卫星全色和多光谱模式介绍

卫星全色和多光谱模式介绍
卫星全色和多光谱模式介绍

QuickBird卫星全色和多光谱模式

时间:2009-08-24

众所周知,遥感是使用各种传感器远距离探测目标所辐射、反射或散射的电磁波,经加工处理变成能够识别和分析的图像和信号,以获取目标性质和状态信息的综合技术。

遥感根据获取目标的手段不同可分为狭义遥感和广义遥感。

狭义遥感以电磁辐射为感测对象,而广义遥感还包括磁力、重力等地球物理的测量和属于地球物理测量范畴的地震波、声波等弹性波。

我们通常所说的遥感概念则专指以电磁辐射为特征的狭义遥感。不同的目标物受到太阳或其他辐射源的电磁辐射时,它们所特有的反射、发射、透射、吸收电磁辐射的性质是不同的。通过获取目标物对电磁辐射的显示特征,可识别目标的属性和状态。所以传感器谱段的设置与目标物的光谱特性有着密切的关系。

目前世界上用于卫星遥感的传感器有两大类:光学遥感和微波遥感。

光学遥感:

光学遥感指利用光学设备探测和记录被测物体辐射、反射和散射的相应谱段电磁波,并分析、研究其特性及变化的技术。

光学遥感覆盖了红外、可见光和紫外三个谱段,常用的有以下三种:

可见光遥感:

其工作波长为0.4~0.76微米,一般采用感光胶片或光电探测器作为感测元件,属于摄影成像遥感。它主要使用可见光远摄镜头照相和可变焦距电视摄像等,感测的是目标及背景反射或自身发出的可见光,记录的信息或拍摄的图像是物体反射光或发光强度的空间分布。可见光遥感是光学遥感中历史最长的一种,是对地观测和军事侦察的主要手段之一。摄影成像的分辨率(G)很高,可以近似地表示为:

G=f×R/H

其中f为镜头焦距,R为镜头与底片的综合分辨率,H为高度(或距离)。

红外遥感器:

主要包括红外扫描仪、红外辐射仪等。红外遥感通过探测红外辐射获取目标和背景的辐射温度或热成像。其探测能力取决于目标、背景与周围环境的温度差。红外遥感的最大优点是可获取无光照或薄云下目标和背景的图像。

多谱段遥感:

使用几个不同的谱段同时对一目标或地区进行感测,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可获取目标物更多的信息。多谱段遥感是在可见光和红外遥感的基础上发展起来的,它能明显地分辨多种目标和背景特性,兼有可见光和红外遥感技术的优点。也为高光谱和超高光谱的发展提供了依据。微波遥感:

微波遥感是利用微波遥感设备,对地物目标和环境的微波辐射、反射或散射能量实施探测的技术,其波长为1~1000毫米.

微波遥感按工作模式的不同可分为两种:

有源微波遥感:

主要由成像雷达、微波散射计和微波高度计组成。在卫星遥感中应用较多的是合成孔径雷达,它是利用平台与目标的相对运动产生的多普勒频移,经二维相关处理或匹配滤波处理而获得高分辨率的图像。

无源微波遥感:

主要指各种微波辐射计,它是通过测量自然界各种物体发出的微弱微波辐射来测量目标的辐射特性和实际温度。

QuickBird 全色和多光谱模式:

快鸟卫星电磁波谱设置:

? 蓝光波段(450-520nm);

? 绿光波段(520-600nm);

? 红光波段(630-690nm);

? 近红外波段(760-900nm)

*QuickBird卫星全色光谱模式和多光谱模式对比

*圣地亚哥--全色影像

全色450-900nm(45-90 μ)

-跨越整个多光谱波段长度

*圣地亚哥--多光谱影像

? 蓝光波段(450-520nm);

? 绿光波段(520-600nm);

? 红光波段(630-690nm);

全色产品即通常所见到的黑白影像,该影像的波段从可见光光谱波段到近红外光谱波段(450--900nm)

QuickBird 卫星数据在测绘制图中的优点与应用

遥感图像有什么用途?

遥感影像就像我们生活中拍摄的照片一样,遥感像片同样可以"提取"出大量有用的信息。从一个人的像片中,我们可以辨别出人的头、身体及眼、鼻、口、眉 毛、头发等信息。遥感影像一样可以辨别出很多信息,如水体(河流、湖泊、水库、盐池、鱼塘等)、植被(森林、果园、草地、农作物、沼泽、水生植物等)、土 地(农田、林地、居民地、厂矿企事业单位、沙漠、海岸、荒原、道路等)、山地(丘岭、高山、雪山)等等;从遥感影像上能辨别出较小的物体如:一棵树、一个 人、一条交通标志线、一个足球场内的标志线等。大量信息的提取,无疑决定了遥感技术的应用是十分广阔的,据统计,有近30个领域、行业都能用到遥感技术, 如陆地水资源调查、土地资源调查、植被资源调查、地质调查、城市遥感调查、海洋资源调查、测绘、考古调查、环境监测和规划管理等。

在测绘制图中随着高分辨率卫星技术的民用化,测绘制图的精度也发生着日新月异的变化,尤其是高分辨率卫星QuickBird 的应用。

高分辨率卫星影像对专题图的制图与测绘是一种简洁高效技

术手段,目前 在很多相关行业中传统的测量与制图手段已经完

全被高分辨率卫星技术手段所代替。通过对原始卫星数据的辐

射纠正、传感器的姿态引起的误差纠正、几何校正、正 射校正、

地图投影、坐标转换等一系列处理,卫星数据能够很精确的与

当地已有的地图资料相嵌配,这样在非常清晰与自然的真实地

物信息资料基础上进行地图更新 以及通过地物分类来做专题

图,都能获得非常精确的成果图。

QuickBird 商业卫星 数据测图

在世界的多数区域,大比例尺和中等比例尺的地图尚未被生产出来或是过时和不精确。美国QuickBird

商业卫星所提

供的目前世界上分辨率最高的卫星数据,能力从0.6米(2 英尺) 的成像中提取各种各样信息,地面定位精度可在2.5 米(8.3 英尺)以内, 为测绘制图提供了一个史无前例的从小城市到整个国家的准确有效生产地图的机会。

在美国,平均每21分钟就有一所房子建成,通过QuickBird卫星提供的高精度和最新影像为您了解此信息提供保证。上图例子显示一张1999年0.6米航空相片和一张2003年0.6米QuickBird影像。

测绘制图的特点和优势

测绘制图中的应用:

- 与已有资料对比, 可以掌握现状、预测发展趋势

- 道路网管理, 电力、电信管理

- 与汽车导航系统以及PNS有关的基本图绘制

- 道路交通图绘制

- 其他各种专题图绘制 (土地利用现状图、绿化图等)

