完整版一元一次方程及其解法

完整版一元一次方程及其解法
完整版一元一次方程及其解法

3.1

元一次方程及其解法

1. 一元一次方程 (1) 一元一次方程的概念 只含有一个未知数(元),未知数的次数都是 1,且等式两边都是整式的方程叫做一元一 次方程.如:7 — 5x = 3,3(x + 2) = 4— x 等都是一兀一次方程. 解技巧正确判断一元一次方程 判断一元一次方程的四个条件是: ①只含有一个未知数(元);②未知数的次数都是一次; ③未知数的系数不能为 0;④分母中不含未知数,这四个条件缺一不可. 元' (2)方程的解

①概念:使方程两边相等的未知数的值叫做方程的解. ②方法:要检验某个数值是不是方程的解,只需看两点: 元方程的解,也叫做方程的根. 一看,它是不是方程中未知数 的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的 解. 如x = 3是方程2x — 4= 2的解,而y = 3就不是方程2x — 4= 2的解. (3)解方程 求方程的解的过程叫做解方程. 方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值), 而解方程是指求出方程的解的过程. 【例1 — 11下列各式哪些是一元一次方程 ( 1 1 , A . S=7ab ; B.x — y = 0; C.x = 0; D. _~ = 1

; 2x + 3 =0 ; H.x + 2.

解析:E 中不含未知数,所以不是一元一次方程; E.3 — 1 = 2; F.4y — 5= 1; G.2x 2

+ 2x + 1 G 中未知数的次数是 2,所以不是 H 虽然形式上字母 元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程; 的个数是一个,但它不是等式,所以也不是一元一次方程; D 中分母中含有未知数,不是 元一次方程;只有 C , F 符合一元一次方程的概念,所以它们是一元一次方程.

答案:CF

【例1 — 21 x = — 3是下列方程(

A . — 5(x — 1) = — 4(x — 2) C .尹+ 5= 5

解析:对于选项A ,把x =— 3代入所给方程的左右两边,左边=—

5 X (— 3— 1) = 20,

右边=—4X (— 3 — 2) = 20,因为左边=右边,所以x =— 3是方程一 5(x — 1) = — 4(x — 2)的解; 对于选项B ,把x = — 3代入所给方程的左右两边,

左边=4X (— 3) + 2=— 10,右边=1,因

为左边工右边,所以x =— 3不是方程4X + 2= 1的解,选项C , D 按以上方法加以判断,都 不能使方程左右两边相等,只有

A 的左右两边相等,故应选 A.

答案:A

2. 等式的基本性质

(1) 等式的基本性质

① 性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.

用式子形式表示为:

如果 a = b ,那么 a + c = b + c , a — c = b — c.

② 性质2 :等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:

如果 a = b ,那么 ac = bc , |= C(c 工 0).

③ 性质3:如果a = b ,那么b = a.(对称性) 如由一8 = y ,得 y =— 8.

④ 性质4 :如果a = b , b = c ,那么a = c.(传递性) 女口:若/ 1 = 60° / 2=/ 1,则/ 2= 60°

(2) 等量代换 在解题过程中,根据等式的传递性,一个量用与它相等的量代替, 谈重点应用不等式的

性质的注意事项

(1) 应用等式的基本性质 1时,一定要注意等式两边同时加上

整式,才能保证所得结果仍是等式. 这里特别要注意:“同时”

坏相等关系.

(2) 等式的基本性质 2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质

1

的区别.

⑶等式两边不能都除以 0,因为0不能作除数或分母. 【例2— 11下列运用等式的性质对等式进行的变形中,正确的是

( ).

5

B .若 7a = 5,贝U a = y

C .若x

= 0,贝U x = 2

D .若x

— 1 = 1,贝U x — 6= 1

2 6 解析:首先观察等式的左边是如何由上一步变形得到的, 右边进行相应的变形,得出结论. A 根据等式的基本性质 1,等式U 的两边都减去3y +2,左边是y ,右边是一 3,不是1; C 根据等式的基本性质 2,两边都乘以2,右边应为0,不是2; D 根据等式的基本性质 2, 左边乘以6,而右边漏乘6,故不正确;只有 B 根据等式的基本性质 2,两边都除以 7得 到 a = 7.

答案:B

)的解.

B . 4x + 2= 1 D3x — 1 = 0

简称等量代换.

(或减去)同一个数或同一个

和“同一个”,否则就会破

A .若 4y + 2= 3y — 1,贝U y = 1 确定变形的依据,再对等式的

【例2— 21利用等式的基本性质解方程:

(1)5x — 8 = 12; (2)4x — 2= 2x ; (3)x + 1 = 6; (4)3 — x = 7.

分析:利用等式的基本性质求解.

先利用等式的基本性质

1将方程变形为左边只含有未

知数的项,右边含有常数项,再利用等式的基本性质

2将未知数的系数化为1.

解:(1)方程的两边同时加上

8,得5x = 20.

方程的两边同时除以 5,得x = 4.

⑵方程的两边同时减去

2x ,得2x — 2 = 0. 方程的两边同时加上 2, 方程的两边同时除以

2, (3) 方程两边都同时「减去 得 x + 1— 1 = 6 — 1,

? - x = 6 — 1.”

(4) 方程两边都加上x ,

得 3 — x + x = 7 + x,3= 7+ x , 方程两边都减去7, 得 3 — 7= 7 + x — 7, ?? — 4= x , 即卩 x = — 4.

3. 解一元一次方程 (1)移项

① 移项的概念及依据: 把方程中的某一项改变符号后, 从方程的一边移到另一边,

这种

变形叫做移项.

因为方程是特殊的等式,所以移项的依据是等式的基本性质 1.

