而确定癌症的类型、分级和预后。
在生殖医学中,FISH技术还可以用于检测染色体异常和筛查遗传病风险。
微生物荧光原位杂交实验技术

微生物荧光原位杂交实验技术背景微生物荧光原位杂交实验技术是在原位杂交技术的基础上发展而来的。
原位杂交技术最早应用于染色体分析,后来逐渐应用于微生物检测领域。
随着荧光标记技术的不断发展,人们开始利用荧光标记探针进行原位杂交,从而提高了检测的灵敏度和特异性。
原理微生物荧光原位杂交实验技术的原理是利用特定的荧光标记探针与细胞中的微生物进行杂交,从而将微生物定性和定量地检测出来。
该技术的基本原理是碱基互补配对原则,即探针的序列与待测微生物的序列互补,从而形成稳定的杂交双链。
利用荧光检测仪器检测荧光信号,从而实现对微生物的定量和定位分析。
实验方法样品的制备:将待测样品进行处理,使微生物细胞分离并保持活性。
探针的制备:将特定的DNA或RNA片段进行标记,形成荧光探针。
杂交反应:将样品和探针在一定条件下进行杂交反应,形成杂交双链。
洗涤和干燥:去除未结合的探针和杂质,保持杂交信号的特异性。
荧光检测:利用荧光检测仪器检测样品的荧光信号,并对数据进行处理和分析。
实验结果通过微生物荧光原位杂交实验技术,我们可以得到样品的定性和定量数据。
实验的成功率较高,特异性较强,能够清晰地检测出目标微生物的存在和数量。
该技术的灵敏度较高,可以检测出低拷贝数的微生物基因,为研究提供了有力的工具。
实验讨论微生物荧光原位杂交实验技术具有许多优势,如高特异性、高灵敏度和能够保持细胞结构的完整性等。
然而,该技术也存在一些不足之处,如探针制备过程较为繁琐、杂交反应条件要求较高以及荧光检测仪器价格昂贵等。
荧光探针的稳定性也可能影响实验结果的可靠性。
因此,在应用该技术时需要注意这些因素,并选择合适的探针和实验条件,以保证实验结果的准确性和可靠性。
结论微生物荧光原位杂交实验技术在研究领域具有广泛的应用前景。
除了在微生物检测方面的应用,该技术还可以应用于其他领域,如基因表达分析、细胞凋亡研究等。
虽然该技术存在一些不足之处,但随着技术的不断发展和优化,相信未来会有更多的应用前景等待着我们去探索和发现。
荧光原位杂交的原理及在产前诊断中的应用

荧光原位杂交的原理及在产前诊断中的应用荧光原位杂交(Fluorescence in situ hybridization,FISH)是一种基于核酸互补配对原理的分子生物学技术,通过标记的探针与待测样品中的特定序列发生互补配对,从而实现对特定基因或染色体的定位和检测。
这项技术具有高分辨率、高灵敏度和高特异性的特点,因此在产前诊断中得到了广泛的应用。
荧光原位杂交的原理是利用互补配对原则,即DNA的碱基对A与T之间形成两个氢键,而G与C之间形成三个氢键。
荧光原位杂交实验中,首先需要制备特异性的探针。
探针一般是由DNA片段或人工合成的寡核苷酸链构成,其中的核酸序列与待测样品中的目标序列互补配对。
探针的核酸链上标记有荧光染料,通过荧光信号可以检测到探针的靶向结合。
在荧光原位杂交实验中,首先需要对待测样品进行固定处理,使DNA在细胞或组织中得以保持原有的空间结构。
然后,将标记有荧光染料的探针与待测样品进行孵育,在适当的温度下让它们发生互补配对反应。
随后,利用荧光显微镜观察标记的探针是否与待测样品中的目标序列结合,并通过图像分析系统对荧光信号进行定量和定位分析。
荧光原位杂交技术在产前诊断中发挥了重要的作用。
产前诊断是指在胚胎发育早期对胚胎进行检测,以确定胚胎是否存在异常基因或染色体异常。
常见的产前诊断方法包括羊水穿刺、脐带血采样等,但这些方法对胚胎有一定的损伤风险。
相比之下,荧光原位杂交技术具有无创伤、准确、快速等优势。
在产前诊断中,荧光原位杂交技术主要应用于染色体异常的检测。
例如,唐氏综合征是由于染色体21上三个同源染色体的非整倍体所导致的一种遗传病。
通过使用标记有荧光染料的探针与染色体21上的特定序列发生互补配对,可以在荧光显微镜下观察到染色体21的异常数量和结构,从而诊断是否存在唐氏综合征。
荧光原位杂交技术还可用于检测其他染色体异常,如父源性染色体易位、染色体缺失或重复等。
通过选择特定的探针,可以针对不同的染色体异常进行检测和分析。
荧光原位杂交

