劳氏船级社压载水管理指南

劳氏船级社压载水管理指南
劳氏船级社压载水管理指南

Ballast Water Management

1 Introduction

notes

2 Descriptive

criteria

3 Assessment

4 Information to be submitted

■Section 1: Introduction

Shipping transfers approximately 3 to 5 billion tonnes of ballast water internationally each year and it is estimated that at least 7,000 different species of aquatic organisms are being carried in ships’ ballast tanks around the world each day.

Ballast water is essential to control trim, list, draught, stability, or stresses of a ship, ballast water and may contain aquatic organisms or pathogens. These organisms and pathogens s which on discharge in a port or terminal have the potential to survive and become established and in doing so may pose a threat to indigenous animal and plant life, the marine environment or humans.

Although other vectors have been identified as being responsible for transferring organisms between geographically separated water bodies, ballast water discharge from ships is one of the most prominent.

In order to avoid the transfer of unwanted aquatic organisms or pathogens in ballast water ships are required to undertake ballast water management. Ballast Water Management is defined as means, mechanical, physical, chemical, or biological processes, either singularly or in combination, to remove, render harmless, or avoids the uptake or discharge of Harmful Aquatic Organisms and Pathogens within Ballast Water and Sediments. In order to manage ballast a ship is required to either carry out ballast water exchange at sea or treat the ballast water to defined standards.

1.1 Objective

The Ballast Water Management ShipRight procedure provides a means to indicate to port state, charterers and insurers and other interested parties that a ship has in place ballast water management procedures that have been assessed to a recognised standard that not only complies with the standards in the International Convention for the Control and Management of Ships Ballast Water and Sediments (the BWM Convention) and the applicable associated guidelines but also that the procedures have been assessed for design and safety considerations.

In addition the procedure provides a means for complying with the various national and regional ballast water regulations.

1.2 Application

This procedure sets down the criteria for assignment of the optional ShipRight descriptive note BWMP. The requirements are additional to other relevant requirements of Lloyd’s Registers Rules and Regulations for the Classification of Ships including the Common Structural Rules.

Compliance with any additional requirements that may be imposed by the Administration with whom the ship is registered and/or by the regional, national or local regulations within whose territorial jurisdiction it is intended to operate the ship are the responsibility of the Owner.

1.3 Ballast Water Exchange Methods

The ballast water management method or methods selected for a particular ship is the Owner’s responsibility. The method selected must be one or a combination of the three IMO recognised ballast water exchange methods, i.e. sequential, flow through or dilution method.

All methods of ballast water exchange and treatment have advantages and disadvantages, and associated safety issues. When deciding on a particular method or combination of methods of ballast water exchange for a particular ship the safety issues associated with the method selected for the ship or tank and those associated with the ship are to be taken into account.

For new ships, as far as is practicable the design is to be such that ballast water exchange is facilitated and that the safety issues associated with the exchange method or methods to be use are minimised.

For existing ships account is to be taken of any modifications that may be required or considered necessary in order to facilitate ballast water exchange and the safety issues associated with the exchange method or methods to be used minimised.

Any installed or modifications to structural and piping arrangements may require approval for compliance with the applicable Rules and Regulations.

■Section 2: Descriptive notes

2.1 BWMP descriptive notes

Ships complying with this Procedure will be eligible to be assigned the BWMP descriptive note together with one, or a combination of the following associated supplementary characters dependant upon the method or methods of ballast water management used onboard provided that the applicable criteria in Section 3 are complied with.

The eligible ballast water management methods are as follows:

Sequential method (S)

a process by which a ballast tank intended for the carriage of ballast water is first emptied and then refilled

with replacement ballast water to achieve at least a 95 per cent volumetric exchange.

Flow-through method (F)

a process by which replacement ballast water is pumped into a ballast tank intended for the carriage of ballast

water, allowing water to flow through, overflow or other arrangements.

Dilution method (D)

a process by which replacement ballast water is filled through the top of the ballast tank intended for the

carriage of ballast water with simultaneous discharge from the bottom at the same flow rate and maintaining a constant level in the tank throughout the ballast exchange operation.

Treatment method(T)

a ballast water treatment system approved in accordance with regulation D-3 of the BWM Convention. Example:

ShipRight BWMP (S) indicates that the ship uses the sequential method.

ShipRight BWMP (S+F) indicates that the ship uses the sequential and the flow-through methods combined. Lloyd’s Register is to be advised of any modifications to the ballast water system or the ballast water management plan that that does or may effect compliance with these procedures and that may affect the assignment of the ShipRight BWMP descriptive note.

■Section 3: Acceptance criteria

Requirements

3.1 General

It is a prerequisite of this procedure that the ship has a Ballast Water Management Plan that has been developed in accordance with and found to comply with the requirements of regulation B-1 of the Convention and the International Maritime Organisations (IMO) - Guidelines for Ballast Water Management and Development of Ballast Water Management Plans MEPC.127 (53). In addition for ships using ballast water exchange the IMO Guidelines for Ballast Water Exchange MEPC.124(53) are to be taken into account when developing the plan.

The Lloyd’s Register Model Ballast Water Management Plan can be used for the preparation of the plan. At the specific request of the Owner, or the Shipbuilder a ballast water management plan can be prepared by Lloyd’s Register.

Where a new Ballast Exchange sequence is to be introduced in an existing ballast water management plan, the new sequence must be submitted to Lloyd’s Register for review and approval, as necessary.

The ballast water management plan is to contain one or more ballast water exchange sequences in a format similar to the example in Appendix 1. The ballast water exchange sequences are to indicate for each sequence, at the start of the sequence, at the end of the sequence and at intermediate stages of each sequence including the worst case for each of the following:

?Longitudinal strength. Checks against the assigned permissible still water bending moments and shear forces, see 3.2.

?For bulk carriers, the longitudinal strength assessment for hold flooded conditions need not be carried out during the exchange sequences.

?Intact stability, where required checks against the required values as indicated in the stability booklet. The effects of the combined free surface moments are to be considered, see 3.2.

?Ballast inertia. For new construction, ballast inertia aspects of bulk carriers are to be considered according to the ShipRight Structural Design Assessment Procedure when applicable. For bulk carriers in service, ballast inertia aspects are to be considered using maximum lifetime accelerations and assuming a 100% filling level of the

ballast hold with adjacent topside and/or hopper tanks empty, as submitted in the BEP, or the acceptable sea state is to be defined.

