流化床干燥实验报告

流化床干燥实验报告
流化床干燥实验报告

北方民族大学学生实验报告

院(部):化学与化学工程

姓名:汪远鹏学号:********

专业:过程装备与控制工程班级:153

同组人员:田友安世康虎贵全

课程名称:化工原理实验

实验名称:流化床干燥实验

实验日期:2017.10.30批阅日期:

成绩:教师签名:

北方民族大学教务处制

实验名称:流化床干燥实验

一、目的及任务

①了解流化床干燥器的基本流程及操作方法。

②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

③测定物料含水量及床层温度随时间变化的关系曲线。

④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数Kx。

二、基本原理

1、流化曲线

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处流速即被称为带出速度(u0)。

在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处流速被称为起始流化速度(u mf)。

在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。

2、干燥特性曲线

将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图。

干燥过程可分为以下三个阶段。 (1)物料预热阶段(AB 段)

在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC 段) 由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。 (3)降速干燥阶段(CDE 段)

物料含水量减少到某一临界含水量(X 0),由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面保持湿润,而形成干区,干燥速率开始降低,物料温度逐渐上升。物料

含水量越小,干燥速率越慢,直至达到平衡含水量(X *

)而终止。

干燥速率为单位时间在单位面积上汽化的水分量,用微分式表示为:

τ

Ad dW

u =

式中u ——干燥速率,kg 水/(m 2

.s );

A ——干燥表面积,m 2;

d τ——相应的干燥时间,s ; dW ——汽化的水分量,kg 。

图中的横坐标X 为对应于某干燥速率下的物料平均含水量。

2

1

++=

i i X X X 式中X ——某一干燥速率下湿物料的平均含水量;

X i 、X i+1——Δτ时间间隔内开始和终了时的含水量,kg 水/kg 绝干物料。

ci

ci

si i G G G X -=

式中G si ——第i 时刻取出的湿物料的质量,kg ;

G ci ——第i 时刻取出的物料的绝干质量,kg 。 干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。

三、装置及流程

1 风机;2、湿球温度水筒;3、湿球温度计;4、干球温度计;5、空气加湿器; 6、空气流速调节阀;7、放净口;8、取样口;9、不锈钢筒体;10、玻璃筒体 11、气固分离器;12、加料口;13、旋风分离器;14、孔板流量计(d0=20mm )

四、操作要点

1、流化床实验

①加入固体物料至玻璃段底部。

②调节空气流量,测定不同空气流量下床层压降。

2、干燥实验

(1)实验开始前

①将电子天平开启,并处于待用状态。

②将快速水分测定仪开启,并处于待用状态。

③准备一定量的被干燥物料(以绿豆为例),取0.5kg左右放入热水(60~70℃)中泡20~30min,取出,并用干毛巾吸干表面水分,待用。

④湿球温度计水筒中补水,但液面不得超过预警值。

(2)床身预热阶段

启动风机及加热器,将空气控制在某一流量下(孔板流量计压差为一定值,3kpa左右),控制加热器表面温度(80~100℃)或空气温度(50~70℃)稳定,打开进料口,将待干燥物料徐徐倒入,关闭进料口。

(3)测定干燥速率曲线

①取样,用取样管取样,每隔2~3min一次,取出的样品放入小器皿中,并记上编号和取样时间,待分析用。共做8~10组数据,做完后,关闭加热器和风机电源。

②记录数据,在每次取样的同时,要记录床层温度、空气干球、湿球温度、流量和床层压降等。

3、结果分析

(1)快速水分测定仪分析法

将每次取出的样品在电子天平上称量9~10g,利用快速水分测定仪进行分析。

(2)烘箱分析法

将每次取出的样品在电子天平上称量9~10g,放入烘箱内烘干,烘箱温度设定为120度,1h后取出,在电子天平上称取其质量,此质量即可视为样品的绝干物料质量。

4、注意事项

①取样时,取样管推拉要快,管槽口要用布覆盖,以免物料喷出。

②湿球温度计补水筒液面不得超过警示值。

③电子天平和快速水分测定仪要按说明操作。

五、数据处理

以第一组数据计算:

含水量X i=G si?G ci

G ci =5.73?3.65

3.65

水/kg绝干物料=0.5699kg水/kg绝干物料

汽化水份量dW=(0.5699-0.4318)kg=0.1380kg

干燥速率u=dW

Adτ=0.1380

1.5×5×60

kg水/(m2×s)=0.0003068 kg水/(m2×s)