② 移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边. ③ 移项的过程:移项的过程是项的位置改变和符号变化的过程.

即对移动的项进行变号

的过程,^口,一 2 — 3x = 7,把一2从方程的左边移到右边,一 2在原方程中前面带有性质符

号“-”,移到右边后需变成“ + ”, 在移动的过程中同时变号, 没有移动的项则不变号. 所 以由移项,得一3x = 7+ 2.

④ 要注意移项和加法交换律的区别:

移项是把某一项从等式的一边移到另一边,

变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如, + 5x

= 1,把 11x = 11变成 号. 辨误区 在移项时

注意 “两变”:一变性质符号,即 “ + ”号变为“—”号,而“—”号变为 “+”号;二变位置,把某项由等号的一边移到另一边.

(2)解一元一次方程的步骤

解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为

得 2x = 2. 得 x = 1.

1,

移项要

3

5x — 15x + 3从方程的左边移到右边要变号,得 5x = 1 — 3,是属于移项;而把 5x + 11x — 15x = 11,是利用加法交换律,不是移项而是位置的移动,所以不变

移项时应注意的问题

1具体

儿一次方程 (1)这些步骤「在解方程时不一定全部都用到,也不一定按照顺序进行, 可将解出的结果代入原方程进行检

解技巧巧解 值得注意的是: 可根据方程的形式,灵活安排步骤; (2)为了避免错误, 验. 【例3— 11下列各选项中的变形属于移项的是 ( A .由 B .由 C .由 D .由 解析: )? 2x = 4,得 x = 2

7x + 3 = x + 5,得 7x + 3= 5+rX

8 — x = x — 5,得一x — x = — 5— 8 x + 9= 3x — 1,得 3x — 1 = x + 9

选项A 是把x 的系数化成1的变形;选项 B 中x + 5变成5+ x 是应用加法交换 律,只是把位置变换了一下;选项 C 是作的移项变形;选项 D 是应用等式的对称性 “a = b , 则b = a ”所作的变形.所以变形属于移项的是选项 C. 答案:C 【例3-21解方程宁-5 =亍.

分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数 12,去掉分母得

4(2 — x) — 60= 3(x — 1),再按照步骤求解,特别注意— 5不能漏乘分母的最小公倍数 12. 解:「去分母,方程两边都乘以 12, 得 4(2 — X)— 60= 3(x — 1). 去括号,得 8 — 4x — 60= 3x — 3. 移项,得—4x — 3x =— 3 — 8+ 60. 合并同类项,得—7x = 49. 两边同除以一7,得x = — 7.

4.解复杂的一元一次方程

解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不

是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方

程和方程组的基础. 解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为

x= a(a是一个已知数).

(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同

的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分

数的基本性质,把小数或百分数化为整数再去分母运算.

(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.

▼ I .■ "F亠E 0.4x—9 X —5 0.03 + 0.02x 【例4】解万程 C U — =

0.5

0.03

0.4x—9 0.03 + 0.02X

分析:由于0 5和—0~03—的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子瓷^9的分子、分母中都乘以10,变为^^—聖,在式子驾三严的

3 + 2x

分子、分母中都乘以100,变为然后去分母,再按解一元一次方程的步骤求解.

解:分母整数化,得

4x—90 X—5 3+ 2x

5 — 2 = 3

去分母,得

6(4x —90)—15(x—5) = 10(3 + 2x).

去括号,得

24X—540 —15X + 75= 30 + 20x.

移项,得

24X—15X—20x = 540 —75 + 30.

合并同类项,得

—11x= 495.

两边同除以一11,得

x=—45.

5.与一元一次方程的解相关的问题

方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点. 解题的关键是理

解方程的解的概念.

(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.

(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.

【例5—1]关于x的方程3x+ 5= 0与3x+ 3k = 1的解相同,贝U k=( ).

B 4

B . 3

5

解析:解方程3x+ 5= 0,得x=—3.

5 将x = —3代入方程3x+ 3k = 1,

得一5+ 3k= 1,解得k= 2,故应选C.

答案:C

【例5—2]若关于x的方程(m —6)x= m —4的解为x= 2,贝U m =

解析:把x= 2代入方程(m —6)x = m—4,

得(m—6) X 2 = m—4,解得m= 8.

答案:8

6.一元一次方程的常用解题策略

我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,

化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解

一元一次方程常用的几种技巧.

(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些

题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简

便的方法.

(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.

有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激

活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.

【例6—1]解方程3 3 ^x —1—4 = |x+ 1.

3 4 3 3 4 1 1

分析:注意到4X 4= 1,把3乘r以中括号的每一项,则可先去中括号,-X 4 * —4

3 11 3

=|x + 1,再去小括号为^x—4—3 = |x + 1,再按步骤解方程就非常简捷了.

1 1 3

解:去括号,得|x —1—3=討1.

移项,合并同类项,得一x= 17.

17

两边同除以一1,得x=——.

x+ 3 x+ 2 = x+ 1 x+ 4

【例6-2]解方程7 -5 = 6

分析:此题可按照解方程的一般步骤求解, 4 -

但本题若直接去分母,则两边乘以最小公倍

数420,运算量大容易出错,我们可两边分别通分, 5 x+ 3 —7 x+ 2 2 x+ 1 —3 x+ 4

35 12

把分子整理后再按照解一元一次方程的步骤求解.

—x — 10

.

去分母,得「12( — 2x + 1) = 35( — x — 10). 去括号,得—24x + 12=— 35x — 350. 移项、合并同类项,得

11x = — 362.

362

两边同除以11,得x =—3

6j 2

.

题目中,由此可发掘隐含的条件,列一元一次方程解题, 理解掌握数学基础知识.