?Sloshing Where deemed necessary by Lloyd’s Register or at the owners request, sloshing aspects are to be considered according to the Rules for Ships and the ShipRight Structural Design Assessment Procedure Sloshing Loads and Scantling Assessment.

?Minimum draught forward c hecks against the minimum draft forward as indicated in the ship’s plans and/or loading manual. Where not otherwise defined, this is to be taken as 0,045L or as the draught forward of an

approved condition.

?Propeller immersion. Checks that at all stages of any exchange sequence the top dead centre of the propeller will remain below the still waterline.

When the propeller immersion criterion can not be satisfied during an entire ballast sequence a note is to be included in the ballast water management plan in the section dealing with ‘Operational or Safety Restrictions’ as follows “the Master is advised that the propeller will not be fully immersed during some stages of ballast water exchange”. In addition in the appropriate sequence in the Ballast Exchange Sequences a similar note is also to be made against the ballast exchange sequence(s) where full propeller immersion is can not be achieved.

Bridge visibility forward. Checks that bridge visibility is maintained in accordance with SOLAS V/22.

It is recognised that not all ships in service comply with SOLAS 1974, Chapter V Safety of Navigation Regulation 22 Navigation bridge visibility.

Where bridge visibility can not be maintained at all stages of an exchange sequence a note inserted in the ballast water management plan in section dealing with ‘Operational or Safety Restrictions’ that the Master is advised that where the bridge visibility criterion in SOLAS V/22 can not be complied with during some or all stages of the exchange sequences the Master is to take due account of the guidance given in section 5.5 to 5.8 of IMO resolution MEPC.124(53) and in addition with effect from1 January 2010 to comply the revised SOLAS V/22 as adopted by the IMO in resolution

MSC.202(81).

3.2 Assessment of Longitudinal Strength, bending moments and shear forces and intact stability

At all times during ballast water exchange the shear forces and bending moments and intact stability criteria are to be within the limits stated in the approved loading manual and/stability booklet.

It is not a condition of assignment of the BWMP notation that all ships undertaking ballast water exchange have onboard a loading instrument approved for Longitudinal Strength, bending moments and shear forces and intact stability however it is preferable.

For a loading instrument to be accepted as approved it is to meet the following criteria:

The ship has the class notation LI or the descriptive note LI or where the entry “Loading Instrument (C)” or “Loading Instrument” appears in the Hull Memoranda. A loading instrument approved for the calculation of Longitudinal Strength, bending moments and shear forces may also be accepted.

If the ship has a stability and/or longitudinal strength calculation program or module has not been accepted or certified by Lloyd’s Register there is an option to have the stability and/or longitudinal strength calculation program or module certified in accordance with standards acceptable to Lloyd’s Register.

Flow Through Method. Strength and Stability Approval is not normally required when the flow through method is the only method used. However when for example a peak or other tank that is normally partially filled is required to be pumped up for exchange purposes using the flow through method and then discharged to the normal partially filled level on completion approval of longitudinal Strength, bending moments and shear forces and intact stability maybe required.

Dilution Method. Strength and Stability Approval is not normally required when the dilution method is the only method used.

Flow through and Dilution Methods Combination. Strength and Stability Approval is not normally required, except where for example a peak or other tank that is normally partially filled is required to be pumped up for exchange purposes and then discharged to the normal partially filled level on completion.

Sequential Method. When the sequential method is used, or is used in combination with flow through or dilution method,approval of longitudinal strength, bending moments and shear forces and intact stability for each ballast water exchange sequence will be required. Where a ship has a loading instrument approved for strength and stability Lloyd’s Register may accept the results from a loading instrument approved for longitudinal strength, bending moments and shear forces and intact stability in lieu of the above. Where the loading instrument is approved for longitudinal strength, bending moments and shear forces only, Lloyd’s Register may accept the results from a loading instrument for these aspects however approval of intact stability for each exchange sequence will be required.

3.3 Assessment criteria for each method

In addition to the general requirements in 3.1 and 3.2 the following criteria will be assessed for assignment of the relevant ShipRight descriptive note. Refer to Section 4 for details of the plans and information to be submitted.

3.3.1 ShipRight BWMP (T)

For the assignment of the ShipRight BWMP(T) descriptive note the criteria given in this section are to be satisfied.

The installed ballast water treatment system is to be approved in accordance with the IMO Guidelines for Approval of Ballast Water Management Systems MEPC.125(53) as may be amended or;

The installed ballast water treatment system is a prototype treatment system installed and under a programme approved by the Administration in accordance with regulation D- 4 of the Convention and has been or is undergoing approval in

accordance with in accordance with the IMO Guidelines for Approval and Oversight of Prototype Ballast Water Treatment Technology Programmes MEPC.140(54).

3.3.2 ShipRight BWMP (F)

For the assignment of the ShipRight BWMP (F) descriptive note the criteria given in this section are to be satisfied.

New construction:

The scantlings of the tank boundary structure are to be determined using a tank head equivalent to the full distance to the top of the tank excluding hatches, but not less than the distance to the deck at the side on which the overflow pipe is fitted.

Where the overflow discharge pipe is fitted below the freeboard deck, the head is to be taken not less than the full distance to top of the discharge pipe or the distance to the ship operating draft, whichever is greater.

For applicable formulations, see Pt 4, Ch 1 and Table1.9.1 of the Rules for Ships, for deep tank and watertight bulkheads in general. For double hull oil tankers, Pt 4, Ch 9, Table 9.6.1 for inner hull and longitudinal oil tight bulkheads remains applicable. For oil tankers and bulk carriers where the Common Structural Rules (CSR) are applicable CSR Oil Tankers Section 8 paragraph 2.5 or CSR Bulk Carriers Chapter 6 Sections 1 and 2 apply.