图1干燥速率-物料含水量关系图

由图可得,平衡含水量X0约为0.43kg水/kg绝干物料

图2 物料含水量、物料温度与时间关系

以第一组数据为例

4

2.262

54

.0d p S V u s π?== 代入相关数据可得:u =1.904 m/s

图3流化床ΔP-u 关系

六、实验结论及分析

图1干燥速率-物料含水量关系图

图2 物料含水量、物料温度与时间关系

图3流化床ΔP-u关系

实验结果分析

1. 由图1可以看出,随着干燥的进行(含水量减小的方向),干燥速率先是增大(即为物料预热阶段),然后基本保持不变(恒速干燥阶段),最后持续下降(降速干燥阶段)。

2.由图2可看出,随着干燥的进行,物料含水量不断下降,而床层温度不断上升,且

床层温度几乎没有稳定不变的阶段,说明热量不仅用于水分的汽化,还使得物料温度升高。

3. 由图3可看出,随着气速的增加,床层压降也随着增加。

七、思考题

1、本实验所得的流化床压降与气速曲线有何特征?

答:当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层

空隙中流过,压降与流速成正比。当气速继续增大,进入流化阶段,固体颗粒随气体

流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,

如曲线的后半段,成一条水平直线

2、流化床操作中,存在腾涌和沟流两种不正常现象,如何利用床层压降对其进行判断?怎

样避免他们的发生?

答:腾涌时,床层压降不平稳,压力表不断摆动;沟流是床层压降稳定,只是数值比正

常情况下低。沟流是由于流体分布板设计或安装上存在问题,应从设计上避免出现沟流,腾

涌是由于流化床内径较小而床高于床比径比较大时,气体在上升过程中易聚集继而增大,当

气体占据整个床体截面时发生腾涌,故在设计流化床时高径比不宜过大。

3、本装置在加热器入口处安装有干、湿球温度计,假设干燥过程为绝热增湿过程,如何求

得干燥器内空气的平均湿度H?

答:有入口干、湿球温度可以求得进口空气湿度H1由于干燥器内物料存在非结合水,

且气液接触充分,故出口空气可以看成饱和空气,绝热增湿过程为恒焓过程,再由恒焓条件与出口空气φ=100%即可求得出口空气湿度H2,从而求得干燥器内空气平均湿度H=0.5×(H1+H2)