产品特色

QuickBird正射影像DG DOQQ产品

QuickBird卫星的是一种0.6米分辨率精度在2.5米以内的影像产品, QuickBird正射影像产品适用于各类制图行业的各种比例尺地图制作,可从1:50000--1:4800均广泛应用,并且提供多种应用类型的正射数字产品如:全色正射影像、多光谱正射影像、捆绑正射影像(全色和多光谱)、自然真彩色正射影像、假彩色正射影像、4波段全色增强正射影像等。QuickBird正射影像产品是地图制作行业中大比例尺或小比例尺地图制作的最佳基础数据的选择产品。QuickBird卫星以史无前例的空间采集能力为全球用户提供着0.6米分辨率正射影像产品。

DG DOQQ产品(DigitalGlobe Digital Ortho Quarter Quad )

美国DigitalGlobe公司的DigitalGlobe DOQQ产品是一项最新采集制作的高质量和高分辨率的卫星数据,适合于低成本高效益的绘图区更新工程. 专题DOQQ产品提供了0.6米无云、无缝镶嵌图像. 适宜许多政府和商业客户解决各类基础数据应用问题,包括地理信息系统(GIS)更新、创建、修测地图等,还广泛应用于应急管理、自然资源管理等。遵循以往应用的美国地质勘查局所规范的标准格式(USGS)。DOQQ产品测量精度为1:2000比例(均方根误差-RMSE为6.2米)。

现代测绘业就是地理信息产业和空间数据基础设施建设;

地理信息主要表征地球上自然和人文要素的地理位置和空间分布关系,它主要有三类产品:

一:是地理信息数据产品如数字地图

二:是地理信息技术产品如GIS软硬件

三:是地理信息工程(为土地变更动态监测)

空间数据基础设施是数字化的基础;

我们经常提到的“数字地球”就是以信息高速公路和空间数据基础设施为依托的一个广泛概念,发展和形成“数字地球”必须首先发展国家的信息高速公路和国家的空间数据基础设施。没有中国的信息高速公路和中国的空间数据基础设施也就不可能有中国的“数字地球”。基础地理信息数据更新模式的建立,技术进步和科技发展必须是可持续性的,数据现实性的维护是体系正常运行的条件,而数据的更新的手段是多样的,这主要依靠技术。技术的发展可以使多样化的数据更新手段成为可能,如利用航空像片和卫星影像制作数字正射影像(DOM),利用DOM更新数字线划图DLG 中的主要要素公路等;用地及建筑数据或工程的竣工数据对DLG进行要素的更新;通过数据采购制等方式,政府定期定购更新的数据。

更新数字地图

*地形图的成图方法已逐步地由传统的白纸法成图被数字测图代替。特别是在我国的东部沿海发达地区,数字测图几乎已占据了大部分的地形图测绘市场。

*目前在我国获得数字地图的方法主要有三种:原图数字化、航测数字成图、地面数字测图。但不管哪种方法,其主要作业过程均为三个步骤:数据采集、数据处理及地形图的数据输出(打印图纸、提供软盘等)。

1.原图数字化

当一个城市(地区)需要用到数字地形图而一时因经费困难、或受到时间等原因的限制时,该方法是再适宜不过的了。它能够充分地利用现有的地形图,仅需配备计算机、数字化仪、绘图仪再配以一种数字化软件就可以开展工作,并且可以在很短的时间内获得数字的成果。如一时连购买设备的经费也难以落实,也可让具备有图纸数字化能力的测绘单位代而为之。它的工作方法有两种:

手扶跟踪数字化和扫描矢量化后数字化,其中后一种要比前一种的精度高、效率高。但是,利用该方法所获得的数字地图其精度因受原图精度的影响,加上数字化过程中所产生的各种误差,因而它的精度要比原图的精度差。而且它所反映的只是白纸成图时地表上各种地物地貌,现势性不是很好。所以它仅能作为一种应急措施而非长久之计。为了可充分利用该法得到数字地图,可通过修测、补测等方法,实测一部分地物点的精确坐标,再用这些点的坐标代替

原来的坐标,通过调整,可在一定的程度上提高原有图的精度。而随着地图的不断更新,实测坐标的增加,地图的精

度也就会相应地得到了提高。

2.航测数字成图

当一个地区(或测区)很大时,就可以利用卫星影像和航空影像,通过外业判读,在内业建立地面的模型,通过计

算机用绘图软件在模型上量测,直接获得数字地形图。随着测绘技术的发展,数字摄影测量已在我国的某一地区取得

了试验性的成功,在不久的将来将会得到推广。它是通过在空中利用卫星或数字摄影机所获得的数字影像,内业通过

专门的遥感和航测软件,在计算机上对数字影像进行像对匹配,建立地面的数字模型,再通过专用的软件来获得数字地图。可以说,这将是我们今后数字测图的一个重要发展方向。该方法的特点是可将大量的外业测量工作移到室内完成,它具有成图速度快、精度高而均匀、成本低,不受气候及季节的限制等优点。它特别适合于城市密集地区的大面积成图。但是该方法的初期投入较大,如果一个测区较小,它的成本就显得较高。所以现在基本上由一些较大的单位来承担。

3.地面数字测图

在没有合乎要求的大比例尺地图的地区或该地区的测绘经费比较充足,可直接采用地面数字测图的方法,该方法也

称为内外业一体化数字测图,是我国目前各测绘单位用得最多的数字测图方法。采用该方法所得到的数字地图的特点

是精度高,只要采取一定的措施,重要地物相对于邻近控制点的精度控制在5cm内是可以做到的。但它所耗费的人力、物力与财力也是比较大的。

注意:

遥感分辨率取决扫描成象的和象元大小,所谓全色指(赤、橙、黄、绿、青、蓝、紫)可见光的光学合成照的象,其象元就是整幅图象,只要聚焦镜头好,整幅图象就很清晰,一幅清晰的图象底片可以放大好多倍,不会出现方形雪花斑。而多光谱则把可见光中的赤、橙、黄、绿、青、蓝、紫单色光或近红外中的某些窄波段单独扫描成数字图象,象黑白摄相机和数码相机拍摄的图象一样,分辨率(即象元大小)受扫描频率的影响,图象放大几倍后,会看到象元方块(方形雪花斑)。故多光谱的分辨率比全色的低。遥感拍的和我们平时数码相机拍摄的不同主要是前者采用多组镜头进行多波段同时拍摄,然后再合成彩色,后者则是可见光分成蓝绿红三组感光镜头再合成,象彩色电视原理。由此可见,遥感的彩色不是真彩色,是人为合成的。但由于肉眼看不到的某些物质的光,能被遥感波段接收到,故遥感图象能发现更多平常人眼不能发现的东西。