Ships in service:

The flow-through method is not to be utilised, unless the tank boundary structure has been confirmed as being acceptable using a tank head as defined for new construction above, and any structural modifications found necessary have been carried out. For applicable formulation, see Pt 4, Ch 1, Table 1.9.1 of the Rules for Ships for deep tank bulkheads in general. For double hull oil tankers, Pt 4, Ch 9, Table 9.6.1 for inner hull and longitudinal oil tight bulkheads remains applicable. For oil tankers and bulk carriers where the Common Structural Rules (CSR) are applicable CSR Oil Tankers Section 8 paragraph 2.5 or CSR Bulk Carriers Chapter 6 Sections 1 and 2 apply.

It is not permitted to connect ballast tanks, which were not previously connected, unless the tank boundary structure is checked and found satisfactory or any necessary structural modifications are carried out.

All cases:

The flow-through method will only be accepted for partially filled peak tanks, provided that inadvertent exceedance of the design partial filling levels will not result in hull girder bending moments and shear forces or stability criteria exceeding the permissible values.

At the specific request of the Owner, Lloyd’s Register can calculate the pressure drop of the pipework and match it to the ballast pump capacity curve.

The following recommendations are to be complied with as far is reasonable and practicable:

Inlet and outlet piping connections to be located as far apart as practicable, in order to improve circulation.

A larger discharge pipe located in a remote position opposite from the filling pipe and a smaller discharge pipe is to be located in a position closer to the filling pipe, to improve circulation.

The total sectional area of the ballast water discharge pipes is to be arranged to be not less than two times the sectional area of the filling pipe, in order to mitigate the risk of overpressure.

The use of two ballast pumps simultaneously is not recommended due to the risk of overpressure, unless the system is designed for the simultaneous use of two pumps.

Distribute one ballast pump to several tanks, in order to mitigate the risk of overpressure.

Where overflow pipes are fitted to hatch coamings, it is recommended that they are fitted to the side coaming with a closing plate hinge arrangement and to be arranged to discharge downward.

Manholes on upper deck may be used as overflow discharge, provided that a blank flange with a seat can fitted to the manhole cover arranged so that a portable overflow pipe with 90° elbow can be connected during the flow-through operation to direct the water away from the deck.

Ballast water is not to be discharged from an air pipe head with float type closing appliance, unless a blank flange with a short distance piece is fitted below the air pipe head, which is to be removed during the flow-though operation.

3.3.3 ShipRight BWMP (S)

For the assignment of the ShipRight BWMP (S) descriptive note, the criteria given in this section are to be satisfied.

The following are to be complied with:

Ballast holds and large ballast tanks are to be equipped with pressure/vacuum valves or other means acceptable to Lloyd’s Register, in order to mitigate the risk of a large drop in pressure, due to the rapid change in the contents of the tank during ballast discharge by gravity. Pressure/vacuum valves valves, where fitted, are to be maintained in good working order, as a faulty pressure/vacuum valve for example by being blocked or failing to lift may result in hatch cover damage.

During the intermediate stages of ballast water exchange, the machinery’s operating design characteristics (angles of inclination) are not to be exceeded.

In addition the following recommendations are to be complied with as far is reasonable and practicable:

If two ballast pumps are used for filling purposes the ballast water management plan is to contain a note that, when the fill level reaches 80–90 per cent, one of the pumps is to be stopped, in order to mitigate the risk of over-pressurisation.

Where operational limits are specified, at least two independent pumps are to be fitted. The pumps are to be arranged such that, if one pump fails, then the stand-by pump is immediately available for operation.

Sequences with partial fill level are to be avoided. Where at the end of a sequence a tank remains partially filled, conditions at ±10 per cent of the partial fill level are also to be assessed, since it is practically difficult to match the specified partial fill level whilst ship motions are experienced.

Exchange sequences are to be developed such that the still water bending moments and shear forces do not exceed 85% of the permissible values, in order to account for small deviations in service.

3.3.4 ShipRight BWMP (D)

For the assignment of the ShipRight BWMP (D) descriptive note the criteria given in this section are to be satisfied. Where the dilution method of exchange is used adequate provisions are to be made for appropriate pumping and piping arrangements to facilitate simultaneous loading and unloading of ballast water at the same flow rate.

Arrangements are to be made to continually monitoring of the ballast water level in the tanks to ensure a constant level is maintained to avoid the possibility of overfilling the tank or reducing the level in the tank.

■Section 4: Information to be submitted

4.1 General

The following plans and information are to be submitted in all cases:

(a) A copy of an approved ballast water management plan meeting the requirements in Section 3.1; or

(b) a plan to be approved by Lloyd’s Register to meet the requirements of 3.1, a minimum of two copies are to be

submitted Lloyd’s Register will retain one copy of the ballast water management plan.

(c) Ballast pumping and piping arrangements.

(d) Air and sounding pipes arrangements.

(e) Specifications and capacity curves for ballast pump and general service pump, if used for ballast transfer.

(f) General arrangement and capacity plan.

(g) Ballast tank and pump capacities and estimated emptying and refilling times.

(h) A copy of the approval certificate for the loading instrument.

(j) A copy of the ships approved loading manual.

4.2 Specific requirements for the ballast water management options defined in Section 3

In addition to the plans and information in 4.1:

(a) For the assignment of ShipRight BWMP (T):

A certificate confirming the system has been approved in accordance with in accordance with the IMO Guidelines

for Approval of Ballast Water Management Systems MEPC.125(53) as may be amended issued by a flag

administration signatory to the Convention or by Lloyd’s Register or by a member of the International Association of Classification Societies issuing the approval certificate on behalf of a flag administration signatory to the

Convention.

Approved plans or diagrams of the treatment system installation, and arrangements including piping systems, connections to the ballast system, treated ballast water outlet points and sampling point(s).

(b) For the assignment of ShipRight BWMP (F):

For bulk carriers confirmation that that the topside and hopper tanks are or are not interconnected.

(c) For the assignment of ShipRight BWMP (S):

For ships in service, for the assessment of ballast inertia: approved midship section with end connection details, ballast hold volume data or curves, metacentric height, service speed and block coefficient.

4.3 Optional Assessment Criteria

Where Lloyd’s Register, at the specific request of the Owner, is to certify the stability and/or longitudinal strength calculation program or module, the information required by Lloyd’s Register’s document entitled Approval of Longitudinal Strength and Stability Calculation Programs is to be submitted.