固定床流化床浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使

流化床制粒影响因素的探讨

流化床制粒影响因素的探讨 [关键词]:流化床,制粒,影响因素 流化床制粒(fluidized bed granulation)又称沸腾制粒,指利用气流使粉末物料悬浮呈沸腾状,再喷入雾状粘合剂使粉末结合成粒,最后得到干燥的颗粒。在此过程中,物料的混合、制粒、干燥同时完成,因此又称一步制粒。1964年Scott等将Wurster方法作了改进并应用于医药工业。我国于1980年引进沸腾制粒、包衣设备,可取代传统湿法制粒。 1流化床的结构和作用原理 流化床制粒机由容器、筛板、喷嘴、捕集袋、空气进出口、物料进出口等部分组成。经净化的空气加热后通过筛板进入容器,加热物料并使其呈流态化。此时粘合剂以雾状喷入,使物料粉末聚结成粒子核,进而形成颗粒,同步干燥,得到多孔性、表面积较大的柔软颗粒。 2流化床制粒的优点 与挤出制粒相比,流化床制粒有以下优点:(1)混合、制粒、干燥一次完成,生产工艺简单、自动化程度高;(2)所得颗粒圆整、均匀,溶解性能好;(3)颗粒的流动性和可压性好,压片时片重波动幅度小,所得片剂崩解性能好、外观质量佳;(4) 颗粒间较少或几不发生可溶性成分迁移,减小了由此造成片剂含量不均匀的可能性;(5)在密闭容器内操作,无粉尘飞扬,符合GMP要求。流化床适于中成药,尤其是浸膏量大、辅料相对较少的中药颗粒的制备,及对湿和热敏感的药物制粒。 3 影响流化床制粒的因素 3.1 制粒材料 用亲水性材料制粒时,粉末与粘合剂互溶,易凝集成粒,故适宜采用流化床制粒。而疏水性材料的粉粒需藉粘合剂的架桥作用才能黏结在一起,溶剂蒸发后,形成颗粒。无论是亲水性还是疏水性材料,粉末粒度必须达到80目以上,否则制得的颗粒有色斑或粒径偏大,分布不均匀,从而影响药物的溶出和吸收。通过进料前将原辅料在机外预混可改善制粒效果。 吸湿性材料黏性强、流动性差、引湿性强,在贮存过程中易吸潮,若用以制粒则受热时会使其中易溶成分溶解导致物料软化结块,未喷雾即出现粘筛和大面积结块,沸腾几乎停止(又称塌床)。因此,在制粒前应先进行干燥。经喷雾干燥的浸膏粉粒松散均匀、含水量低、流动性好,易于“流化”,是目前最佳沸腾制粒粉料。对于黏性特别大和引湿性强的浸膏粉,可制成浓缩流浸膏作为粘合剂喷雾,以其它黏性不大的原、辅料做颗粒母核。吸湿性较差(如淀粉)的材料成粒较困难,如以水为粘合剂,制得的淀粉颗粒细小,且较松散;改用淀粉浆或糊精浆等黏度较大的溶液作粘合剂,可制得较大粒径的颗粒。 若中药浸膏粉与辅料的密度相差较大,则沸腾时从下至上的物料密度逐渐减小,无法混匀,成粒也困难,压得的片剂色斑严重。对此可采用前述制成浓缩流浸膏作粘合剂喷雾的方法解决。但也可能会带来两个问题:(1)流浸膏黏度过大,喷枪易堵塞,所得颗粒粒径也偏大;(2)所得颗粒中流浸膏的含量偏低,与处方量不匹配。此时必须选择适当的辅料或改进前处理。 制粒材料本身的含水量也会影响颗粒质量。一般情况下,颗粒粒径随含水量的增加而增大。因此,进料后应先预热物料进行适当干燥,再喷粘合剂。 3.2进风温度 进风温度高,溶剂蒸发快,降低了粘合剂对粉末的润湿和渗透能力,所得颗粒粒径小、脆性大、松密度和流动性小;有些粘合剂雾滴在接触粉料前就己挥干,造成颗粒中细粉较多。若温度过高,还会使颗粒表面的溶剂蒸发过快,得到大量外干内湿、色深的大颗粒。此外,有些粉料高温下易软化,且黏性增大、流动性变差,易粘附在容器壁上,逐渐结成大的团块;甚至物料熔融、粘结在筛板上,堵塞网眼造成塌床。温度过低,则湿颗粒不能及时干燥,相互聚结成大的团块,也会造成塌床。 3.3进风湿度 进风湿度大,则湿颗粒不能及时干燥,易粘结粉料。当以易吸湿的中药浸膏粉为底料时,若进风湿度大,往往可能在物料预热时就产生大量结块,造成塌床。因此,应控制环境湿度,降低进风空气的湿度。 3.4粘合剂黏度 粘合剂黏度大,形成的雾滴大,所得颗粒粒径大、脆性小、硬度大。也易使物料结块,堵塞喷嘴,造成粘合剂实际流速低,颗粒中细粉多;甚至在喷嘴处会有粘合剂的液滴滴入物料中,造成塌床。若粘合剂黏度低,则形成的雾滴小,物料成粒困难,所得颗粒中细粉偏多,且较松散。 3.5粘合剂流速 粘合剂流速大,形成的雾滴大,则粘合剂的润湿和渗透能力大,所得颗粒粒径大,脆性小。在雾化压力确定的条件下,粘合剂流速增加,颗粒的堆密度大。流速过大时,湿颗粒不能及时干燥会聚结成团块,造成塌床;较小时,颗粒粒径小,有时因雾滴较小而易失去溶剂造成颗粒中细粉多。 3.6雾化空气压力 压力增大,易使粘合剂形成细雾,降低对粉末的湿润能力,所得颗粒粒径小、脆性大,而松密度和流动性则不受影响。压力过高会改变流化状态,使气流紊乱,粉粒在局部结块;压力较小则粘合剂雾滴大,颗粒粒径大。

流化床实验报告

流化床干燥实验装置 一、实验目的 1. 了解流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ = =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿 分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量 iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