遥感影像遥感影像可以通过对地表摄影或扫描获得。摄影影像是摄相机对地面物体摄影,直

接在感光材料上记录地物的光像;扫描影像是地面信息通过探测器先变为电信号并记录在磁带上,

然后回放磁带,在感光片上曝光而成。遥感影像有黑白和彩色两种,由于彩色影像比黑白影像能提供更多的地表信息,因此彩色影像在遥感中得到广泛地使用。

(1)多波段影像:多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。与单波段影像相比,它具有信息量大,光谱分辨率高(遥感器能分辨的地物的最小波长间隔)的特点,并且可通过各种影像增强技术,获得彩色合成影象,大大提高对地物的识别能力。Landsat上的MSS和TM影像都属多波段扫描影像。

(2)彩色合成影像:彩色合成是将多波段黑白图像变换为彩色图像的处理技术。一般为三色合成,也可两色或四色合成。合成的方法有两种:直接使用光学方法和使用计算机的数字处理。前者是将一组黑白透明片放入配有特定的红、绿、蓝三色滤光片的光学系统中,投影到同一屏幕上,使图像精确重合,形成彩色图像。数字处理合成法是令三幅图的像元亮度值变换为红、绿、蓝三基色的彩色编码去控制彩色显示设备,形成彩色图像。根据合成影像的彩色与实际景物自然彩色的关系,可分为真彩色影像和假彩色合成影像,前者是比较真实地反映地物原来彩色的影像,它可以通过彩色感光胶卷拍摄获得,也可以用彩色合成方法获得;假彩色合成影像是通过彩色合成方法获得的非真彩色影像。在光学合成法中,是将多波段影像配合不同滤光片准确重叠合成。影像的波段和滤光片可有各种组合方案,所得的假彩色影像也各不相同。解译时为了突出显示影像中的某种地物,可选择最佳组合方案。目前,用Landsat的MS-4,5,7波段影像的正片,分别配以蓝、绿、红滤光片,重叠投影合成的是标准假彩色影像。在这种影像上,植被显示为红色,城镇为蓝灰色,水体为蓝色,雪和云为白色等等。假彩色合成影像目前广泛用于专题制图、资源调查、地学研究和环境监测等方面。

Fluorcam多光谱荧光成像技术及其应用

FluorCam多光谱荧光成像技术(Multi-color FluorCam) 自上世纪90s年代PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM脉冲调制叶绿素荧光技术与CCD技术结合在一起,成功研制生产FluorCam叶绿素荧光成像系统(Nedbal等,2000)以来,FluorCam叶绿素荧光成像技术得到长足发展和广泛应用,先后有封闭式、开放式(包括标准版和大型版)、便携式叶绿素荧光成像系统,及显微叶绿素荧光成像系统、大型叶绿素荧光成像平台(包括移动式、样带式、XYZ三维扫描式等)等,近些年还进一步发展了PlantScreen植物表型成像分析平台(Phenotyping)(有传送带版、XYZ三维扫描版及野外版等)及多光谱荧光成像技术。 Multi-color FluorCam多光谱荧光成像技术包括多激发光-多光谱荧光成像技术和UV 紫外光激发多光谱荧光成像技术: 1.多激发光-多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光) 到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、绿波轮及相应滤波器,对不同波长荧光(多光谱荧光)进行成像分析。如FluorCam便携式GFP/Chl.荧光成像仪及FluorCam封闭式GFP/Chl.荧光成像系统具备红光和兰光及相应滤波器,可以对GFP和叶绿素荧光成像分析;FluorCam开放式多光谱荧光成像系统可以进一步选配不同颜色的激发光,如除红光、蓝光外,还可选配绿色光源及相应滤波器,以对YFP进行荧光成像分析等; 2.UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片 激发,可以产生具有4个特征 性波峰的荧光光谱,4个波峰 的波长为兰光440nm(F440)、 绿光520nm(F520)、红光690nm (F690)和远红外740nm (F740),其中F440和F520 统称为BGF,由表皮及叶肉细 胞壁和叶脉发出,F690和F740 为叶绿素荧光Chl-F。紫外光 激发多光谱荧光(UV-MCF)可 以用来灵敏、特异性地评估植 物生理状态包括受胁迫状态, 包括干旱、病虫害、环境污染、 氮胁迫等 本文就FluorCam多光谱荧光成像技术产品及最新应用案例做一简单介绍,其中FluorCam便携式GFP/Chl荧光成像仪(Handy GFPCam)和FluorCam封闭式GFP/Chl荧光成像系统(Closed GFPCam)已有较为详细的资料介绍,在此不再专门介绍。

多光谱图像

多光谱图像 图像理解是在数字图像处理、计算机技术和人工智能不断发展的基础上产生的一种模拟人的图像识别机理的理论,它与计算机视觉理论有许多共同的部分,或者说有许多交叉的部分,它与人工智能、专家系统也有着一些共同的地方。 图像理解主要包括三个层次,其低层为一般图像处理;中层为图像中特征的符号化组织过程;高层为抽象的符号推理。因此,计算机视觉主要与其低层,人工智能主要与其高层产生重叠。目前,就图像理解这一理论的研究探讨有了专门的期刊;有关大学设置了专门的课程;有关专家学者写了专著。比如国防科技大学的王润生教授就系统地介绍和总结了图像理解的基本理论、方法和国内外研究现状等〔1〕。这一方面的基础理论和方法引起了有关学者和科研人员的注意和浓厚兴趣,他们结合自己的工作领域,进行了更深入的研究。应当说,有关的理论和方法已经被极大地丰富了。比如,有关图像纹理分析这方面的论文、论著数不胜数,其中,有关新理论新方法(如分形分维方法)的应用,更为这一理论注入了新内容;再如,我国数字摄影测量界已经将“双目”图像的分析理论和方法推向了具有世界先进水平的境界。 尽管如此,图像理解的理论与方法仍有严重不足之处。这并不是指这一理论尚未成熟,而是指它的理论与方法还存在着片面性,还没有成为一个完整的体系。因为图像理解的对象是各类图像,并没有限定是某一类图像,那么,现在的问题就是遥感图像理解(主要是多光谱图像理解)的理论十分贫乏。以人类生存环境及地球资源为主要研究目标获取的各种遥感图像已经得到越来越广泛的应用,丰富的光谱信息及其在时间空间域的分辨率的提高,配合着地理信息系统技术,全球定位系统技术和因特网技术的发展和普及,为图像信息的广泛应用创造了空前繁荣的局面,成为信息时代的显著特征,在信息高速公路和数字地球战略中占据着极其重要的地位。然而,现有的图像理解理论和方法在如此丰富的信息面前却显得苍白无力。应当说,面对丰富的遥感信息,人们一直在研究如何处理和应用,有关这方面的理论和方法的研究成果也是不少的,但似乎并没有从图像理解的角度加以总结、提练,有的方面甚至缺乏系统的研究。如对于多光谱图像边缘提取、区域分割等应以什么理论为基础,应采取什么方法;在纹理分析方面,多光谱图像的纹理具有怎样的意义,或者多光谱图像的纹理概念是什么,需要采取什么方法进行分析;时序多光谱图像又应当采取什么分析方法;针对多光谱图像的符号化工作应当如何进行,在此基础上如何利用知识进行推断,如何在模拟人的思维模式方面更深入地开展研究,等等,这些都是应当考虑的问题。这些问题在图像理解的理论与方法之中尚没有或很少有现成的答案。应该承认,对上述一些问题已有一些研究,至少我们自己就已经在一些方面作了初步的研究,但这些研究还不够,研究的成果还未加以总结。 在现实工作中,多光谱图像的分析具有非常重要的意义。丰富的光谱信息为地物的边界和地物目标的识别创造了良好的条件,比起单色图像,多光谱图像具有极大的优越性。随着多光谱图像空间分辨率的提高和地理信息系统技术的发展,人们的信心更加增强,对多光谱图像处理的要求也越来越高。比如,在地形图更新生产中,如果以多光谱图像为背景,就可以半自动地确定地物分布的边缘或跟踪线状地物的“骨架线”,从而大大减轻人工劳动强度,提高效率;又如,利用多光谱图像和各种背景数据如地貌、土壤信息,即将遥感与地理信息系统结合,引入人工智能方法,就象已有的图像理解系统那样,更好、更准确地提取地物目标信息,为土地利用分析、资源环境调查,提供更高质量的成果,已经是许