Where Lloyd’s Register, at the specific request of the Owner, is to calculate the pressure drop of the pipework and match it to the ballast pump capacity curve, the following information is to be submitted:

Ballast supply piping dimensions.

Overflow pipe length and size.

Piping components fitted to the ballast supply line, i.e. bends, T-connections, type and number of valves.

Pump capacity curve.

Air vent head flow capacity curve.

4.4 Modifications

Plans and particulars of proposed modifications to the ballast system or other modification to the ship which may affect the BWMP descriptive note assigned to the ship are to be submitted for approval before any work commences and the work is to be carried out in accordance with the approved plans to the Surveyor’s satisfaction.

Appendix 1 Example Ballast Exchange Sequence Table

Allowable limits

Min fwd draft

Stab’

Criteria

Max

allowa

ble SW

BM

MAX

allow

SW SF

Prop

fully

immers

at

Voyage:

From:

To:

Expected weather:

M % % M

Actual Values

Fo/Do/L o/Fw

Mt Draft

Aft M

Trim M

Draft

Fwd

Stab’

Criteria

SW BM

%

SW SF

%

Prop.

Immer

%.

InvisLe

ngth M

Est’ed

Time

Hours

Remarks

Sequence AP

Tank

No

Tank

No

Tank

No

Tank

No

Tank

No

Tank

No

Tank

No

F.P.T

Initial Condition

Step 1:

Step 2:

Step 3:

Step 4:

Total Time Hours

Lloyd’s Register 10

The colouring of the cells where the criteria are not satisfied can enhance understanding Abbreviations

ES - Empty at start

FS - Full at start

FL - Filling

D - Discharging

FE - Full at end

EE - Empty at end

X% - Percentage full

Percentage of tank level or symbols such as those presented below may be used as necessary where greater detail is required , additional symbols can be defined Notes

Examples

Note 1: The master is advised that the propeller will not be fully immersed during this step/sequence

Note 2: The master is advised that bridge visibility forward will be reduced during this step/sequence

Note 3 The master is advised to verify that tanks shown as "e" or "e" are totally empty and tanks shown as "f" or "f" are totally full, at the start and end of the step/sequence

Note 4: Where two ballast pumps are used for filling purposes, when the full level reaches 80% - 90%, then one of the pumps is

Note 5: The indicative times for ballast exchange by flow-through method of …tanks(s) id…are provided separately

For conservative reasons, where at the end of a step / sequence a tank remains partially filled, additional conditions at ± 10 % of the partial fill level are also be assessed, since it is practically difficult to match the specified partial fill level whilst ship motions are experienced

Aim to develop sequences where the still water bending moments and shear forces do not exceed 85% of the permissible values, in order to account for small deviations in service, so that the master and the appointed ballast water

Lloyd’s Register 11

船舶压载水管理计划-全文

目录 C o n t e n t s 章节标题页Chapter Title Page 1.介绍 2 Introduction 2.船舶资料 4 Ship’s particular 3. 负责人员及职责 5 Responsible officer any their duties 4.培训和教育 6 Training and education 5.压载水管理的手段8 Ballast water management measures 6 安全措施13 Safety Precautions 7 更换压载水程序19 Procedure For Ballast Water Exchange 8 记录和报告程序20 Recording and Reporting Procedures 9 附录23 APPENDIXES

压载水管理计划 BALLAST WATER MANAGEMENT PLAN 1.介绍与目的 Introduction and object 1.1 数个国家的研究显示在船上压载水和淤泥中的多种细菌、植物和动物,虽经过数个月的海上旅程,仍能存活。随后在各港口国水域排放压载水或淤泥,将产生对当地的人类,动植物生态,及海洋环境构成威胁的有害水生有机体和病原体。虽然其他媒介已被确定引起有机体在分隔水体之间的传播,但船舶排出的压载水却被列于最显著的媒介之中。 Studies carried out in several countries have shown that many species of bacteria, Plants, and animals can survive in a viable from in the ballast water and sediment carried out in ships, even after journeys of several months’ during. Subsequent discharge of ballast water or sediment into the water of port States may result in the establishment of harmful aquatic organisms and pathogens which may pose threats to indigenous human, animals and plant life, and the marine environment. Although other media have been identified as being responsible for transferring organisms between geographically separated water bodies, ballast water discharge from ship appears to have been among the most prominent. 1.2 为了减少船舶压载水在各海区之间传播对当地海洋中的动植物及海洋环境有危害的海生物的可能性,并符合国际海事组织《为减少有害水生物和病原体传播的对船舶压载水控制和管理的指南》(RESOLUTION A。686(20))的要求。本公司制定了船舶压载水管理计划,计划规定了船舶压载水控制与管理的方法和要求,旨在为船舶提供压载水管理的安全和有效措施,本船船员必执行本计划,

中华人民共和国海事局关于颁布《船舶压载水管理系统申报暂行规定

中华人民共和国海事局关于颁布《船舶压载水管理系统申报 暂行规定》的通知 【法规类别】船舶 【发文字号】海船舶[2012]265号 【发布部门】中华人民共和国海事局 【发布日期】2012.06.15 【实施日期】2012.06.15 【时效性】现行有效 【效力级别】部门规范性文件 中华人民共和国海事局关于颁布《船舶压载水管理系统申报暂行规定》的通知 (海船舶〔2012〕265号) 各直属海事局、各有关单位: 国际海事组织于2004年通过了《2004年控制和管理船舶压载水和沉积物国际公约》(以下简称《压载水公约》)。为使船舶压载水管理系统满足《压载水公约》的有关要求,规范船舶压载水管理系统申报程序,根据公约及国家有关法律法规,制订了《船舶压载水管理系统申报暂行规定》。现将此规定发送你们,请遵照执行。 2012年6月15日附件

中华人民共和国海事局 船舶压载水管理系统申报暂行规定 第一条为使船舶压载水管理系统满足《2004年控制和管理船舶压载水和沉积物国际公约》(以下简称《压载水公约》)的有关要求,规范船舶压载水管理系统申报程序,根据国家有关法律法规,制订本暂行规定。 第二条本规定适用于拟申请安装在中国籍船舶(法律法规另有规定的除外)上的船舶压载水管理系统。 第三条中华人民共和国海事局为船舶压载水管理系统申报的主管机关,负责船舶压载水管理系统申报的申请受理和审查。 第四条船舶压载水管理系统应满足《压载水公约》和国内有关法律法规的要求。船舶压载水管理系统的设计和操作不得危害船舶安全及人员健康和安全,也不得对环境和公众健康造成危害。压载水管理系统的性能应能满足《压载水公约》第D-2条的标准,且船上适用。 第五条申请人向主管机关申报船舶压载水管理系统中应书面说明: (1)申请人名称、地址和联系方式;