③ 沸腾制粒技术总结

流化床制粒经验分享 最近做了好几个项目都是涉及流化床制粒的,通过项目的开展和相关资料的阅读对流化床制粒进行了一定的总结,分享给大家,希望对大家有帮助。 整个总结分为 设备篇(简单介绍一下流化床的关键部件)、 物料篇(主要介绍流化床制粒所用的各种粘合剂)、 工艺篇(对流化床制粒的几个过程进行分别介绍)以及其他一些常见问题。如有不足之处,敬请广大站友指正和补充。 1. 设备篇 一个完整的流化床设备包括了空气处理单元、物料槽、扩展槽、过滤袋、喷液系统(粘合剂制备罐、蠕动泵、喷枪)和控制系统等部门组成,对其中关键的几部分进行说明:空气处理单元:流化床制粒所用的空气必须经过过滤和除湿(加湿),这里特别要强调的是除湿(加湿)装置,空气的湿度对流化床的制粒效果会有显著的影响,在不同的季节,空气的湿度显著不同,冬季1度露点相当于每kg空气中还有4g水,而夏季20度露点相当于每kg水中含有15g水,如果没有加湿或除湿设备,那可能导致工艺的重现性差。露点温度并不是越低越好,低了物料容易产生静电影响最终收率,还会导致LOD偏低;太高会延长干燥时间,一般建议控制进风露点在8-10度左右,10度露点温度相当于每kg空气中含有8g水,对于细粉率极高的物料,可见采用15度左右的露点温度,可以有效降低静电和保证流化状态。 物料槽:物料占物料槽总体积的35-90%最为合理,粉末制粒后得到的颗粒与起始粉末的堆密度会略有升高,但是差异不大,所以只要保证开始投料量处于物料超最佳体积范围即可。物料槽的底盘开孔率非常重要,它决定了物料流化时的压差,开孔率一般为12%,底盘的孔径一般为100μm. 喷枪:液体在经过雾化后溶液体积扩散1000倍左右,喷嘴的口径大小一般对制粒效果没有太大的影响,溶液型粘合剂建议使用小口径喷嘴,混悬液和淀粉浆建议使用大孔径喷嘴。喷嘴的数量常见的有单喷嘴型,三喷嘴型和六喷嘴型三种,但是要注意多喷嘴型时每个喷嘴的喷液范围不可重叠,否则会造成粘合剂局部过量。 过滤袋:常采用聚酯材料,一般为20 μm 的透过率,最小可达到3-5 μm,目前也有金属过滤器,在制粒时通过压缩空气反冲出去上面的物料粉末,每个过滤器都配有冲洗喷头,可实现在线清洗。 2. 物料篇 主要是想介绍一下流化床制粒所用的粘合剂 (1)淀粉浆:在流化床制粒时,淀粉浆的浓度一般建议在8%一下,需要特别注意的是淀粉浆在不同温度下的粘度差别非常大,所以用蠕动泵喷液时的速率也会不同,这边有个参数可供大家参考,建议将淀粉浆加热至82-86度时停止加热,整个制粒过程中始终保持温度大于60度。如果觉得淀粉浆的粘度低,可以采用混合粘合剂,如6%淀粉浆+3% PVP. (2)预胶化淀粉:可以部分溶于冷水,建议浓度5-8%,也可以直接以粉末形式加入处方中,以水作为润湿剂制粒,但是与液体形式相比要达到相同的粘合效果需2-4倍量 (3)PVP K30:溶于水or乙醇,浓度范围5-30%,流化床中常用浓度为20%,也可直接加入粉末处方,用水或乙醇作为润湿剂进行制粒,但是达到相同粘合效果所需用量需大大增加。使

北京化工大学-干燥实验报告

e北京化工大学 实验报告 课程名称:化工原理实验实验日期:2012.5.9 班级:化工0903班姓名:徐晗 同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型 流化干燥实验 一、摘要 本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。实验中通过Excel作图并进行了实验结果分析。 关键词:流化床干燥含水量床层压降速率曲线 二、实验目的 1. 了解流化床干燥器的基本流程及操作方法。 2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。 三、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。如图1所示。 图1 流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加

(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处得流速被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2.干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(如图2所示)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(如图3所示)。干燥过程可分为以下三个阶段。 图2 物料含水量、物料温度与时间的关系 图3 干燥速率曲线 (1)物料预热阶段(AB段) 在开始干燥前,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时

固定床流化床设计计算讲义

炔烃液相选择加氢固定床床反应器设计计算 由于固定床反应器具有结构简单、操作方便、 操作弹性大、建设投资低等优点,而广泛应用于各类油品催化加氢裂化及精制、低碳烃类选择加氢精制等领域。将碳四馏分液相加氢新工艺就是采用单台固定床绝热反应器进行催化选择加氢脱除碳四馏分中的乙基乙炔和乙烯基乙炔等。在工业装置中,由于实际所采用的流速足够高,流体与催化剂颗粒间的温差和浓差,除少数强放热反应外,都可忽略。对于固定床反应器来讲最重要的是处理好床层中的传热和催化剂粒子内扩散传质的影响。 一、固定床反应器设计 碳四馏分选择性加氢反应器一般采用绝热固定床反应器。在工程上要确定反应 器的几何尺寸,首先得确定出一定生产能力下所需的催化剂容积,再根据高径比确定反 应器几何尺寸。 反应器的设计主要依据试验结果和技术要求确定的参数,对反应器的大小及高径比、催化剂床层和液体分布板等进行计算和设计。 1. 设计参数 反应器进口温度: 20℃ 进口压力:0.1MPa 进料量(含氢气进料组分) 体积流量:197.8m 3/h 质量流量:3951kg/h 液相体积空速:400h -1 2. 催化剂床层设计计算 正常状态下反应器总进料量为2040m 3/h 液体体积空速400h -1 则催化剂用量3R V V V /S 2040/400 5.1m ===总 催化剂堆密度3850/B kg m ρ= 催化剂质量850 5.14335B B R m V kg kg ρ=?=?= 求取最适宜的反应器直径D: 设不同D 时,其中高径比一般取2-10,设计反应器时,为了尽可能避免径向的影响, 取反应器的长径比5,则算出反应器的直径和高度为:按正常进料量3 2040m h /及液体 空速400h -1,计算反应器的诸参数: 取床层高度L=5m ,则截面积2R S V /L 5.1/51.02m === 床层直径 1.140D m == 因此,圆整可得反应器内径可以选择1200mm