全色卫星影像 多光谱卫星影像 高光谱卫星影像

北京揽宇方圆信息技术有限公司 全色卫星影像多光谱卫星影像高光谱卫星影像 随着光谱分辨率的不断提高,光学遥感的发展过程可分为:全色(Panchromatic)→彩色(Color Photography)→多光谱(Multispectral)→高光谱(hyspectral)。 注: 全色波段(Panchromatic band),因为是单波段,在图上显示是灰度图片。全色遥感影像一般空间分辨率高,但无法显示地物色彩。实际操作中,我们经常将之与波段影象融合处理,得到既有全色影象的高分辨率,又有多波段影象的彩色信息的影象。 全色波段,一般指使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段。全色遥感影象也就是对地物辐射中全色波段的影象摄取,因为是单波段,在图上显示是灰度图片。全色遥感影象一般空间分辨率高,但无法显示地物色彩。 多光谱遥感 多光谱遥感:将地物辐射电磁破分割成若干个较窄的光谱段,以摄影或扫描的方式,在同一时间获得同一目标不同波段信息的遥感技术。 原理:不同地物有不同的光谱特性,同一地物则具有相同的光谱特性。不同地物在不同波段的辐射能量有差别,取得的不同波段图像上有差别。 优点:多光谱遥感不仅可以根据影像的形态和结构的差异判别地物,还可以根据光谱特性的差异判别地物,扩大了遥感的信息量。 航空摄影用的多光谱摄影与陆地卫星所用的多光谱扫描均能得到不同普段的遥感资料,分普段的图像或数据可以通过摄影彩色合成或计算机图像处理,获得比常规方法更为丰富的图像,也为地物影像计算机识别与分类提供了可能。

高光谱 高光谱遥感起源于20世纪70年代初的多光谱遥感,它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。同传统遥感技术相比,其所获取的图像包含丰富的空间、辐射和光谱三重信息。 高光谱遥感技术已经成为当前遥感领域的前沿技术。 高光谱遥感具有不同于传统遥感的新特点: 1)波段多:可以为每个像元提供十几、数百甚至上千个波段; 2)光谱范围窄:波段范围一般小于10nm; 3)波段连续:有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱; 4)数据量大:随着波段数的增加,数据量成指数增加; 5)信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加。 优点: 1)有利于利用光谱特征分析来研究地物; 2)有利于采用各种光谱匹配模型; 3)有利于地物的精细分类与识别; 异同点 国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为多光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为高光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspectral)阶段(陈述彭等,1998)。 高光谱和多光谱实质上的差别就是:高光谱的波段较多,普带较窄。(Hyperion有233~309个波段,MODIS有36个波段) 多光谱相对波段较少。(如ETM+,8个波段,分为红波段,绿波段,蓝波段,可见光,热红外(2个),近红外和全色波段) 高光谱遥感就是多比多光谱遥感的光谱分辨率更高,但光谱分辨率高的同时空间分辨率会降低。

高光谱遥感数据最佳波段的选择

高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。 若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚; 若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况; 若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像; 若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。 遥感影像时相的选择: 遥感影像的成像季节直接影响专题内容的解译质量。对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。高分辨率影像的选择:

分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT 影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。卫星遥感传感器和遥感数据处理技术发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高,为遥感影像解译标志和遥感影像信息模型的开发、研究提供了有利条件,为快速和精确地进行解译提供了便利。 ETM+遥感不同波段的用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

多光谱相机原理及组成

多光谱相机原理及组成 多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率高但是数据量大难以进行分析、存储、检索,而多光谱成像是将所有的信息结合在一起,这不仅仅是二维空间信息,同时也把光谱的辐射信息也包含在内,从而在更宽的谱段范围内成像。 多光谱相机的基本构成 1.光学系统 可以在各个谱段内范围内成像,可以很好的的控制杂散光,是多光谱相机最重要的部分,对工作谱段范围和分辨能力起了决定性的作用,还可以设定工作焦距视场角大小等 2.控制和信息处理器 控制监督多光谱相机的整个工作过程,并收集图像数据,并进行储存。 3.热控装置 由温度控制器、隔热材料、散热器、热控涂层等组成 4.其他结构 物镜、电路系统、探测器及其他零配件 多光谱相机的工作谱段范围 人眼所能能识别的光谱区间为可见光区间,波长从400nm到700nm;普通数码相机的光谱响应区间与人眼识别的光谱区间相同,包含蓝、绿、红、三个波段;而多光谱相机的工作谱段范围在其基础上,可以分可见光、近红外光、紫外光等每台多光谱相机的分辨率不同,所应用的领域也不同 就比如说我们在做植被调查的时候,植被的可见光波段对绿色比较敏感对红色和蓝色反射较弱。相对于可见光波段,植被在近红外波段具有很强的反射特性,多数植被在可见光波段的光谱差异很小。而在近红外波段的光谱差异更大,光谱差异越明显越有利于分类。 光谱特性 我们知道像素运用复杂的大气准则来,复原反射光谱和辐射光谱所的到的数据分析,得到不同物质的反射率不同,称之为光谱特征。如果有足够的光谱特证,可用于识别场景中的专用材质,其中包括光谱范围、宽度、分辨率。范围是指相机获取图像来自的光谱段,谱段的宽度反映了谱段设置的要求、通过努力衡量大气中物质的光谱特性还有传感器的光谱响应,就要考虑大气中的吸收和散射。多光谱相机的光学系统 光学系统是指由透镜、反射镜、棱镜和光阑等多种光学元件按一定次序组合成的系统。通常用来成像或做光学信息处理。曲率中心在同一直线上的两个或两个以上折射(或反射)球面组成的光学系统称为共轴球面系统,曲率中心所在的那条直线称为光轴。其中参数包括焦距、视场角、相对孔径等。 多光谱相机的反射光学系统 如果光学系统中的光学镜片为反射镜,则此系统称之为反射系统,反射式光学系统最大的优势就在于其光谱范围很大,对各个谱段都适用,并且不需要矫正二级光谱,但是因选用的是非球面镜片,会使系统的加工和装配变得十分困难,增加制作工艺难度