压载水管理计划 BWMP (MEPC 127 (53))

压载水管理计划BWMP (MEPC 127 (53)) BALLAST WATER MANAGEMENT PLAN (MANUAL) To meet the requirements of Regulation B-1 of INTERNATIONAL CONVENTION FOR THE CONTROL AND MANAGEMENT OF SHIP’S BALLAST WATER AND SEDIMENTS, 2004 AND THE IMO RESOLUTION MEPC. 127(53) GUIDELINES FOR BALLAST WATER MANAGEMENT AND DEVELOPMENT OF BALLAST WATER MANAGEMENT PLANS (G4) This plan should be kept available for inspection on request by a port state control officer or by a port state quarantine officer. 1. This Manual is written in accordance with the requirement of Regulation B-1 of the International Convention for the Control and Management of Ship’s Ballast Water and Sediments, 2004( the convention) and the associated Guidelines. 2. The purpose of the Manual is to meet the requirements for

压载水处理系统-CCS通函TM18

Form: RWPRR401-B C C S通 函 Circular 中国船级社 China Classification Society (2010年)通函第 18 号总第 18 号 (2010)Circ.18 /Total No. 18 2010年4 月28日(共8页) 28 / 04 / 2010 (total pages: 8) 发: 本社总部有关处室,本社验船师、审图中心,有关船东,船舶管理公司,船厂,设计单位 To relevant departments of CCS Headquarters, CCS surveyors, plan approval centers, related shipowners, ship management companies, shipyards and design units 关于实施IMO《2004年国际船舶压载水及沉积物控制和管理公约》 的信息通告 Notice on Information regarding Implementation of IMO International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 国际海事组织在2004年2月召开的外交大会上通过了《2004年国际船舶压载水及沉积物控制和管理公约》(以下简称压载水公约)。虽然目前压载水公约尚未生效,但该公约对现有船舶安装压载水管理系统有追溯要求。为方便业界及时了解公约生效及实施要求现状,现将相关信息通告如下,并附上压载水公约的中英文本,供参照实施。 The International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 (hereinafter referred to as the Ballast Water Convention) was adopted at a Diplomatic Conference at IMO held in February, 2004. Although the Ballast Water Convention has not yet entered into force, it contains retroactive requirements for installation of ballast water management systems on existing ships. The following information is notified to the industries for understanding the status quo in relation to the entry-into-force and implementation requirements of the Ballast Water Convention in a timely manner. Both the English and Chinese texts of the Ballast Water Convention are also attached for reference.

船舶压载水系统

船舶压载水系统 目录 定义 系统设计原则 船舶压载水处理系统 定义 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是:根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 系统设计原则 组成 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成。 舱室布置 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。 一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。 货油船可以用货油舱兼压载舱。 管路 1、船舶压载水系统的管路布置有三种形式:支管式、总管式和管隧式。 2、船舶压载水舱内吸口管应当同时具有加水功能。 3、各压载水舱的压载吸入口应布置在有利于压载水排出的位置。 4、为满足压载水系统的工作特点和简化管路,多采用调驳阀箱来调驳各压载水舱的压载水。 5、船舶压载水系统应当能够将全船各压载舱的压载水驳进、驳出或相互调驳。也可不用压载泵,舷外海水靠压差自动流入压载水舱。 船舶压载水处理系统 定义 船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。

前景 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO成员国港口,违反公约将面临制裁和处罚。随着“压载水公约”生效日期的临近,世界各国都在加紧研发船舶压载水处理技术。截至目前,国外研发机构共30余家,已有13家研发机构获得IMO初步批准,其中瑞典、德国、韩国及挪威已获最终批准。 我国现拥有占世界总吨位3.4%的庞大船队,我国又是造修船大国,拥有一个巨大的船舶关键设备市场,同时,国际市场也蕴含巨大潜力。 压载水处理技术的产业化不仅是保护海洋生态环境的迫切需要,而且对提高国产船舶关键设备装船率、提高航运业和造修船业核心竞争力具有重要意义。同时,对海军自主装备建设意义也十分重大。

船舶各种应急预案及应急计划(样本)

For personal use only in study and research; not for commercial use 船舶丧失操纵能力应急预案 1船舶在航行中发生丧失操纵能力的紧急情况时,立即发出警报,召集应急,应立即采取滞航及就地抛锚(沿岸航行,水深适宜)等措施。 2在采取应急行动的同时迅速报告就近港口国主管机关或搜救中心 3 在进出港、狭水道航行时,立即使用伴航拖轮协助操纵。条件允许可向就近港口机关申请加派拖轮予以协助,使船舶抵安全水域抛锚。 4 船长和当值驾驶员应加强了望,以防本船失控后与他船发生紧迫局面,并按《国际信号规则》和《72海上避碰规则》《91内河避碰规则》的要求显示号灯、号型。 5船长应沉着指挥,当值驾驶员应使用VHF发布本船目前位置、动态,提醒来船注意,并做好各项记录。 6 轮机长指挥轮机员迅速进行故障设备抢修工作。 7 求得岸基支持,按公司相关处室或主管人员指示,采取进一步抢救和抢修措施。 8 船舶丧失操纵能力导致的碰撞、触礁、搁浅、燃油泄漏等事故,按相应应急预案进行部署 9 船舶发生丧失操纵能力时,按下列应急计划进行部署。 主机失灵、电力中断应急计划 职务负责部位应急/应变职责 船长驾驶台总指挥,发布船舶操纵命令,指挥船舶操纵,负责对外及与船公司联系。 项目负责人机舱副总指挥,协助船长组织、动员人员抢修故障设备及其他应急情况处理。值驾/二副驾驶台协助船长操纵船舶,守听VHF,核测船位,做好记录。。 值班水手驾驶台按舵令正确操舵。 驾助驾驶台协助了望,显示航行灯、信号灯,悬挂号型,传令,内部联络。 大副船首指挥甲板人员工作,备锚、备缆,系带拖轮,待命。 三副驾驶台甲板按船长指令准备消防器材,准备释放救生艇、筏。 水手长船首备锚、备缆,或按船长、大副指令进行准备。 轮机长机舱抢修现场的指挥。向船长报告故障,组织人力抢修,尽快排除故障。 大管轮机舱现场抢修。 二管轮机舱现场抢修,并负责发电机/应急发电机。 三管轮机舱现场抢修,并注意泵、阀情况。 电机员机舱负责电气设备的修理及发电机及应急照明。 机工长机舱协助大管轮工作或听从轮机长、大管轮指挥,完成指定工作。 值班机工机舱向轮机长、轮机员报告发现的故障情况,听从指挥。 其他机工机舱听从轮机长轮机员指挥,完成指定工作。 其他人员待命,做好援助准备。 操舵系统故障应急计划 职务负责部位应急任务 船长驾驶台总指挥,指挥船舶操纵,发布船舶相关命令,对外联系。 值驾驾驶台发出失控通报或警报,通知机舱变速航行,传达舵令至舵机间,核测船位。驾助驾驶台协助驾驶员工作,显示号灯、号型,传令,内部联络。