流化床干燥实验——流化床和洞道干燥----实验报告

流化床和洞道干燥综合实验 一、实验目的 1. 了解流化床、洞道干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数,通常地,其干燥特性数据需要通过实验测定而取得。 按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。 2.1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: -c G dX dw U A d A d τ τ = =kg/(m 2/s) 式中,U -干燥速率,又称干燥通量,kg/(m 2 s ); A -干燥表面积,m 2 ; W -汽化的湿分量,kg ; τ -干燥时间,s ; Gc -绝干物料的质量,kg ; X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。 2.2. 干燥速率的测定方法

(1)将电子天平开启,待用。 (2)将快速水分测定仪开启,待用。 (3)将0.5~1kg 的红豆(如取0.5~1kg 的绿豆/花生放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (4)开启风机,调节风量至40~60m 3 /h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出四颗红豆的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量G i 和终了质量G ic ,则物料中瞬间含水率为: i ic i ic G -G X = G 计算出每一时刻的瞬间含水量X i ,然后将X i 对干燥时间i τ作图,如图1,即为干燥曲线。 图1恒定干燥条件下的干燥曲线 上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同i dX 下的斜率 i i dX d τ,再由式11-1计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图2 所示。

化工原理干燥实验报告

北京化工大学 学生实验报告 院(部):化学工程学院 姓名:王敬尧学号: 2010016068 专业:化学工程与工艺班级:化工1012班 同组人员:雷雄飞、雍维 课程名称:化工原理实验 实验名称:流化床干燥实验 实验日期: 2013.6.4 北京化工大学

干燥实验 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶 段的传质系数k H及降速阶段的比例系数K X。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流

流化床干燥实验

北京化工大学化工原理 实验报告 实验名称:流化床干燥实验 班级:环工0903 学号:200912102 姓名:滕飞

一、实验目的及人物 1.了解流化床干燥器的基本流程及操作方式。 2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数KH及降速阶段的比例系数KX。 二、实验原理 1、流化曲线 在实验中可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(下图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本不动,压降与流速成正比,斜率约为1。当气速逐渐增加(进入BC段),床层开始膨胀,压降与气速关系不再成比例。当气速逐渐增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随气速增加床层高度逐渐增加,但床层压降基本保持不变。当气速增大到某一值(D点),床层压降减小,颗粒逐渐被气体带走,此时便进 u。在流化状态下降低气速,压降与入气流输送阶段。D点处流速即为带出速度 气速关系将沿图中DC线返回至C点。若气速继续降低,曲线沿CA’变化。C点 u。 处流速被称为起始流化速度 mf 2、干燥特性曲线 将湿物料置于一定干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可见物料含水量(X)与时间(t)的关系曲线及物料温度(θ)与时间(t)的关系曲线(如下图左)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,及干燥速率曲线(如下图右)。

干燥实验报告

北京化工大学 实验报告 课程名称:干燥实验实验日期:2012-5 班级:化工0906 姓名:郭智博 同组人:常成维尉博然黄金祖学号:200911175 干燥实验 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶 段的传质系数k H及降速阶段的比例系数K X。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从

床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(见下下图)。干燥过程可分以下三个阶段。

流化床干燥实验报告

北方民族大学学生实验报告 院(部): 化学与化学工程 姓名: 汪远鹏学号: ******** 专业: 过程装备与控制工程班级: 153 同组人员: 田友安世康虎贵全 课程名称: 化工原理实验 实验名称: 流化床干燥实验 实验日期: 2017、10。30 批阅日期: 成绩: 教师签名: 北方民族大学教务处制 实验名称:流化床干燥实验 一、目得及任务 ①了解流化床干燥器得基本流程及操作方法、 ②掌握流化床流化曲线得测定方法,测定流化床床层压降与气速得关系曲线。 ③测定物料含水量及床层温度随时间变化得关系曲线、 ④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段得传质系数kH及降速阶段得比例系数Kx。 二、基本原理 1、流化曲线

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入B C段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段、D点处流速即被称为带出速度(u0)、 在流化状态下降低气速,压降与气速关系线将沿图中得DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而就是沿CA’变化。C点处流速被称为起始流化速度(u mf)、 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这就是流化床得重要特点。据此,可以通过测定床层压降来判断床层流化得优劣。 2、干燥特性曲线 将湿物料置于一定得干燥条件下,测定被干燥物料得质量与温度随时间变化得关系,可得到物料含水量(X)与时间(τ)得关系曲线及物料温度(θ)与时间(τ)得关系曲线。物料含水量与时间关系曲线得斜率即为干燥速率(u)。将干燥速率对物料含水量作图。