荧光原位杂交荧光原位杂交(Fluorescence in situ hybridization,FISH)是一种分子生物学技术,可以用来检测DNA或RNA序列的存在、位置和数量。
该技术通常使用荧光染料标记DNA或RNA的探针来识别特定的序列。
在荧光原位杂交中,常常使用单链DNA或RNA的Oligonucleotide探针。
探针的序列与待检测样品中的特定DNA或RNA序列互相互补,使得探针和样品DNA或RNA序列可以杂交在一起。
探针可以被标记成许多不同的荧光染料,如荧光素、罗丹明等,以使得检测到的探针可根据颜色进行区分。
荧光原位杂交过程包括以下步骤:1. 选择合适的探针。
选择的探针实际上就是一个人工合成的核酸分子,其长度在20-200bp不等,可以与靶序列DNA或RNA中的任意位置相互匹配,检测的种类也包括基因、病毒、染色体等。
2. 标记探针。
标记探针是指把荧光染料等标记物与探针进行化学共价修饰,使之形成标记的探针,标记的探针使用单染色荧光或双染色荧光。
3. 处理样品。
把检测样品进行前处理、处理固定等。
4. 杂交。
把标记的探针打入处理好的样品中,如细胞、组织、染色体等,探针就会与相应的靶分子发生杂交,然后把样品用适当的盐洗。
5. 检测结果。
通过荧光显微镜进行探针的显示,可以看到细胞核内亮相区域,确定靶序列的定位和相应的染色体编号,并可以通过比较实验组和对照组的信号强度,得到目标序列的数量和比例。
荧光原位杂交在基因检测、疾病诊断、癌症诊断和治疗中都有广泛应用。
在基因诊断中,荧光原位杂交可以检测微观缺失、染色体重排列和染色体数目异常等,具有高准确度、高敏感度、高特异性和可显性等特点。
在肿瘤诊断和治疗中,荧光原位杂交是一种高效而准确的技术,可以评估患者的病情、选择合适的治疗方案,预测预后。
因此,荧光原位杂交在生命科学研究和医学诊断中的应用前景非常广阔。
荧光原位杂交技术

非放射性标记法
直接法
荧光素(fluorescein)或其他荧光染料
间接法
地高辛(digoxigenin) 生物素(biotin)
1. 随机引物法 2. 缺口平移法 3. PCR法 4. 寡核苷酸末端标记法 5. 直接在探针3’或5’端合成
1. 0.5ml离心管中加入1ug探针DNA,加水置体系为16ul
原位杂交操作步骤
一、准备载玻片和固定材料 二、染色体标本制备和预处理 三、探针制备及标记 四、染色体标本变性 五、杂交 六、杂交后洗脱 七、免疫细胞化学检测 八、荧光显微镜观察及显微摄影
染色体标本制备
预处理
1、RNA酶处理
1) 每张玻片加100 μl 100 μg/ml RNase A (in 2x SSC) 37℃处理1小时
NaCl, 0.05% Tween 20] 37℃洗1x5min
免疫细胞化学检测
1பைடு நூலகம் TNT buffer冲洗 2. TNB buffer[100 mM Tris-HCl (pH 7.5), 150 mM
NaCl,0.5% blocking reagent] 3. Anti-DIG-荧光素(2 μg/ml, in TNB)37℃30min 4. TNT buffer冲洗3x5min 5. 乙醇系列脱水,气干 6. DAPI染色10min 7. 加Vectashield封片,荧光显微镜下观察并照相
5种荧光素联合标记人类24条染色体
荧光素 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
FITC ☆
☆☆ ☆
☆☆ ☆
☆☆☆ ☆
Cy3
荧光原位杂交法 pcr-荧光对比