卫星全色和多光谱模式介绍

QuickBird卫星全色和多光谱模式 时间:2009-08-24 众所周知,遥感是使用各种传感器远距离探测目标所辐射、反射或散射的电磁波,经加工处理变成能够识别和分析的图像和信号,以获取目标性质和状态信息的综合技术。 遥感根据获取目标的手段不同可分为狭义遥感和广义遥感。 狭义遥感以电磁辐射为感测对象,而广义遥感还包括磁力、重力等地球物理的测量和属于地球物理测量范畴的地震波、声波等弹性波。 我们通常所说的遥感概念则专指以电磁辐射为特征的狭义遥感。不同的目标物受到太阳或其他辐射源的电磁辐射时,它们所特有的反射、发射、透射、吸收电磁辐射的性质是不同的。通过获取目标物对电磁辐射的显示特征,可识别目标的属性和状态。所以传感器谱段的设置与目标物的光谱特性有着密切的关系。 目前世界上用于卫星遥感的传感器有两大类:光学遥感和微波遥感。 光学遥感: 光学遥感指利用光学设备探测和记录被测物体辐射、反射和散射的相应谱段电磁波,并分析、研究其特性及变化的技术。 光学遥感覆盖了红外、可见光和紫外三个谱段,常用的有以下三种: 可见光遥感: 其工作波长为0.4~0.76微米,一般采用感光胶片或光电探测器作为感测元件,属于摄影成像遥感。它主要使用可见光远摄镜头照相和可变焦距电视摄像等,感测的是目标及背景反射或自身发出的可见光,记录的信息或拍摄的图像是物体反射光或发光强度的空间分布。可见光遥感是光学遥感中历史最长的一种,是对地观测和军事侦察的主要手段之一。摄影成像的分辨率(G)很高,可以近似地表示为: G=f×R/H 其中f为镜头焦距,R为镜头与底片的综合分辨率,H为高度(或距离)。 红外遥感器: 主要包括红外扫描仪、红外辐射仪等。红外遥感通过探测红外辐射获取目标和背景的辐射温度或热成像。其探测能力取决于目标、背景与周围环境的温度差。红外遥感的最大优点是可获取无光照或薄云下目标和背景的图像。 多谱段遥感: 使用几个不同的谱段同时对一目标或地区进行感测,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可获取目标物更多的信息。多谱段遥感是在可见光和红外遥感的基础上发展起来的,它能明显地分辨多种目标和背景特性,兼有可见光和红外遥感技术的优点。也为高光谱和超高光谱的发展提供了依据。微波遥感: 微波遥感是利用微波遥感设备,对地物目标和环境的微波辐射、反射或散射能量实施探测的技术,其波长为1~1000毫米. 微波遥感按工作模式的不同可分为两种: 有源微波遥感: 主要由成像雷达、微波散射计和微波高度计组成。在卫星遥感中应用较多的是合成孔径雷达,它是利用平台与目标的相对运动产生的多普勒频移,经二维相关处理或匹配滤波处理而获得高分辨率的图像。 无源微波遥感: 主要指各种微波辐射计,它是通过测量自然界各种物体发出的微弱微波辐射来测量目标的辐射特性和实际温度。

基于CCD的多光谱测温技术

课程结业设计(论文) 题目:基于CCD的多光谱辐射测温 技术 学生姓名:隆博 学号:201020754 授课老师:黄梓榆 课程:动态测试与分析 2011年7月1日

摘要: 随着CCD成像技术日益成熟,CCD逐渐开始应用到高温温度场测量当中,并结合多光谱辐射测温技术,弥补了传统测量方法在测量高温温度场时的缺陷。本文概述了CCD的成像原理和多光谱辐射测温原理以及CCD多光谱测温技术在测量高温温度场的优点。通过分析相关资料,概述了彩色CCD和近红外CCD 多光谱测温研究进展,对目前CCD 多光谱测温技术研究发展进行了归纳。 关键词: CCD; 多光谱; 辐射测温技术; 高温温度场 Abstract: With the development of CCD-imaging technology,CCD is increasingly used with the technology of multi-wavelength radiation thermometry in high temperature field measurements instead of traditional methods. The article summarizes the principle of CCD-imaging,the principle of multi-wavelength radiation thermometry and the merit of CCD multi-wavelength radiation thermometry. By analyzing relevant information,it intraduces the development of color CCD radiation thermometry and NIR CCD multi-wavelength radiation thermometry,and summarizes the development of CCD multi-wavelength radiation thermometry. Key words:CCD; multi-wavelength; high temperature field; radiation thermometry

多光谱和全色图像研究背景及意义

1、 研究背景及意义 遥感影像具有成像区域面积大(一幅图像可以包括的地表的面积可达几十*几十平方公里,甚至上百),在外太空可以不受天气影像,成像快速等特点,在工农业生产、军事侦察打击,地球资源普查等方面有着重要应用。一般遥感卫星上具有一个全色传感器,可以对大范围的光谱进行光谱响应,形成全色图像。全色图像是灰色图像,具有高的空间分辨率,但是因为只有一个光谱带,因此光谱分辨率较低,不能确定地物的类型,对地物类型识别极为不利。为了弥补全色图像的不足,卫星上一般同时搭载一个多光谱传感器(常见的有红、绿、蓝、近红外、远红外光谱带等)。由于物理器件的限制,多光谱传感器具有高的光谱分辨率,但是空间分辨率较低。多光谱和全色图像融合就是结合全色图像具有高的空间分辨率,多光谱图像具有高的光谱分辨率的优点,合成具有全色的空间分辨率和多光谱图像的光谱分辨率的融合图像。 2、 研究现状 早期多光谱和全色图像的融合方法有比率法(brovey 方法)和成分替换法(HIS 方法、PCA 方法等),后来随着多尺度分析工具的出现,出现了多尺度图像融合(高通滤波,小波变换,contourlet 变换,NSCT 等变换的多尺度图像融合方法),最近有基于变分方程能量函数最优解的图像融合和基于稀疏表示的图像融合以及两类方法的结合(如HIS 和多尺度分析的结合)的融合方法。 比率方法图像融合的一般化模型是: i i P F MS S ↑= 其中Fi 融合图像的第i 带,P 是全色图像,S 是合成图像,MSi 是上采样后的第i 带多光谱图像。其中合成图像S 是关键,早期是通过多光谱带的平均得到合成图像S ,后来通过多光 谱图像的加权平均得到,现在是通过求最小化差异函数2min P S -P P 得到。该方法得到的