【例7— 11 (1)当a = ___________ 时,式子2a + 1与2— a 互为相反数. ⑵若6的倒数等于X + 2,则x 的值为 __________________ .

解析:(1)根据互为相反数的两数和为 0,可得一元一次方程 2a +c 1+ (2 — a) = 0,解得a =—3;

(2)由倒数的概念:乘积为 1的两个数互为倒数,可得一元一次方程 6(x + 2) = 1,解 /曰 11

得 x

=— 6 .

11

答案:⑴―3 (2)-—

解:方程两边分别通分,得 5x + 3 — 7x + 2 2x + 1 — 3x + 4

.化简, 35

12

—2x + 1

得—3^ =

7.列一元一次方程解题

(1) 利用方程的解求未知系数的值 当已知方程的解求方程中字母系数或有关的代数式时,

代入原方程,得到关于字母系数的等式 (2) 利用概念列方程「求字母的值

利用某些概念的定义,可以列方程求出相关的字母的取值, 如根据同类项的定义或一元

一次方程的定义求字母的值.

列方程求值的关键是根据所学的知识找出相等关系. 的取值. 谈重点列一元一次方程注意挖掘隐含条件

许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在

即将方程的解 (或者可以看作关于字母系数的方程),再求解即可.

常常采用代入法,

再列出方程,解方程从而求出字母

发掘隐含条件时需要全面、深刻地

【例7-2】已知x=- 2是方程号+誉- 分析:把x=- 2代入原方

程,原方程就变成了以k的方程,可以求出k的值.

解:把x=-2代入原方程,得

-2-k 3k+ 2 - 2+ k

+ - (-2)=

去分母,得

2(- 2-k)+3k+ 2-(- 2) X 6 = 3(-2+ k).

去括号,得

—4-2k+3k+ 2 + 12=- 6 + 3k.

移项、合并同类项,得

-2k=- 16.

方程两边同除以一2,得k= 8.

黑体小四

课后作业

【题

01】

下列变形中,不正确的是(

【题02】

【题03】

【题04】A 若x2 5x,则x 5 .

C若盘1 x,则r

下列各式不是方程的是(

A y2

c. p2

解为x

A 2x

C 3(x

B.

D.

B.

若7x 7,则x 1 .

2n

ax ay .

C 2

2pq q

2的方程是(

2) (x 3) 5x

D.

B.

D.

若关于x的方程2x n23(n 4)0是一儿

5x

次方程,求n的值.

x =爭的解,求k的值.

k为未知数的新方程,解含有未知数

【题05】 已知(2 m 3)x (2 3m) x 1是关于x 的

2

儿一次方程,则 m

【题06】 若关于 x 的方程 (2 |m|)x 2

(m 2)x (5

2 m) 0 是 儿一次方程,求 m 的解.

【题07】 若关于 x 的方程 (k 2)x k 1

5k 0是一儿' 次方程,则

【题08】 若关于 x 的方程 (k 2)x k 1

5k

儿一次方程,则

.若关于x 的

方程 (k 2

2)x 4kx

5k 0

是,

儿一次方程, 则方程的解 x =

【题09】 (3a 2

8b )x 5bx 7a 0是关于x 的

儿一次方程,且该方程有惟一解,则

21 40 B.空

40

56 15

15

【题10】解方程:5(3 |x)

3(2

【题11】解方程: |(4y)

1(y

【题

12】

解方程:

【题13】解方程:

2x 5x

6

5

才)36

3)

【题14】解方程:

【题

15】

解方程:

【题

16】

解方程:

【题

17】

解方程:

【题18】解方程:

1

——

X

0.7

0.5

0.2X

丄(0.17 0.2X) 1

0.03

3(x 4)

------ 5x 19

0.125

0.45 0

.015 0.01X0.5X 2.5

0.25

0.1X 0.9 0.2X

0.03 0.7

0.015

2[4X

3

2 1

才2)]

【题19】解方程:-[丄(丄X 1) 6] 2 0

3 4 3

一元一次方程的解法(基础)知识讲解及巩固练习

1.(2015?广州)解方程:5x=3(x ﹣4) 【答案与解析】 解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6. 【总结升华】方法规律:解较简单的一元一次方程的一般步骤: (1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边. (2)合并:即通过合并将方程化为ax =b (a ≠0)的形式. (3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a =. 举一反三: 【变式】下列方程变形正确的是( ). A .由2x -3=-x -4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332 x -=,得x =-1 D .由3=x -2,得-x =-2-3 【答案】D 类型二、去括号解一元一次方程 2.解方程: 【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56 x =- (2)去括号得:32226x x --=- 移项合并得:47x -=- 解得:74 x = 【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三: 【变式】解方程: 5(x -5)+2x =-4. 【答案】解: 去括号得:5x -25+2x =-4. 移项合并得: 7x =21. 解得: x =3. 类型三、解含分母的一元一次方程 ()()1221107x x +=+()()() 232123x x -+=-

一元一次方程解法练习(经典)

一元一次方程解法练习 1.若ax +b=0为一元一次方程,则__________. 2.当=m 时,关于字母x 的方程0112=--m x 是一元一次方程. 3.若9a x b 7 与 – 7a 3x –4 b 7是同类项,则x= . 4.如果()01122=+++-y x x ,则2 1x y -的值是 . 5.当=x ___时,代数式24+x 与93-x 的值互为相反数. 6.已知08)1()1(2 2=++--x m x m 是关于x 的一元一次方程,则m= . 7.已知2-=x 是方程042=-+m x 的根,则m 的值是( ) A. 8 B. -8 C. 0 D. 2 8.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( ) A .1 B .-1 C .-1或1 D .任意数 9.下列方程变形中,正确的是( ) (A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2 332=t ,未知数系数化为1,得;1=x (D )方程 15.02.01=--x x 化成.63=x 10.方程6 2123x x +=-去分母后可得( ) A 3x -3 =1+2x , B 3x -9 =1+2x , C 3x -3 =2+2x , D 3x -12=2+4x ; 11.如果关于x 的方程01231=+m x 是一元一次方程,则m 的值为( ) A .3 1 B 、 3 C 、 -3 D 、不存在 12.若32,24,A x B x =-=+使A -B=8,x 的值是( ) A .6 B .2 C .14 D .18