船舶压载水系统

船舶压载水系统 概述 船舶在营运过程中,需要根据具体情况调整吃水、稳性、横倾和纵倾。这一任务通过改变各压载水舱中的压载水量来完成。压载水管系就是向压载水舱注入或排出压载水,以达到:①保持恰当的排水量、吃水深度和船体纵、横向平衡;②维持一定的稳性高度;③减少船体过大的弯曲力矩,免受过大的剪切力;④减轻船体因压载不当而引起的船体振动。 压载水系统的设计,应保证船舶在正常或倾斜状态下,均能及时有效地排出、注入或调拨各压载舱内的压载水。 运输船舶的压载水量相当大,约相当于船舶载重量的40%~80%,因此要有足够的压载水舱。船舶的艏尖舱、艉尖舱、双层底舱、边舱、顶边舱和深舱等均可作为压载水舱。艏、艉尖舱对调整船舶纵倾最为有效。艏尖舱因处于船首隔壁前,易受碰撞,故常作压载舱使用。因舰机型船的尾部一般设有燃油舱,故常将艉尖舱作为压载水舱,用以调整因燃油消耗而引起的纵倾。 小型船舶常将艏、艉尖舱作为清水舱兼压载水舱。 货船的双层底舱常作为燃油舱或清水舱兼压载水舱使用。但是货船仅以艏、艉尖舱和双层底舱作为压载水舱时其压载水量是不够的,故常以部分货舱兼作压载水舱。散装货船不仅双层底,还常以顶边舱作为压载水舱,以保证必要的压载水量。油船除货油舱外,一般另设专用压载水舱。 压载水系统的任务是通过压载水泵、阀箱和压载管路将压载水注入各压载舱、将压载水从各压载舱排出,以及进行各压载水舱之间的调拨。 船舶压载水处理系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。货油船可以用货油舱兼压载舱。 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO成员国港口,违反公约将面临制裁和处罚。

压载水管理计划

BALLAST WATER MANAGEMENT PLAN 压载水管理计划 SHIP NAME 船名ZHEN HUA 15 IMO No. 国际海事组织编号8714970 上海蓝捷海上安全技术咨询服务公司 Shanghai Lanjie Maritime Technical Consultation Services Ltd. 2 March 2010 1 CONTENTS (目录) Section Title Page No. Preamble 序言3 Introduction 前言4 Ship Particulars 船舶主要参数 5 RECORD OF AMENDMENTS 内容修订记录 6 Section 1 Purpose 目的7 Section 2 Plans/Drawings of the Ballast System 压载系统图8 Section 3 Description of the Ballast System 压载系统介绍9 Section 4 Ballast Water Sampling Points 压载水取样点11 Section 5 Operation of the Ballast Water Management System 压载水管理系统操作12 Section 6 Safety Procedures for the Ship and the Crew 船及船员安全程序16 Section 7 Operational or Safety Restrictions 操作及安全注意事项20 Section 8 Description of the Method(s) used on board for Ballast

压载水处理系统

压载水处理系统 【定义: 1、船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。也称船舶压载水管理系统。英文简称BWMS。 2、系指对压载水进行处理使其达到或高于《国际船舶压载水及其沉积物管理和控制公约》第D-2条规定的压载水性能标准的任何系统。压载水管理系统包括压载水处理设备、所有相关控制设备、监测设备以及取样设施。 【背景: 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 【D2标准生效日的不确定性: 《压载水公约》中对船舶的要求是排放经处理的压载水必须满足D2标准,而D2标准的生效并不取决于该公约的生效。这是因为虽然该公约生效日期不确定,但公约中D2标准的生效日对各类型船舶很明确,而该条款又是追溯性的,这就意味着无论公约是否生效,无论是否缔约国,对船舶安装满足D2标准压载水管理系统的要求都是强制性的,所以船舶尤其是新造船舶一定要在船舶设计时考虑这一要求。目前的问题是没有满足所有船舶需要的、足够数量的压载水管理系统,所以D2标准第1个生效日的推迟在所难免。2007年召开的IMO 第25次大会A.1005(25)决议解决了2009年建造的船舶问题,将D2标准的适用日推迟到2011年12月31日,但2010年及之后建造的船舶和现有船舶的适用时间是否推迟要由2009年召开的MEPC(59)会议决定。 【压载水处理D-2标准

压载水处理系统

一、船舶压载水处理的背景 1、船舶压载水的危害 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 2、压载水处理D-2标准