多光谱视频成像技术

多光谱视频成像技术 光谱是由原子内部运动的电子能级跃迁产生的。各种物质的原子内部电子的运动情况不同,所W它们发射的光波也不同。目前观测到的原子发射的光谱线己达百万条,每种原子都有其独恃的光谱,犹如人的指纹一样各不相同。研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,己成为一门专业的学科——光谱学。由于每种原子都有自己的特征谱线,因此可W根据光谱来鉴别物质和确定其化学组成。故而,高光谱成像技术被广泛应用于多个领域。 光谱图像的传统应用领域包括遥感、矿产勘探、危险废物监控等。近些年来,光谱图像被逐渐用来解决机器视觉领域的难题,例如材质辨别、眼科学、燃烧动力学、细胞科学、监控、精细农业和军事安防等。 3.1传统光谱成像技术 谱仪采用光学分光元件(棱镜、光栅等),能够记录下单个像素点的高分辨率光谱信息。为了获取二维光谱图像,传统的光谱成像仪器普遍采用扫描策略,通过牺牲时间分辨率来换取高分辨率光谱信息。按照不同的扫描策略,传统光谱 成像方法主要分为两类:空间域扫描型和光谱域滤波型。空间域扫描式光谱采集方法分为两类:掸扫式和推扫式。掸扫式光谱仪每次记录空间上1个像素点的光谱信息,扫描装畳逐点移动直到所有像素点的光谱信息均记录完毕。为了提升扫描效率,推扫式光谱仪通过移动狭缝的位置,每次记录空间上1条线的光谱信息,狭缝逐线移动直至记录下整个场景的光谱信息。光谱域滤波式光谱仪普遍采用窄带滤波片或者电子控制的液晶变波长带通器件,通过时序切换滤波片来记录不同波段的光谱信息。 整体来说,传统的光谱仪普遍通过连续采样的方式获取3维光谱矩阵信息。为了实现高精度的光谱采集,需要对同一场景进行多次采样。因此,此类方法无法获取动态场景的光谱信息。 3.2计算光谱成像技术 传统光谱成像无法采集动态光谱的弊端,严重阻碍了目标跟踪、环境污染监测、流水线材质识别等领域的光谱应用拓展,能够在一次曝光时间内获取整个高维光谱数据矩阵的技术成为了行业的迫切需求。 光谱数据矩阵具有3个维度,每秒钟的数据达到10Gb量级。1次测量获取如此大数据量的数据超过了奈奎斯特采用极限,但是基于近年来提出的压缩感知理论,这成为了可能。下面介绍几种典型的基于此技术的计算成像式光谱获取方法。 (1)断层式扫描式 断层扫描式光谱仪通过在一个二维平面上投影出整个高维光谱矩阵,实现了单次曝光时间内的光谱获取。断层扫描式光谱仪具备单次曝光光谱获取能力,不使用任何滤波片能够直接记录下不同波段的光谱信息,从而保证了整个系统具备很高的光效率。 (2)编码光圈式 压缩感知理论表明,从有限的低维平面投影中重建高维数据矩阵是理论上可行的。美国杜克大学David.J.Brady教授首次将此思想引入到光谱采集中,其基本假设是自然场景光谱具备多尺度内在稀疏属性。为了实现编码压缩感知,相机中惯常被用来调节光通量的光圈被替换成二维随机编码器件。场景的入射光线透过成像物镜第一次成像在编码光圈表面,接着经过中继镜和棱镜色散后,最后在探测器上第二次成像。 (3)棱镜掩膜式 该系统使用掩模或微透镜阵列的空间采样方法,结合传统色散方式,通过高分辨率相机对散开的光谱进行采集,能够在短曝光时间内实现光谱的视频采集。棱镜掩膜式系统的光谱采集过程:场景光线经掩模采样后被三棱镜色散,根据“光路可逆原理”推导掩模空间分布模型,

高光谱,多光谱及超光谱

1、光谱分辨率 光谱分辨率spectral resolution 定义1:遥感器能分辨的最小波长间隔,是遥感器的性能指标。遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。 定义2:多光谱遥感器接收目标辐射信号时所能分辨的最小波长间隔。 光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。细分光谱可以提高自动区分和识别目标性质和组成成分的能力。 传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。 举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。 一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。 2、什么是高光谱,多光谱及超光谱 高光谱成像是新一代光电检测技术,兴起于2O世纪8O年代,目前仍在迅猛发展巾。高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。 (1)多光谱成像——光谱分辨率在delta_lambda/lambda=0.1mm数量级,这样的传感器在可见光和近红外区域一般只有几个波段。 (2)高光谱成像——光谱分辨率在delta_lambda/lambda=0.01mm数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm 级。 (3)超光谱成像——光谱分辨率在delta_lambda/lambda =O.001mm=1nm数量级,这样的传感器在可见光和近红外区域可达数千个波段。 众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。因此,可以说光谱成像技术是光谱分析