固定床移动床的特点

固定床移动床的特点 固定床: 固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止不动,流体通过床层进行反应。它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层则填装固体反应物。涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。 1、分类 固定床反应器有三种基本形式:①轴向绝热式固定床反应器。流体沿轴向自上而下流经床层,床层同外界无热交换。②径向绝热式固定床反应器。流体沿径向流过床层,可采用离心流动或向心流动,床层同外界无热交换。径向反应器与轴向反应器相比,流体流动的距离较短,流道截面积较大,流体的压力降较小。但径向反应器的结构较轴向反应器复杂。以上两种形式都属绝热反应器,适用于反应热效应不大,或反应系统能承受绝热条件下由反应热效应引起的温度变化的场合。③列管式固定床反应器。由多根反应管并联构成。管内或管间置催化剂,载热体流经管间或管内进行加热或冷

却,管径通常在25~50mm之间,管数可多达上万根。列管式固定床反应器适用于反应热效应较大的反应。此外,尚有由上述基本形式串联组合而成的反应器,称为多级固定床反应器。例如:当反应热效应大或需分段控制温度时,可将多个绝热反应器串联成多级绝热式固定床反应器,反应器之间设换热器或补充物料以调节温度,以便在接近于最佳温度条件下操作。 2、特点 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。 ②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。 固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 数学模型固定床反应器是研究得比较充分的一种多相反应器,描述固定床反应器的数学模型有多种,大致分为拟均相模型(不考虑流体和固体间的浓度、温度差别)和多相模型(考虑到流体和固体间 的浓度、温度差别)两类,每一类又可按是否计及返混,分为无返混模型和有返混模型,按是否考虑反应器径向的浓度梯

中药湿法制粒的原理和小经验

[转贴]中药湿法制粒的原理和小经验 湿法制粒, 中药, 原理, 粒子, 经验 湿法制粒(wet granulation)原理 是在药物粉末中加入液体粘合剂,靠粘合剂的架桥或粘结作用使粉末聚结在一起而制备颗粒的方法。由于湿法制粒的产物具有外形美观、流动性好、耐磨性较强、压缩成形性好等优点,在医药工业中的应用最为广泛。而对于热敏性、湿敏性、极易溶性等特殊物料可采 用其它方法制粒。 (一)制粒机理 1.粒子间的结合力 制粒时多个粒子粘结而形成颗粒,Rumpf提出粒子间的结合力有五种不同方式(1)固体粒子间引力固体粒子间发生的引力来自范德华力(分子间引力)、静电力和磁力。这些作用力在多数情况下虽然很小,但粒径<50μm时,粉粒间的聚集现象非常显著。这些作用随着粒径的增大或颗粒间距离的增大而明显下降,在干法制粒中范德华力的作用 非常重要。 (2)自由可流动液体(freely movable liquid)产生的界面张力和毛细管力以可流动液体作为架桥剂进行制粒时,粒子间产生的结合力由液体的表面张力和毛细管力产生,因此液体的加入量对制粒产生较大影响。液体的加入量可用饱和度S表示:在颗粒的空隙中液体架桥剂所占体积(VL)与总空隙体积(VT)之比,液体在粒子间的充填方式由液体的加入量决定,参见图16-25。(A)干粉状态;(a)S≤0.3时,液体在粒子空隙间充填量很少,液体以分散的液桥连接颗粒,空气成连续相,称钟摆状(pendular state);(b)适当增加液体量0.3<S<0.8时,液体桥相连,液体成连续相,空隙变小,空气成分散相,称索带状(funicularstate);(c)液体量增加到充满颗粒内部空隙(颗粒表面还没有被液体润湿)S≥0.8时,称毛细管状(capillary state);(d)当液体充满颗粒内部与表面S≥1时,形成的状态叫泥浆状(slurry state)。毛细管的凹面变成液 滴的凸面。 一般,在颗粒内液体以悬摆状存在时,颗粒松散;以毛细管状存在时,颗粒发粘,以索带状存在时得到较好的颗粒。可见液体的加入量对湿法制粒起着决定性作用。 (3)不可流动液体(immobile liquid)产生的附着力与粘着力不可流动液体包括高粘度液体和吸附于颗粒表面的少量液体层(不能流动)。因为高粘度液体的表面张力很小,易涂布于固体表面,靠粘附性产生强大的结合力;吸附于颗粒表面的少量液体层能消除颗粒表面粗糙度,增加颗粒间接触面积或减小颗粒间距,从而增加颗粒间引力等,如图 16-26A[11]。淀粉糊制粒产生这种结合力。 (4)粒子间固体桥(solid bridges)固体桥(图16-26B)形成机理可由以下几方面论述。①结晶析出?架桥剂溶液中的溶剂蒸发后析出的结晶起架桥作用;②粘合剂固化?液体状态的粘合剂干燥固化而形成的固体架桥;③熔融?由加热熔融液形成的架桥经冷却固结