荧光原位杂交法 pcr-荧光对比荧光原位杂交法(FISH)和PCR-荧光对比(PCR-FLP)都是分子生物学中常用的技术,可以用于基因定位、染色体结构和功能等方面的研究。
本文将分别介绍这两种技术的基本原理、应用场景和优缺点。
一、荧光原位杂交法1.基本原理荧光原位杂交法是一种基于DNA序列互补碱基配对原理的技术,利用荧光探针对染色体上的特定区域进行标记,以便于观察和分析。
该技术主要包括以下几个步骤:(1)制备探针:将已知序列的DNA片段与荧光标记分子连接,生成荧光标记的DNA探针。
(2)加热解离:将待检样品中的DNA加热,使其解离成两条单链DNA。
(4)荧光显色:利用显微镜观察染色体上的荧光标记,并确定标记位置及数目。
2.应用场景荧光原位杂交法可用于以下方面的研究:(1)核型分析:检测染色体数目、大小和形态等信息。
(2)染色体重排:观察染色体间的换位、倒位等结构改变。
(3)基因定位:确定特定基因在染色体上的位置。
(4)肿瘤诊断:检测肿瘤细胞染色体的数目和结构变化。
3.优缺点(1)高灵敏度:能够检测到细胞核中的单个分子。
(2)高特异性:探针与目标序列可以实现完全互补。
(3)数据可视化:能够直观地呈现染色体结构及荧光信号大小。
而其缺点主要包括:(1)长时间实验:需要多个步骤和时间,且荧光信号非常容易被淬灭。
(2)需要DNA标记:需要荧光标记作为探针,费用较高。
二、PCR-荧光对比PCR-荧光对比(PCR-FLP)是一种应用荧光标记测量PCR产物数量的技术,能够在短时间内准确、可靠地检测和测量DNA的含量和变异。
具体操作过程如下:(1)样品制备:将待测DNA标记荧光标记,与另一非标记探针PCR反应。
(2)荧光PCR扩增:通过PCR反应增生DNA分子。
(3)荧光观察:利用荧光标记观察PCR产物。
(1)定量PCR:准确检测PCR反应中模板DNA的数目。
(2)基因表达:测量基因在不同实验条件下的表达水平。
(3)点突变检测:定性判断DNA中的单个碱基是否发生变异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荧光原位杂交技术
荧光原位杂交技术(Fluorescence in Situ Hybridization,FISH)是一种分子生物学技术,用于研究染
色体结构和功能、基因组描绘、肿瘤和遗传性疾病诊断及治疗等领域。
其原理是利用荧光探针与目标DNA碱基序列互补配对,使染色体或基因区域成为荧光标记物,从而实现对核酸序列的直接可视化和定量分析的一种分子探针技术。
1. FISH技术的发展历程
FISH技术首次应用于分子遗传学研究可以追溯到20世纪70年代。
最初的技术主要是通过蛋白质标记方法,如辣根过
氧化酶结合(HRP)和碱性磷酸酶结合等,来识别DNA序列。
然而这种方法往往存在较大的检测误差和信号弱等问题。
随着荧光染料和显微镜方法的发展,荧光成为FISH技术中的关键
技术。
荧光标记FISH(Fluorescence-Labeled FISH,Fl-FISH)技术逐渐取代了传统的蛋白质标记方法,成为目前
FISH技术的主流。
2. FISH技术的原理
FISH技术的主要原理是利用荧光探针或荧光标记分子与
特定的目标DNA序列互补配对,使其可视化。
荧光探针主要包括含有荧光染料结构域和与目标DNA碱基序列相互作用结构域的寡核苷酸或单链DNA分子。
探针长度通常在15-30bp左右,越短的探针对于特异性检测越有利。
FISH技术的操作过程一般包括以下几个步骤:
(1)标本制备,如组织切片、细胞准备等。
(2)脱氧核糖核酸(DNA)变性,使之成为单链状态,以方便荧光探针与目标DNA碱基序列的互补配对。
(3)探针杂交,将荧光标记探针与目标DNA碱基序列杂交,或者将探针标记在载体DNA上,通过载体DNA与目标DNA 互补配对实现探针的标记。
(4)洗涤,去除杂交与未杂交的探针,防止假阳性结果的产生。
(5)荧光染色,使探针与目标DNA形成的复合物发生荧光信号,从而能够通过荧光显微镜观察到。
3. FISH技术的应用
(1)研究染色体和基因组的结构和功能,如染色体结构异常、基因扩增和缺失等病理变化的检测和评价。
(2)肿瘤学的研究,如癌细胞的核型分析、癌基因和肿瘤抑制基因的检测和定位以及肿瘤标志物的诊断等。
(3)遗传性疾病的诊断和预防,如唐氏综合症、常染色体显性遗传病等的检测。
(4)生殖医学的研究,如人类胚胎成熟度的评估、睾丸支持细胞的数量分析和染色体多样性的评价等。
(5)基因组学和细胞生物学的研究,如基因表达、基因定位和基因组描绘等。
4. FISH技术的局限性和未来发展
尽管FISH技术在定量和定位分子水平上表现出了许多良好的特性,但也存在许多限制。
其中一些主要问题包括:(1)非特异性杂交信号,其主要原因是某些探针会与非目标DNA区域结合,导致信号的干扰和误判。
(2)可视范围较小,通常只能对某个局部区域进行检测,无法实现全基因组范围内的检测。
(3)分辨率不够高,无法准确展现目标DNA序列的空间
结构和大小。
(4)信号强度存在差异,信号强度过低会导致假阴性,
过高则会导致信噪比低。
FISH技术的未来发展,主要会向以下几个方向发展:
(1)酶标记技术的进一步发展,以实现更高的检测灵敏
度和准确性。
(2)基于新型标记分子的技术的发展,如金纳米颗粒和
磁性纳米颗粒等,以取得更广泛的应用。
(3)基于更快速、更高分辨率的显微镜和成像技术的发展,以扩大FISH技术的应用范围。
(4)FISH技术与其他技术的综合应用,例如结合PCR技术、高通量测序技术等,以实现更深入的基因组分析和生物学研究。
综上所述,FISH技术作为一种定量分子探针技术只有不
断发展和完善,才能更好地促进基因组和肿瘤学等领域的研究,实现更加精准的诊断和治疗。