多光谱相机的原理及组成

多光谱相机的原理及组成 多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率高但是数据量大难以进行分析、存储、检索,而多光谱成像是将所有的信息结合在一起,这不仅仅是二维空间信息,同时也把光谱的辐射信息也包含在内,从而在更宽的谱段范围内成像。 多光谱相机的基本构成 1.光学系统 可以在各个谱段内范围内成像,可以很好的的控制杂散光,是多光谱相机最重要的部分,对工作谱段范围和分辨能力起了决定性的作用,还可以设定工作焦距视场角大小等‘ 2.控制和信息处理器 控制监督多光谱相机的整个工作过程,并收集图像数据,并进行储存。 3.热控装置 由温度控制器、隔热材料、散热器、热控涂层等组成 4.其他结构 物镜、电路系统、探测器及其他零配件 多光谱相机的工作谱段范围 人眼所能能识别的光谱区间为可见光区间,波长从400nm到700nm;普通数码相机的光谱响应区间与人眼识别的光谱区间相同,包含蓝、绿、红、三个波段;而多光谱相机的工作谱段范围在其基础上,可以分可见光、近红外光、紫外光等每台多光谱相机的分辨率不同,所应用的领域也不同 就比如说我们在做植被调查的时候,植被的可见光波段对绿色比较敏感对红色和蓝色反射较弱。相对于可见光波段,植被在近红外波段具有很强的反射特性,多数植被在可见光波段的光谱差异很小。而在近红外波段的光谱差异更大,光谱差异越明显越有利于分类。 光谱特性 我们知道像素运用复杂的大气准则来,复原反射光谱和辐射光谱所的到的数据分析,得到不同物质的反射率不同,称之为光谱特征。如果有足够的光谱特证,可用于识别场景中的专用材质,其中包括光谱范围、宽度、分辨率。范围是指相机获取图像来自的光谱段,谱段的宽度反映了谱段设置的要求、通过努力衡量大气中物质的光谱特性还有传感器的光谱响应,就要考虑大气中的吸收和散射。多光谱相机的光学系统 光学系统是指由透镜、反射镜、棱镜和光阑等多种光学元件按一定次序组合成的系统。通常用来成像或做光学信息处理。曲率中心在同一直线上的两个或

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生发贤 同组学生惠明、涛 硕士导师志景

2016 年 11 月 一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱围的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统的分类

成像光谱技术简介

成像光谱技术 1.成像光谱技术发展简述 光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥感技术兴起,空间探测和地表探测一时成为科学界研究的热点,人们希望得到的不单纯是目标的影响信息或者目标的光谱信息,而是同时得到影像信息和光谱信息,这一需求极大的导致了成像技术和光谱技术的结合,催生出了成像光谱技术。 所谓光谱成像技术,其本质是充分利用了物质对不同电磁波谱的吸收或辐射特性,在普通的二维空间成像的基础上,增加了一维的光谱信息。由于地物物质组成的不同,其对应的光谱之间存在差异(即指纹效应),从而可以利用地物目标的光谱进行识别和分类。光谱成像技术可以在电磁波段的紫外、可见光、近红外和中红外区域,获取许多窄并且光谱连续的图像数据,为每个像元提供一条完整并且连续的光谱曲线。 图1 成像光谱技术示意图 图1.1就是成像光谱技术的示意图,成像光谱仪得到一个三维的数据立方体,从每个空间象元都可以提取一条连续的光谱曲线,通过谱线的特征分析,继而用于后续的测探等目的。 2.成像光谱仪的分类 成像光谱仪是成像光谱技术发展的必然产物,是可以同时获取影像信息与像元的光谱信息的光学传感器,是成像光谱技术得以实现的实物载体,根据不同的分类标准可以进行多种分类,主要有以下几种: (1)根据成像光谱仪的光谱分辨率不同,可以分为多光谱成像仪

(Multispectral Imager, MSI),高光谱成像仪(Hyperspectral Imager, HSI),超光谱成像仪(Hyperspectral Imager, USI)。 多光谱成像仪:获得的目标物的波段在3~12之间,光谱分辨率一般在 100nm左右,主要用于地带分类等方面。 高光谱成像仪:获得的目标物的波段在100~200之间,光谱分辨率在10nm 左右,被广泛用于遥感中。 超光谱成像仪:获得的目标物的波段在1000~10000之间,光谱分辨率在 1nm以下,通常用于大气微粒探测等精细探测领域。 (2)按照分光原理的不同可以分为棱镜色散型、光栅衍射型、滤光片型、干涉 型以及计算层析型。 棱镜色散型和光栅衍射型分别是利用棱镜的色散和光栅的衍射来获取目标物的光谱,这两类光谱仪都是直接型光谱仪,即可以直接得到目标物的光谱曲线,具有原理简单和性能稳定等优点。 滤光片型光谱仪是采用相机加滤光片的方案,分光元件为滤光片,有多种形式,有线性滤光片、旋转滤光片等。这种光谱仪也是一种间接成像光谱仪,需要调制才能获得整个数据立方体 干涉型光谱仪是采用干涉仪实现两束相干光的干涉,从而获得目标物的干涉图。该类型的光谱仪其采集到干涉图和最终需要反演得到光谱图之间存在傅里叶变换关系,故其也称傅里叶变换光谱仪。 (3)按照扫描方式不同,成像光谱技术可分为挥扫式(Whiskbroom)、推扫式(Pushbroom)和凝视(Staring)成像光谱仪。 挥扫视:主要利用扫描镜,将空间信息按照一定的顺序输入,再由光谱仪对各点进行光谱分光,这类光谱仪的探测器一般为线阵。 推扫式:采用一个垂直于运动方向的面阵探测器,先将扫描成像于光谱仪的狭缝上,在通过运动获得另一维的光谱数据。 凝视型:无需探测器的运动,在任意时刻即可获取目标的二维空间信息以及一维光谱信息。 此外,还有多种分类方法,比如按照数据称重理论和调制方式以及搭载平台的不同等等。 3.成像光谱技术的应用 成像光谱技术应用方向可以分为两大类:军用和民用。在军用方面,由于成像光谱仪特别是高光谱成像仪具有在光谱上区分地物类型的能力,因此它在地物的精细分类、目标检测和变化检测上体现出较强的优势,成为一种重要的战场侦察手段。早在20世纪末,美国军方就有实验表明高光谱图像可以分辨出