流化床干燥实验报告

北方民族大学 学生实验报告 院(部):化学与化学工程 姓名:汪远鹏学号: ******** 专业:过程装备与控制工程班级: 153 同组人员:田友安世康虎贵全 课程名称:化工原理实验 实验名称:流化床干燥实验 实验日期:批阅日期: 成绩:教师签名: 北方民族大学教务处制 实验名称:流化床干燥实验 一、目的及任务 ①了解流化床干燥器的基本流程及操作方法。 ②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 ③测定物料含水量及床层温度随时间变化的关系曲线。 及恒速阶段④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X 的传质系数k H及降速阶段的比例系数Kx。 二、基本原理 1、流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处

流速即被称为带出速度(u )。 在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。若气速继续 )。降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处流速被称为起始流化速度(u mf 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图。 干燥过程可分为以下三个阶段。 (1)物料预热阶段(AB段) 在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。 (2)恒速干燥阶段(BC段) 由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。 (3)降速干燥阶段(CDE段)

流化床干燥综合3D虚拟仿真试验项目操作说明

流化床干燥综合3D 虚拟仿真实验项目操作说明

流化床干燥综合3D虚拟仿真实验项目是利用动态数学模型实时模拟真实实验流化床干燥的现象和过程,通过3D 仿真实验装置交互式操作,产生和真实实验相一致的实验现象和结果。根据学生的需求与知识结构,构建了两个层次(基础理论型、仿真操作型)四个教学单元的实验内容,使实践教学内容由验证理论向综合应用、研究设计延伸,使不同层次、不同类型的学生都能在本仿真项目中,根据自己的需要来进行自主学习。能够体现化工实验步骤和数据梳理等基本实验过程,满足工艺操作要求,满足流程操作训练要求,能够安全、长周期运行。既能让每位学生都能亲自动手做实验,观察实验现象,记录实验数据,达到验证公式和原理的目的,且能够进一步通过对设备参数的改变,来加深对知识点和原理的理解。 一、干燥工艺及相关设备的认识 本单元主要包括干燥工艺的主要原理、流程、设备及过程特点等,并拓展介绍相关的流体输送设备、传热流程及设备。通过手动设备拆装,观察流化床干燥器内部构件,达到了解其整体结构的目的。 二、流化床干燥单元操作的开车、停车 本单元的主要目的是让学生掌握流化床干燥单元的开、停车方法过程中所需要控制的相

关参数等。在这一单元,采用指导模式和自主操作两种学习方式。指导模式的学习,是学生在软件提示下,进行设备的开停车步骤操作。学生也可以选择自主操作模式,自主操作设备的开车、正常运行和停车步骤。 基本操作 1、快捷键操作:W(前)S(后)A(左)D(右)、鼠标右键(视角旋转)。 图 1-1 注:在非中文输入状态下,点击 W 可逐步放大页面,点击 A 界面右移,可使左边装置进入视角,点击 D 界面左移,可使右边装置进入视角,点击 S,退出拉近,界面恢复。 2、进入主场景后,可进入相应实验室,如流体力学实验室,完成实验的全部操作,进入实验室后可回到主场景中。按住鼠标滚轮上下移动鼠标可进行视角的调整。 3、拉近镜头:鼠标左键双击设备进行操作,还可使用快捷键 W。 4、开关阀门或者其他电源键或者泵开启键为鼠标左键单击操作。 (二)、仿真操作 启动软件后,首先进入如下界面: 实验介绍:介绍实验的基本情况,如实验目的及内容、实验原理、实验装置基本情况,实验方法及步骤和实验注意事项等。 设置:可设置全局标签和环境音效。 退出:点击退出出现如下界面,继续点击确定,则退出软件。