3、船舶压载水处理系统的安装时间表 (D-1:压载水置换标准;D-2:压载水处理标准) 二、认证历程

2008年6月建成国内第一个压载水处理陆基实验基地

2009年12月通过CCS陆基实验型式认可

青岛双瑞公司的Bal C lor TM BWMS在第61次国际海事组织(IMO)大会上获得最终认可。 2010年12月将通过CCS实船实验型式认可,2011年初将通过DNV实船型式认可 三、BalClor TM BWMS的处理技术 BalClor TM BWMS对压载水的处理过程分为“过滤”、“电解海水产生次氯酸钠杀菌”、“中和”三步: “过滤”—压载时,利用过滤精度为50μm的自动反冲洗过滤器对所有压载水进行过滤,该步骤可以过滤掉尺寸大于50μm的大部分的海生物及固体颗粒; “电解海水产生次氯酸钠杀菌”—从压载水主管路引一支路海水进入电解装置,电解产生高浓度的次氯酸钠溶液,该溶液经过除气后,回注入压载水主管路,同主管路压载水混合到一定浓度。该浓度的次氯酸钠能够有效杀灭经过滤后的残余的浮游生物、病原体及其幼虫或孢子等,达到规定的杀菌效果(D-2标准),压载水管路中活性物质的浓度由TRO分析仪和控制系统自动控制; “中和”—压载水排放时,当其余氯浓度小于IMO规定值时,中和系统不启动,压载水直接排放;当压载水中余氯浓度大于IMO规定值时,中和系统自动启动,向排水管中注入中和药剂,中和残余的TRO残余氧化剂,中和剂量由控制系统自动控制。 1、灭活-核心技术 电解单元从过滤后的压载水抽取总量1%~2%左右的水流电解,制取氯气和次氯酸钠溶液,同时通过除气装置将电解产生的氢气稀释到安全界限以下,排出舷外。氯气会溶于水迅速产生次氯酸。 当海水进入电解槽后,电解反应机理如下: 阳极:2Cl-→ Cl2 + 2e 阴极:2H2O + 2e → 2OH- + H2↑ 阳极产生的氯气能够迅速溶在海水中生成次氯酸和盐酸: Cl2 + H2O → HOCl + Cl- + H+ 所以,总反应: NaCl + H2O → NaOCl + H2↑ 次氯酸钠溶液作为一种非常有效的杀菌剂可以在压载水中保持一定时间,并迅速有效的杀灭压载水中的浮游生物、孢子、幼虫及病原体。该技术已经在医学灭菌、自来水厂等水处理行业应用多年。

澳大利亚压载水管理指南

澳大利亚压载水管理指南 [译者注):澳大利亚为防止从海外进入澳大利亚水域的船舶排放的压舱水和沉积物带有有害水生微生物和病原体,于1990年推出澳大利亚压载水管理指南并于1992年修改后以AQIS(澳大利亚检疫和检查局)通告形式发布,于1998年正式成为澳大利亚指南。但为与IMO于1997年推出的IMO压载水管理指南主要要求保持一致,澳大利亚当局又以此指南取代1998年的指南。鉴于该指南一些主要要求为强制性的,特译出供我赴澳船舶参照执行。同时对我国保护海洋环境有关部门或许具有参考和借鉴价值。 1目的 1.1.这些指南的目的是,通知从海外进入澳大利亚的船舶有关澳大利亚对控制和沉积物排放的要求,以使有害的水生微生物和病原体带进澳大利亚沿海水域的风险控制在最小限度。这些指南取代1998年8月1日和1998年10月1日生效的BW8/98澳大利亚指南,原指南是1990年推出的并于1992年修改后于1992年7月通过AQIS(澳大利亚检疫和检查局)92/2通告颁布的。 2引言 2.1.澳大利亚的这些压载水指南(简称澳大利亚指南)应该与为缩小有害水生微生物和病原体而控制和管理船舶压载水的国际海事组织(IMO)指南(A.868(20)决议)(IMO 指南)一并加以研读。尤其,要求船长们对IMO指南,海上排放压载水安全方面的指导给以注意,这些指南见附录。 2.2.AQIS是澳大利亚政府管理压载水问题和挂靠澳大利亚第一个港口的船舶按澳大利亚压载水管理指南实行监测的牵头机构。指南就控制从海外进入澳大利亚水域的船舶排放压载水以及沉积物问题,澳大利亚列出了详细要求,其中有的已纳入澳大利亚议会法,成为强制性的规定。 2.3.后边的(6.4)为强制性进入船上取样点和(7.1)为强制性的报告。此外,清洁压载舱和货舱而导致沉积物排入澳大利亚海洋环境则属违禁(6.2.2.2)。 3申请 3.1.除非AQIS另有规定,这些指南适用于所有从海外港口进入澳大利亚的船舶。3.2.在采用这些指南过程中,船舶安全是重中之重。 4指南的目的和背景 4.1.按技术上和科学上指导和效仿IMO指南,由AQIS开发的这些指南的目的是,想协助船长、经营人、船东、代理和当局及其他有关方面把带进有害的水生微生物和来自船舶压载水的风险降低到最低限度,从而也保护了船舶安全。 5培训和教育 5.1.为与IMO指南相一致,鼓励对船长和船员进行适当的培训。基于这些指南和IMO 指南中的信息,这一培训应包括有关压载水和沉积物处理程序的讲授。在坚持做适当的记录和航海日志方面也应该提供讲授。 6船舶程序 6.1.船舶压载水管理计划 6.1.1.凡载有压载水的船舶都要求保存压载水管理计划,以协助将有害的水生微生物和病原体的传播减少到最低限度。为此,计划的目的应就压载水环境管理和安全及有效程序提供指导。 6.1.2.压载水管理计划应作为每条船舶的专项,并应按IMO压载水管理计划参照由国际航运协会(ICS)和国际油轮船东协会(IN-TERTANCO)为IMO开发的IMO指南模式制定。这种模式计划可以从ICS那里获取:传真0044 171 4178877或E-mail :ics@https://www.360docs.net/doc/4513720477.html,

船舶压载水处理系统项目可行性报告

船舶压载水处理系统项目可行性报 告 国统调查报告网(即中金企信国际咨询公司)拥有10余年项目可行性报告撰写经验,拥有一批高素质编写团队,卓立打造一流的可行性研究报告服务平台为各界提供专业可行的报告(注:可出具各类项目的甲级资质)。 项目可行性报告用途(企业投融资、国家发改委立项、银行贷款申请、申请进口设备免税、境外投资项目核准、政府资金项目申报) 可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 由于可行性研究报告属于订制报告,以下报告目录仅供参考,成稿目录可能根据客户需求和行业分类有所变化。 第一章船舶压载水处理系统项目总论 第一节船舶压载水处理系统项目背景 一、船舶压载水处理系统项目名称