一元一次方程的解法及应用.学生版

定 义 示例剖析 等式的概念:用等号来表示相等关系的式子,叫做等式. 123+=,15x +=, s ab =,a b c mxy n ++=+ 等式的类型 恒等式:无论用什么数值代替等式中的字母,等式总能成立. 条件等式:只能用某些数值代替等式中的字母,等式才能成立. 矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立. 33x x ==, 方程56x +=需要1x =才成立. 如32=,125+=,11x x +=-. 等式性质1:等式两边都加上(或减去)同一个数(或式子..),所得结果仍是等式. 等式性质2:等式两边都乘以(或除以)同一个数(除数不能是.....0. ),结果仍是等式. 若a b =,则a c b c ±=±. 若a b =,则ac bc =, 若a b =且0c ≠,则a b c c =. 在等式变形中,以下两个性质也经常用到: ①等式具有对称性,即:如果a b =,那么b a =; ②等式具有传递性,即:如果a b =,b c =,那么a c =. 【例1】 下列各式中,哪些是等式?是等式的请指出类型. 43x -、15713++=、1 722 y -=、231x x =+、64y -、5x y +=、π 3.14≈,20a b +>, 22 x x =,7171x x +=-. 夯实基础 模块一 等式的概念及性质 一元一次方程的解法 及应用

【例2】 ⑴ 根据等式的性质填空: ① 4a b =-,则a b +=______; ② 359x +=,则39x =- ; ③ 683x y =+,则x =________; ④ 1 22 x y =+,则x = . ⑵ 已知等式325a b =+,则下列等式中不一定成立的是( ) A .352a b -= B .3126a b +=+ C .325ac bc =+ D .25 33 a b =+ (北京二中期中) ⑶ 下列变形中,根据等式的性质变形正确的是( ) A .由12 33 x -=,得2x = B .由3222x x -=+,得4x = C .由233x x -=,得3x = D .由357x -=,得375x =- (海淀区期末) 定 义 示例剖析 方程:含有未知数的等式...即: ①方程中必须含有未知数; ②方程是等式,但等式不一定是方程. 例如123+=是等式不是方程. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解. 解方程:求方程的解的过程... 例如3x =是方程36x +=的解 方程中的已知数:一般是具体的数值. 方程中的未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示. 例如50x +=中, 5和0是已知数, 例如关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数. 一元一次方程:只含有一个..未知数,并且未知数的最高次数....是1,系数不等于...0.的整式..方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 235x +=,10y -=,3x = 最简形式:方程ax b =(0a ≠,a ,b 为已知数)的形式叫一元一次方程的最简形式. 例如35x =,27x =等. 标准形式:方程0ax b +=(0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 例如21040x x +=+=, 易错点1:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 易错点2:任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一 能力提升 模块二 方程的相关概念

一元一次方程及其解法

学科:数学凤阳县十校合作师生共用教学案 课题:3.1一元一次方程及其解法课型:新授课教学时间:第二课时 年级:七年级主备:黄湾中学程方林审核:武善礼、黄海雷授课人: 教学目标: 1、巩固一元一次方程概念;理解“移相”概念。 2、能够综合应用等式性质及“移相”法解一元一次方程。培养学生的观察及综合能力,提高他们分析问题和解决问题的能力。 3、在经历方程求解的过程中,使学生自己认识到学习方程知识的重要性,感受学习数学的价值,使学生初步养成正确思考问题的良好习惯。 教学重点:一元一次方程的解法。 教学难点:“移相”法解一元一次方程时,被移的相变号的依据 教学过程: 一、课前准备: 1、等式的性质有(1), (2)。 2、下列各变形分别用了等式的那一条基本性质 (1)由x + 4 = 6,得x = 6 – 4;() (2)由3 x= 2x + 5,得3 x – 2 x = 5;() 二、导入新课: 创设问题情境 活动:观察下图,你能得到什么结论?( 表示x) x + 2 = 5 x = 5 – 2

3 x = 2 x + 2 3 x – 2 x = 2 2 x = 6 x = 6 ÷ 2 交流:用天平测量物体的质量时,常将物体放在天平的左盘,在右盘内放上砝码,使天平处于平衡状态,这时两边的质量相等,就可以测得该物体的质量。 如果我只拿走天平一边的一部分物体会有什么现象呢? 如果要使天平重新达到平衡,我们可以如何操作? 讨论:请认真思考并把你的想法写出来。 三、探究导学: (—)独立思考、解决问题 首先各小组集体研讨上面提出的问题,汇总结果,之后展示各小组成果。教师总结 。 (二)师生探究、合作交流 综述:通过上面的试验得出的方法可以用来解决数学问题。本节课内容:用移相法解一元一次方程。 观察:仔细观察下面的解答过程2 x – 4 = 18 2 x = 18 + 4 你发现了什么? 讨论:各小组认真讨论,体会前后变化在关键项的位置及符号上的变化的特点。你的结论是 。 归纳: 叫做移相。移相的根据是。 应用:解方程: 3 x + 5 = 5 x –7 示范:解移相,得3 x – 5 x = – 7 –5 合并同类项,得–2 x = – 12 两边都除以-2,得x = 6 思考:本题有无其它的变形方法?如果你认为有请你把你的想法或解法写在下面 。 互动:下面的移相对不对?如果不对,错在哪里?应当怎样改正? (1)从9 + x = 7,得x = 7 + 9 (2)从5 x = 7 – 4 x,得5 x – 4 x = 7 (3)从2 y – 1 = 3 y + 6,得2 y – 3 y = 6 – 1