实验5多光谱彩色合成

实验5 多光谱图像合成 一、实习目的和要求 1、了解彩色的基本特性和相互关系。 2、掌握三原色及其补色,掌握加色法及其减色法。 3、认识彩色正负像片的产生过程。 4、彩色合成原理 二、材料和工具 卫星图像、计算机,遥感图像处理软件等。 三、原理与方法 遥感图像光学处理的目的是通过光学手段增强目标地物的影像差异或影响特征,将目标地物从环境背景信息中突出出来。 1、色度学的基础知识 (1)颜色与视觉:在电磁波谱中,波长在0.38~76um范围的电磁波能够引起视觉反应,产生色觉的差异。物体的颜色取决于两方面的因素,对发光体而言,物体的颜色由其发出的光所具有的波长而定。常见的地物多为非发光体,其颜色取决于地物对可见光各波段的吸收、反射和透射等特性。对不透明地物而言,其颜色取决于地物对可见光的吸收、反射特性。地物对可见光各波段具有选择性的吸收和反射,则产生了彩色;地物对可见光各波段不具有选择性的吸收和反射,即对各波段具有等量吸收和反射,则产生非彩色。 (2)彩色的基本特性:明度、色调和饱和度为彩色的基本特性。明度是指彩色的明亮程度,是人眼对光源或物体明亮程度的感觉,彩色光亮度越高,人眼感觉越明亮,即有较高的明度。明度的高低取决于光源光强及物体表面对光的的反射率。色调是色彩彼此相互区分的特性,色调取决于光源的光谱组成和物体表面的光谱反射特性。饱和度是彩色的纯洁性,取决于物体表面的反射光谱的选择性程度,反射光谱越窄,即光谱的选择性越强,彩色的饱和度就越高。非彩色,即黑白色只用明度来描述,不使用色调和饱和度。 (3)颜色立体:下左图是表示明度、色调和饱和度三者之间关系的理想模型。模型呈枣核形,中间垂直轴代表明度,从底端到顶端,由黑到灰再到白,明度逐渐递增。中间水平面的圆周代表色调,顺时针方向由红、黄、绿、蓝到紫逐步过渡。圆周上的半径大小代表饱和度,半径最大饱和度最大,沿半径向圆心移动时饱和度逐渐降低,到了中心便成了中灰色。如果离开水平圆周向上、下(白或黑)的方向移动,也说明饱和度降低。 (4)互补色、三原色和彩色相加:当两种颜色混合产生白色或灰色时,这两种颜色为互补色。当三种颜色相混合时,其中的任一种不能由其余两种颜色混合相产生,这三种

多光谱影像分类实践

多光谱影像分类实践 杨沈斌 南京信息工程大学应用气象学院 概述 遥感影像分类是遥感应用的重要内容之一。多光谱遥感图像通过亮度或像元值的高低差异,即地物光谱信息在各波段图像上的反映,以及地物分布的空间特征来表示不同地物的差异。因此,不同地物的光谱特征差异及空间分布特性是区分不同地物的物理基础。遥感图像分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,将图像中每个像元按照特定的规则或算法划分为不同的类别,识别不同地物,并获取不同地物的空间分布。遥感图像分类主要分为两种方法:监督分类与非监督分类。另一种是将多源数据应用于图像分类中,发展成基于专家知识的决策树分类。 监督分类方法的一般过程: 1)定义训练样本 2)执行监督分类 3)评价分类结果 4)分类后处理 非监督分类方法的一般过程: 1)执行非监督分类 2)类别定义 3)合并子类 4)评价结果 监督分类方法的实践操作 以ENVI软件自带的Landsat TM数据can_tmr.img为例,运用最大似然分类算法(Maximum Likelihood Classification)进行影像分类的操作。按照该分类方法的一般过程执行,步骤如下: 1. 启动ENVI,使用File—Open Image File命令并打开ENVI软件默认路径下的can_tmr.img影像。打开后,使用波段组合R=7、G=4、B=2方式Load RGB显示,如图1所示。从Available Bands List中可以看出,该影响不带投影坐标系统(即没有蓝色的小地球图标)。从打开的图像中,基本上可以看出,绿色对应植被区域,山区有植被覆盖(深绿色),山的背阳面为黑色,白色的区域主要对应裸地(但笔者不是非常确定)。利用Z Profile(Spectrum)工具提取植被、河流、裸地的波段光谱曲线,如图2所示。从图中可以看出,不同地物的光谱曲线差异明显。

全色与多光谱并用空间相机的混叠问题

第43卷第5期 光电工程V ol.43, No.5 2016年5月Opto-Electronic Engineering May, 2016 文章编号:1003-501X(2016)05-0035-06 全色与多光谱并用空间相机的混叠问题 田富湘,何欣 ( 中国科学院长春光学精密机械与物理研究所,长春 130033 ) 摘要:目前大多数空间相机不仅具有高分辨力的全色谱段,还包含越来越多的多光谱谱段。对于这种全色与多光谱并用空间相机,为使多光谱谱段具有足够高的信噪比,多光谱谱段像元尺寸普遍较大,Fλ/d较小,容易出现混叠问题。从采样式光学成像系统的模型出发,对混叠产生的机理进行详细分析,介绍了采用虚假响应来度量混叠程度的方法。以Wordview-2为例,采用虚假响应法对全色与多光谱并用空间相机的混叠问题进行了定量计算分析。 结果表明,Wordview-2全色谱段的混叠大小为7.35%,而多光谱谱段的混叠大小为14.76%~18.15%,后者是前者的2~2.5倍。最后,分析了混叠的影响和抑制混叠的措施。 关键词:空间相机;多光谱;混叠;虚假响应 中图分类号:V445.8 文献标志码:A doi:10.3969/j.issn.1003-501X.2016.05.006 Aliasing Problems of Space Cameras including Panchromatic and Multispectral Bands TIAN Fuxiang,HE Xin ( Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China ) Abstract: At present, most space cameras contain not only panchromatic band with high resolution but also more and more multispectral bands. In order to obtain high signal to noise ratio of multispectral bands for this kind of space camera, sensors with big size element was applied for multispectral bands , so the system parameter Fλ/d turned smaller, and then aliasing problems appeared. Started from the model of sampling optical imaging system, the reasons for aliasing were analyzed, and the method to denote the extent of aliasing by spurious response was introduced. WordView-2 was taken as an example to analyze the aliasing problems of space cameras with panchromatic and multispectral bands. The results show that the aliasing of WordView-2’s panchromatic band is 7.35%, the aliasing of WordView-2’s multispectral bands is 14.76%~18.15%, and the latter is 2~2.5 times of the former. At last, the effects of aliasing and the measures to restrain aliasing were illustrated. Key words: space camera; multispectral bands; aliasing; spurious response 0 引 言 目前空间相机普遍采用以光电探测器为感光元件的采样式光学成像系统。采样式光学成像系统包含采样环节,具有采样的移变特性,调制传递函数(MTF)与景物和采样点间相位有关,欠采样会产生混叠[1]。根据采样定理,要不失真地恢复被采样信号,采样频率必须大于2倍的被采样信号最高频率[2]。为保证奈奎斯特频率处具有足够高的MTF,目前空间相机普遍为欠采样光学成像系统。对于欠采样光学成像系统,采样后信号的频谱会产生重叠,高于奈奎斯特频率的频率成分将被重建成低于奈奎斯特频率的信号,即产生混叠。混叠会在最终输出图像中引入伪像和畸变,影响图像判读[3]。混叠在采样式空间光学遥感器中普遍 收稿日期:2015-08-21;收到修改稿日期:2015-12-16 基金项目:中国科学院三期创新工程(07423JN70) 作者简介:田富湘(1983-),男(汉族),福建三明人。助理研究员,硕士,主要研究工作是光学仪器光机结构设计。E-mail:tian.fuxiang@https://www.360docs.net/doc/3f6307167.html,。 https://www.360docs.net/doc/3f6307167.html,

相关文档
最新文档