流化床制粒影响因素的探讨教案资料

流化床制粒影响因素 的探讨

精品资料 仅供学习与交流,如有侵权请联系网站删除谢谢2 流化床制粒影响因素的探讨 [关键词]:流化床,制粒,影响因素 流化床制粒(fluidized bed granulation)又称沸腾制粒,指利用气流使粉末物料悬浮呈沸腾状,再喷入雾状粘合剂使粉末结合成粒,最后得到干燥的颗粒。在此过程中,物料的混合、制粒、干燥同时完成,因此又称一步制粒。1964年Scott等将Wurster方法作了改进并应用于医药工业。我国于1980年引进沸腾制粒、包衣设备,可取代传统湿法制粒。 1流化床的结构和作用原理 流化床制粒机由容器、筛板、喷嘴、捕集袋、空气进出口、物料进出口等部分组成。经净化的空气加热后通过筛板进入容器,加热物料并使其呈流态化。此时粘合剂以雾状喷入,使物料粉末聚结成粒子核,进而形成颗粒,同步干燥,得到多孔性、表面积较大的柔软颗粒。 2流化床制粒的优点 与挤出制粒相比,流化床制粒有以下优点: (1)混合、制粒、干燥一次完成,生产工艺简单、自动化程度高;(2)所得颗粒圆整、均匀,溶解性能好;(3)颗粒的流动性和可压性好,压片时片重波动幅度小,所得片剂崩解性能好、外观质量佳;(4) 颗粒间较少或几不发生可溶性成分迁移,减小了由此造成片剂含量不均匀的可能性;(5)在密闭容器内操作,无粉尘飞扬,符合GMP要求。流化床适于中成药,尤其是浸膏量大、辅料相对较少的中药颗粒的制备,及对湿和热敏感的药物制粒。 3 影响流化床制粒的因素 3.1 制粒材料 用亲水性材料制粒时,粉末与粘合剂互溶,易凝集成粒,故适宜采用流化床制粒。而疏水性材料的粉粒需藉粘合剂的架桥作用才能黏结在一起,溶剂蒸发后,形成颗粒。无论是亲水性还是疏水性材料,粉末粒度必须达到80目以上,否则制得的颗粒有色斑或粒径偏大,分布不均匀,从而影响药物的溶出和吸收。通过进料前将原辅料在机外预混可改善制粒效果。 吸湿性材料黏性强、流动性差、引湿性强,在贮存过程中易吸潮,若用以制粒则受热时会使其中易溶成分溶解导致物料软化结块,未喷雾即出现粘筛和大面积结块,沸腾几乎停止(又称塌床)。因此,在制粒前应先进行干燥。经喷雾干燥的浸膏粉粒松散均匀、含水量低、流动性好,易于“流化”,是目前最佳沸腾制粒粉料。对于黏性特别大和引湿性强的浸膏粉,可制成浓缩流浸膏作为粘合剂喷雾,以其它黏性不大的原、辅料做颗粒母核。吸湿性较差(如淀粉)的材料成粒较困难,如以水为粘合剂,制得的淀粉颗粒细小,且较松散;改用淀粉浆或糊精浆等黏度较大的溶液作粘合剂,可制得较大粒径的颗粒。 若中药浸膏粉与辅料的密度相差较大,则沸腾时从下至上的物料密度逐渐减小,无法混匀,成粒也困难,压得的片剂色斑严重。对此可采用前述制成浓缩流浸膏作粘合剂喷雾的方法解决。但也可能会带来两个问题:(1)流浸膏黏度过大,喷枪易堵塞,所得颗粒粒径也偏大;(2)所得颗粒中流浸膏的含量偏低,与处方量不匹配。此时必须选择适当的辅料或改进前处理。 制粒材料本身的含水量也会影响颗粒质量。一般情况下,颗粒粒径随含水量的增加而增大。因此,进料后应先预热物料进行适当干燥,再喷粘合剂。 3.2进风温度 进风温度高,溶剂蒸发快,降低了粘合剂对粉末的润湿和渗透能力,所得颗粒粒径小、脆性大、松密度和流动性小;有些粘合剂雾滴在接触粉料前就己挥干,造成颗粒中细粉较多。若温度过高,还会使颗粒表面的溶剂蒸发过快,得到大量外干内湿、色深的大颗粒。此外,有些粉料高温下易软化,且黏性增大、流动性变差,易粘附在容器壁上,逐渐结成大的团块;甚至物料熔融、粘结在筛板上,堵塞网眼造成塌床。温度过低,则湿颗粒不能及时干燥,相互聚结成大的团块,也会造成塌床。 3.3进风湿度 进风湿度大,则湿颗粒不能及时干燥,易粘结粉料。当以易吸湿的中药浸膏粉为底料时,若进风湿度大,往往可能在物料预热时就产生大量结块,造成塌床。因此,应控制环境湿度,降低进风空气的湿度。 3.4粘合剂黏度 粘合剂黏度大,形成的雾滴大,所得颗粒粒径大、脆性小、硬度大。也易使物料结块,堵塞喷嘴,造成粘合剂实际流速低,颗粒中细粉多;甚至在喷嘴处会有粘合剂的液滴滴入物料中,造成塌床。若粘合剂黏度低,则形成的雾滴小,物料成粒困难,所得颗粒中细粉偏多,且较松散。 3.5粘合剂流速 粘合剂流速大,形成的雾滴大,则粘合剂的润湿和渗透能力大,所得颗粒粒径大,脆性小。在雾化压力确定的条件下,粘合剂流速增加,颗粒的堆密度大。流速过大时,湿颗粒不能及时干燥会聚结成团块,造成塌床;较小时,颗粒粒径小,有时因雾滴较小而易失去溶剂造成颗粒中细粉多。 3.6雾化空气压力

相关文档
最新文档