一元一次方程的解法

一元一次方程的解法 【知识回顾】 1.下列等式的变形是否正确?正确的打“ √ ”,错误的打“ⅹ ” (1)由2=x+3得x=3+2 ( ) (2)由3 2x=-8得x=-12 ( ) (3)由 5y+2=7y+8得7y-5y=8-2 ( ) 2.回答下列问题: (1)由等式a=b ,能不能得到等式a+2=b+2?为什么? (2)由等式2 2b a ,能不能得到等式a=b ?为什么? 【学习目标】 1.了解等式的基本性质在解方程中的作用. 2.会解一元一次方程,并经历和体会解方程中的“转化”的过程和思想. 3.了解一元一次方程解法的一般步骤,并能正确灵活应用. 【学习重点与难点】 重点:会利用等式的性质解方程 难点:正确灵活解方程 学习过程: 一、导入新课: 上节课我们学习了“等式的性质”,这一节课我们来学习如何利用等式的性质来解一元一次方程. 二、新知学习: (一)移项 1.自学要求:请认真看课本本节的内容,并明确两个问题: ①什么是方程的移项? ②方程的移项与等式的基本性质有什么关系? 2.自学检测: (1)把方程中的某一项_________后,从方程的一边________另一边,这种变形叫做 移项.

(2)对比下列的变形,并体会其不同之处 对方程3x-4=1求解 运用等式的基本性质: 3x –4+4=1+4 ( ) 3x = 5 ( ) x =35 ( ) 运用移项: 3x=1+4 ( ) 3x=5 ( ) x=3 5 ( ) 3.练习 把下列的方程中的含有未知数的项移到方程的一边,常数项移到另一边: (1)2=x+3 (2)5y+2=3y+8 (3)4x –3=0 你得到了什么结论:___________________________________________. (二)一元一次方程的解法 1.自学要求:请认真阅读课本每道解答过程,注意每一种方程的解题步骤和方法. 2.对应训练 (1)解方程的最根本目的是____________,也就是把未知数的___________化为1. (2)请说出下列方程的第一步的解题步骤和依据 ① x –3=12 ② -3y=-15 ③ 11x+3=5(2x+1) ④ 13223-=-- x x (3)纵观所有的例题可以看出,本节主要体现了___________的数学思想和方法. (4)解一元一次方程的基本步骤为_______、_______、_______、______、________. 小结:____________________________________________________. 【精练反馈】 基础部分 1. 解方程中,移项的依据是( )

最新常见的三元一次方程组的解法

常见的三元一次方程组的解法 三元一次方程组的常规解法是:通过代入法或加减法把三元一次方程组转化为二元一次方程组,再把二元一次方程组转化为一元一次方程从而解出方程组.但有时我们也可根据三元一次方程组的结构特点采取非常规的方法来解方程组.常见的方法有: 一、缺项型的解法 例1 解方程组 4917(1) 31518(2) 232(3) x z x y z x y z -= ? ? ++= ? ?++= ? 分析:由于方程(1)缺少未知数y,这方程时只要在方程(2)(3)中消去未知数y即可把三元一次方程组转化为二元一次方程组,从而顺利地解出方程组. (2)2(3) ?-得:52734(4) x z += (1)3(4) ?+得:1785 x=5 x= 把5 x=代入(1)得:20917 z -= 1 3 z= 把5 x=, 1 3 z=代入(3)得:5212 y ++=, 2. y=- ∴方程组的解为: 5 2 1 3 x y z ? ?= ? =-? ? ?= ? 二、标准型的要选择确当的未知 例2 解方程组 34(1) 2312(2) 6(3) x y z x y z x y z -+= ? ? +-= ? ?++= ? 解:要消去三个未知数中的一个,相对而言消未知数z比较方面. (1)+(2)得:5216(4) x y += (3)+(2)得:3418(5) x y += (5)(4)2 -?得:20 x=

把20x =代入(4)得:100216y += 42y =. 把20x =,42y =代入(1)得:60424z -+= 14z =-. ∴方程组的解为:204214x y z =??=??=-? . 三、轮换的特殊解法 例3 解方程组2(1)4(2)6(3)x y y z z x +=??+=??+=? 解:这样轮换缺少未知数的方程可以采用下面特殊方法来解. (1)+(2)+(3)得:22212x y z ++= ∴6(4)x y z ++= (4)-(1)得:4z = (4)-(2)得:2x = (4)-(3)得:0y = ∴方程组的解为:204x y z =??=??=? . 四、有比巧设参数 x :y=2:1 (1) 例4 解方程组 y :z=1:3 (2) 23414x y z +-=- (3) 解:由(1)得:设其中的一份为k ,则2x k =,y k =. 把y k =代入(2)得:3z k =. 把2x k =,y k =,3z k =代入(2)得:431214k k k +-=-.

一元一次方程的定义及解法

《第4章 一元一次方程》4.1—4.2期末复习学案(1) 一、基础训练 1、 y 比它的4 3小7,列出方程为______________________;若代数式6x 2-的值与0.5互为倒数,则列出方程为________ . 2、判断下列哪些是一元一次方程。 (1) 4365=x ( ) (2)7x -5 ( ) (3)x x 367 1=-( ) (4)3x 2-7x+1=0( )(5)2x -y=1( ) (6)312=-x ( ) 3、 已知4x ax 2=-是关于x 的一元一次方程,则a=________. 其中2、3两题用到的知识点是:一元一次方程的定义:含有 未知数,未知数的次数是 的方程叫一元一次方程。(其中表示未知数的式子还必须是整式。) 4、 写出一个满足下列条件的一元一次方程:①某个未知数的系数是1;②方程的解是3;这样的方程是 。 5、 若x=3是方程x 68a 4x 2+=-的解,则=a ________ 。 知识点:什么叫方程的解? 。 6. 若-9+x =63则x =______;若-2(x+1)=13,则x =______ ; 2 1323 x 的解为 ;若30%x =5则x =__ ;。 解方程的基本步骤是 、 、 、 、 : 去分母时应该注意 ;去括号时应注意 ;移项时应该注意 ;将系数化为1时应注意 。 7. 若1x 2y 1 x y 21+=-=,,且0y 3y 21=-,则x=________,=+21y y ________. 8.若41m 2y x 3-与3n 23y x 2--是同类项,且0)n b 5.0(|m 2a |2=-+-,则b a n m +++的值为________。 二、例题推荐

初一数学一元一次方程的概念与解法教案

一元一次方程的概念与解法 【知识要点】 1.一元一次方程的有关概念 (1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. (2)一元一次方程的标准形式是: 2.等式的基本性质 (1)等式的两边都加上或减去或,所得的结果仍是等式. (2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:

【典型例题】 例1.下列方程是一元一次方程的有哪些? x+2y=9 x 2 -3x=1 11=x x x 312 1 =- 2x=1 3x –5 3+7=10 x 2 +x=1 例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的. (1)如果________;-8x 3,853==+那么x (2)如果-1_x _________3,123=--=那么x x ; (3)如果;__________x ,52 1 ==那么x (4)如果________.3x ,3 2==那么y x 例3.解下列简易方程 1.5223-=+x x 2.4.7-3x=11 3.x x +-=-32.0 4.)3(4)12(3-=+x x

1. 32243332=+--x x 2.142 3(1)(64)5(3)25 x x x --++=+ 3.21101211364x x x -++-=- 4.223 14615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.8316 1.20.20.55 x x x +-+-=-

(完整)五年级奥数:二元一次方程组的解法

第2讲二元一次方程组的解法 搜集整理:百汇教育数学组陈超【知识要点】 1.二元一次方程组的有关概念 (1)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。例如3x+4y=9。 (2)二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值。因此,任何一个二元一次方程都有无数多个解。由这些解组成的集合,叫做这个二元一次方程的解集。 (3)二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组。一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。 2.二元一次方程组的解法 (1)代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法。 (2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法。 代入消元法将在《七年级数学(上册·上海科技出版社)》教材中学习到。本次课,我们主要讲解加减消元法。 【典型例题】 用加减消元法解下列方程组: 例1、 x-5y = 0 ① 3x+5y =16 ② 解:由①+②得:x+3x=16 即4x=16 所以x=4 把x=4代入②得:3×4+5y=16 解得 y=0.8 所以原方程组的解为 x=4 y=0.8 例2、2x+2y=11 ① 2x+7y=36 ② 解:由②-①得:7y-2y=36-11 即5y=25 所以y=5 把y=5代入①得:2x+2×5=11 解得 x=0.5 所以原方程组的解为 x=0.5 y=5 { {{ {

一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解 【学习目标】 1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据; 2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】 要点诠释: (1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程 1.含绝对值的一元一次方程 解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义. 要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论: (1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程 此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a = ;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】 类型一、解较简单的一元一次方程

1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8 【答案】B. 【解析】 解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2 由题意知=m﹣2 解之得:m=﹣8. 【总结升华】根据题目给出的条件,列出方程组,便可求出未知数. 举一反三: 【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5 解:移项得3x+7x=2+5,合并得10x=7., 系数化为1得 7 10 x=. 【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2. 正确解法: 解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得 3 4 x=-. 类型二、去括号解一元一次方程 2. 解方程:112 [(1)](1) 223 x x x --=-. 【答案与解析】 解法1:先去小括号得:11122 [] 22233 x x x -+=-. 再去中括号得: 11122 24433 x x x -+=-.移项,合并得: 511 1212 x -=-. 系数化为1,得: 11 5 x=. 解法2:两边均乘以2,去中括号得: 14 (1)(1) 23 x x x --=-. 去小括号,并移项合并得: 511 66 x -=-,解得: 11 5 x=. 解法3:原方程可化为:112 [(1)1(1)](1) 223 x x x -+--=-. 去中括号,得1112 (1)(1)(1) 2243 x x x -+--=-.

一元一次方程和解二元一次方程组的解法汇总

解一元一次方程与二元一次方程的解法 解一元一次方程练习题 类型一系数化1 ① 3x = - 2 ②– 2x = 5 ③– 4 x = - 3 ④ x= - 类型二直接移项 (1)8 x=2 x-7 (2)6=8+2 x (3)a-1=5+2a; (4)5x+2=7x+8 (5)x+2=7x+8 (6) 3y-2=y+1+6y. (7)13+8x=8+13x (8) a-1=5+2a; (9)2y+3=11-6y 类型三去括号 11 x+3=5(2 x-1) 4 x-3(20- x)=3 3-2(x+1)=2(x-3) 3(x-2)-1=x-(2 x-1) 2(x-2)-(4x-1)=3(1-x) 类型四分数系数型 x -8=1 x-1-2x=-1 x-3=5x+

1- x=x+ 0.3x+1.2-2x=1.2-2.7x. 1+ x=3- x 类型五去分母型 2x-13 = x+22 +1 = =-1 类型六列简单的一元一次方程 1、当取何值时: (1)与+3的值相等?(2)比的值大1? (3)若y1=2 x+3,y2=5 x-,且y1=6y2,那么x的值是多少? (4)x为何值时,代数式与互为相反数 (5)已知 x=是方程 5m+12 x=+x 的解,求关于x的方程m x+2= m(1-2 x)的解。

5.当 取何值时, 的值比 的值大4?、 解二元一次方程组 用适当的方法解下列方程 (1)?? ?=--=-7 441156y x y x (2)?? ?-=+-=-5 3412911y x y x 解: 解: 检验: 检验: (3)?? ?=+-=-q p q p 451332 (4)?? ?=+=-5 24753y x y x 解: 解: 检验: 检验:

一元一次方程及解法专题讲义(供参考)

一元一次方程的概念及解法 一、知识梳理: 知识点1、一元一次方程的概念: (1)、方程:含有未知数的等式叫方程,能够使方程左右两边的值相等的未知数的值叫方程的解,求方程的解的过程叫解方程。 (2)、一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的一类方程叫做一元一次方程。 一元一次方程的标准形式0ax b +=(其中x 是未知数,a b 、是已知数,并且0a ≠) 知识点2、等式及其基本性质 (1)定义:用等号“=”表示相等关系的式子叫等式。 (2)等式的基本性质: ①等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。 ②等式两边都乘以或除以同一个不为0的数,所得结果仍是等式。 三、解一元一次方程的一般步骤: (1)去分母:在方程两边都乘以各分母的最小公倍数; (2)去括号:先去小括号,再去中括号,最后去大括号; (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号); (4)合并同类项:把方程化为()0ax b a =≠的形式; (5)系数化为1:在方程两边都除以未知数的系数a ,得到方程的解b x a =。 解一元一次方程时,可以根据方程的形式灵活地安排解题步骤,不必机械地生搬硬套。 二、典例精讲: 考点一、概念的考查 例1、(2011、鄂州训练题)下列各式是方程的是 ,其中是一元一次方程的是 。 (1)327x -=;(2)4812+=;(3)3x -;(4)230m n -=;(5)23210x x --=; (6)23x +≠;(7)251 x =+ 变式训练: 1、判断下列各式中哪些是等式?哪些是代数式?哪些是方程?哪些是一元一次方程? (1)253-+=;(2)317x -=;(3)0m =;(4)3x >;(5)8x y +=; (6)22510x x ++=;(7)2a b + 2、方程()110m m x ++=是关于x 的一元一次方程,则m = 考点二、方程的解 例2、(2011、宜昌模拟)若关于x 的方程332x a x -= +的解是4x =,求2a a - 的值。 变式训练: 1、已知关于x 的方程432x m -=的解是x m =,求m 的值。 考点三、等式的性质 例3、下列等式变形正确的是( ) A 、如果,ay ax =那么y x = B 、如果y x =,那么y x -=-55 C 、如果,0=+b ax 那么a b x = D 、如果,2635-=-x x 那么1-=x ★变式赏析:由110.20.3x -=变形为1010123x -=的依据是( )

三元一次方程组的解法及技巧解析

三元一次方程组的解法及技巧解析初中阶段是我们一生中学习的“黄金时期”。不光愉快的过新学期,也要面对一件重要的事情那就是学习。优立方数学为大家提供了三元一次方程组的解法知识点,希望对大家有所帮助。 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如, 等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一

个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解. 解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8(4) 由(2),(4)组成方程组

解这个方程组,得把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确

一元一次方程的定义及解法

一元一次方程的定义及 解法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一元一次方程的定义及解法 方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。 方程简介 一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。 “方程”一词来源于我国古算术书《九章算术》。在这本着作中,已经会列一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。 详细内容 合并同类项 1.依据:乘法分配律 2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项 3.合并时次数不变,只是系数相加减。 移项 1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 2.依据:等式的性质 3.把方程一边某项移到另一边时,一定要变号。性质 性质 等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立 解法步骤

3元一次方程组解法

3元一次方程组解法 本周目标: 会解三元一次方程组.通过解三元一次方程组的学习,提高逻辑思维能力.培养抽象概括的数学能力. 重点、难点: 三元一次方程组的解法.解法的技巧. 重点难点分析: 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如,等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 1.解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.

解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得 解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8 (4) 由(2),(4)组成方程组 解这个方程组,得 把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y 值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确 求解方程组.

一元一次方程的解法基础知识讲解

一元一次方程的解法(基础)知识讲解 撰稿:孙景艳审稿:赵炜 【学习目标】 1.熟悉解一元一次方程的一般步骤,理解每步变形的依据; 2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 3.进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】 要点一、解一元一次方程的一般步骤 变形名称具体做法注意事项 去分母 在方程两边都乘以各分母的最小公倍 数(1)不要漏乘不含分母的项 (2)分子是一个整体的,去分母后应加上括号 去括号 先去小括号,再去中括号,最后去大 括号(1)不要漏乘括号里的项 (2)不要弄错符号

移项把含有未知数的项都移到方程的一 边,其他项都移到方程的另一边(记住 移项要变号) (1)移项要变号 (2)不要丢项 合并同类 项 把方程化成ax=b(a≠0)的形式字母及其指数不变 系数化成 1在方程两边都除以未知数的系数a,得 到方程的解 b x a . 不要把分子、分母写颠倒 要点诠释: (1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程 1.含绝对值的一元一次方程

解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义. 要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论: (1)当0 c<时,无解;(2)当0 c=时,原方程化为:0 ax b +=;(3)当0 c>时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程 此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论: (1)当a≠0时, b x a =;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0 时,方程无解. 【典型例题】 类型一、解较简单的一元一次方程1.解下列方程 (1) 3 4 5 m m -=- (2)-5x+6+7x=1+2x-3+8x 【答案与解析】 解:(1)移项,得 3 4 5 m m -+=-.合并,得 2 4 5 m=-.系数化为1,得m=-10. (2)移项,得-5x+7x-2x-8x=1-3-6.合并,得-8x=-8.系数化为1,得x=1.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:

一元一次方程的解法专题训练

一元一次方程的解法专题训练 类型一:一元一次方程的概念 例1:若关于x 的方程02)1(2=+-m x m 是一元一次方程,求m 的值,并求出方程的解。 分析:回到定义,关于x 的方程是一元一次方程的条件是未知数x 的指数是1,而其系数不为0. 练:1、当=m 时,方程03)3(2=-+--m x m m 是一元一次方程,方程的解是。 类型二:一元一次方程的解的概念 例2:若2=x 是方程0132=-+m x 的解,则m 的值为。 练: 2、已知关于x 的方程423=-m x 的解是m x =,则m 的值是。 3、请写出一个解为2=x 的一元一次方程:。 4、已知p ,q 都是质数,且1=x 满足方程113=+q x p ,则q p =。 类型三:等式性质 例3:下列变形正确的是( ) A 、如果bx ax =,那么 b a = B 、如果1)1(+=+a x a ,那么1=x C 、如果y x =,则y x -=-55 D 、如果1)1(2=+x a ,则1 12+=a x 分析:正确理解等式的两个性质,利用等式性质2作等式变形时,应注意字母的取值范围。 练:5、若b a =,则下列等式中,正确的个数有( )个 ①33+=+b a ;②b a 43=;③b a 4343-=- ;④1313-=-b a ;⑤1122+=+c b c a 类型四:一元一次方程的解法 例4:依据下列解方程 3122.05.03.0-=+x x 的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。 解:原方程可变形为3 12253-=+x x ………… ( ) 去分母,得 )12(2)53(3-=+x x ………………( ) 去括号,得 24159-=+x x ……………… ( ) ( ),得21549--=-x x ……………… ( ) 合并, 得 175-=x ……………… ( ) ( ),得 5 17-=x ………………… ( ) 分析:当分母中含有小数时,可以用分数的基本性质,把它们化为整数,再按去分母、去括号、移项、合 并同类项、系数化为1的步骤进行解答。

一元一次方程、二元一次方程(组)的解法

§2.1 一元一次方程、二元一次方程(组)的解法 一、温故互查知识要点 一元一次方程的概念及解法,二元一次方程(组)及其解法,解方程组的基本思想. 二、题组训练一 1.(2012重庆)已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( ) A .2 B .3 C .4 D .5 2.(2011枣庄)已知???x =2,y =1是二元一次方程组???ax +by =7,ax -by =1 的解,则a -b = . 3.(2012连云港)方程组326x y x y +=??-=? 的解为 . 4.已知:13 2=--+y x y x ,用含x 的代数式表示y ,得 . 三、题组训练二 1解下列方程(组): (1)3(x +1)-1=8x ; (2)? ? ?=+=-1732623y x y x . 2(1)m 为何值时,代数式2m - 5m -13的值比代数式7-m 2 的值大5? (2)若方程组31331x y a x y a +=+??+=-?的解满足x +y =0,求a 的值. 四、中考连接

1.若???x =1,y =2. 是关于x 、y 的方程ax -3y -1=0的解,则a 的值为______. 2.已知(x-2)2+|x-y-4|=0,则x+y= . 3.定义运算“*”,其规则是a*b=a-b 2,由这个规则,方程(x+2)*5=0的解为 . 4.如图,已知函数y=ax+b 和y=kx 的图象交于点(-4,-2), 则方程组???y=ax+b ,y=kx 的解是 . 5.若关于x 、y 的方程组???x+y=5k ,x -y=9k 的解也是方程2x +3y =6 的解,则k 的值为( ) A .- 34 B .34 C .43 D .- 43 6.解下列方程(组): (1)2(x +3)-5(1-x )=3(x -1); (2)143 2312=- --x x ; (3)(2012南京)31328x y x y +=-??-=? ; (4)???-=+-=+1)(258 y x x y x .

一元一次方程及解法

一元一次方程及解法 撰稿:占德杰责编:赵炜 一、目标认知 学习目标: 经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。 重点: 一元一次方程的解法 难点: 一元一次方程的解法 二、知识要点梳理

知识点一:方程的概念 1、含有未知数的等式叫做方程. 2、使方程中等号左右两边相等的未知数的值叫做方程的解. 3、求方程的解的过程叫做解方程。 4、方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数)。 知识点二:一元一次方程的概念 1、概念:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程。一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0), “元”是指未知数,“次”是指未知数的次数,应从以下几点理解此概念: (1)方程中的未知数的个数是1。例如2x+3y=2就不是一元一次方程,因为未知数的个数是两个,而不 是一个。 (2)一元一次方程等号的两边都是整式,并且至少有一边是含有未知数的整式。例如方程,

其中不是整式,所以它不是一元一次方程。 (3)未知数的次数是1,如x2+2x-2=0,在x2项中,未知数的次数是2,所以它不是一元一次方程。 2、判定:判断一个方程是不是一元一次方程应看它的最终形式,而不是看原始形式。 (1)如果一个方程经过去分母、去括号、移项、合并同类项等变形能化为ax =b(a≠0), 或ax b=0(a≠0),那么它就是一元一次方程;否则就不是一元一次方程。 (2)方程ax=b或ax b=0,只有当a≠0时才是一元一次方程;反之,如果明确指出方程ax=b或 ax+b=0是一元一次方程,则隐含条件a≠0. 例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程。 知识点三:等式的性质 1、等式的概念:用符号“=”来表示相等关系的式子叫做等式。

相关文档
最新文档