二、船舶压载水处理系统项目承办单位 三、船舶压载水处理系统项目主管部门 四、可行性研究工作的编制单位 五、研究工作概况 第二节编制依据与原则 一、编制依据 二、编制原则 第三节研究范围 一、建设内容与规模 二、船舶压载水处理系统项目建设地点 三、船舶压载水处理系统项目性质 四、建设总投资及资金筹措 五、投资计划与还款计划 六、船舶压载水处理系统项目建设进度 七、船舶压载水处理系统项目财务和经济评论 八、船舶压载水处理系统项目综合评价结论 第四节主要技术经济指标表 第五节结论及建议 一、专家意见与结论 二、专家建议 第二章船舶压载水处理系统项目背景和发展概况第一节船舶压载水处理系统项目提出的背景

压载水系统

压载水系统 船舶压载水系统 目录定义系统设计原则船舶压载水处理系统 定义 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是:根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 系统设计原则 组成 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成。 舱室布置 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。货油船可以用货油舱兼压载舱。 管路 1、船舶压载水系统的管路布置有三种形式:支管式、总管式和管隧

式。2、船舶压载水舱内吸口管应当同时具有加水功能。3、各压载水舱的压载吸入口应布置在有利于压载水排出的位置。4、为满足压载水系统的工作特点和简化管路,多采用调驳阀箱来调驳各压载水舱的压载水。5、船舶压载水系统应当能够将全船各压载舱的压载水驳进、驳出或相互调驳。也可不用压载泵,舷外海水靠压差自动流入压载水舱。 船舶压载水处理系统 定义 船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。前景 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004 年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009 年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017 年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO 成员国港口,违反公约将面临制裁和处罚。随着“压载水公约”生效日期的临近,世界各国都在加紧研发船舶压载水处理技术。截至目前,国外研发机构共30 余家,已有13 家研发机构获得IMO 初步批准,其中瑞典、德国、韩国及挪威已获最终批准。我国现拥有占世界总吨位 3.4%的庞大船队,我国又是造修船大国,拥有一个巨大的船舶关键设备市场,同时,

船舶压载水处理系统船舶压载水系统论文

导读:就爱阅读网友为您分享以下“船舶压载水系统论文”资讯,希望对您有所帮助,感谢您对https://www.360docs.net/doc/4513720477.html,的支持! “凯敏”轮压载水管理系统的科学管理初探 [摘要] 随着世界航运业的发展,船舶压载水问题给全球海洋环境和经济发展带来一定程度的威胁。压载水会把侵害性水生物带到新的环境,从而破坏新环境生物链的正常生产,甚至可能危害人类的正常生活。目前,已经成为影响海洋生态环境安全的四大危害因素之一。因此,安全而有效治理船舶压载水及其沉积物已成为国际海洋环境研究中的热点课题。首先,在查阅多方相关资料后,本文对压载水进行了综合论述,分析了压载水处理的重要性;其次,简述了几种针对压载水处理的管理方法,分析了它们的优缺点;接着,详细论述了“凯敏”轮所使用压载水处理技术,并就其处理原理进行分析。同时针对“凯敏”轮电解法处理压载水所产生的问题进行分析,并提出解决办法。

[关键词] 压载水;电解制氯;腐蚀;监控系统 I The Scientific Managment of Ballast Water Treatment System in New Activity Tanker [Abstract] With the development of the world shipping industry, the ship ballast water problem has brought a certain degree of threat to the global marine environment and economic development. The ballast water will take the invasive aquatic organisms to the new environment, destroy the normal production of the food chain in the new environment, It could even do harm to the human normal life. At present,the ballast water has become one of the four major risk factors that affect the safety of marine ecological environment. Therefore, the safe and effective way to manage ship ballast water and sediment has become a hot topic in the international marine environmental research.Firstly,based on the references,the Paper summarizes the related Problem of ballast water,clarifies the importance. Secondly,the paper briefly introduces

船舶各种应急预案及应急计划(样本)

船舶丧失操纵能力应急预案 1船舶在航行中发生丧失操纵能力的紧急情况时,立即发出警报,召集应急,应立即采取滞航及就地抛锚(沿岸航行,水深适宜)等措施。 2在采取应急行动的同时迅速报告就近港口国主管机关或搜救中心 3 在进出港、狭水道航行时,立即使用伴航拖轮协助操纵。条件允许可向就近港口机关申请加派拖轮予以协助,使船舶抵安全水域抛锚。 4 船长和当值驾驶员应加强了望,以防本船失控后和他船发生紧迫局面,并按《国际信号规则》和《72海上避碰规则》《91内河避碰规则》的要求显示号灯、号型。 5船长应沉着指挥,当值驾驶员应使用VHF发布本船目前位置、动态,提醒来船注意,并做好各项记录。 6 轮机长指挥轮机员迅速进行故障设备抢修工作。 7 求得岸基支持,按公司相关处室或主管人员指示,采取进一步抢救和抢修措施。 8 船舶丧失操纵能力导致的碰撞、触礁、搁浅、燃油泄漏等事故,按相应应急预案进行部署 9 船舶发生丧失操纵能力时,按下列应急计划进行部署。 主机失灵、电力中断应急计划 职务负责部位应急/应变职责 船长驾驶台总指挥,发布船舶操纵命令,指挥船舶操纵,负责对外及和船公司联系。 项目负责人机舱副总指挥,协助船长组织、动员人员抢修故障设备及其他应急情况处理。值驾/二副驾驶台协助船长操纵船舶,守听VHF,核测船位,做好记录。。 值班水手驾驶台按舵令正确操舵。 驾助驾驶台协助了望,显示航行灯、信号灯,悬挂号型,传令,内部联络。 大副船首指挥甲板人员工作,备锚、备缆,系带拖轮,待命。 三副驾驶台甲板按船长指令准备消防器材,准备释放救生艇、筏。 水手长船首备锚、备缆,或按船长、大副指令进行准备。 轮机长机舱抢修现场的指挥。向船长报告故障,组织人力抢修,尽快排除故障。 大管轮机舱现场抢修。 二管轮机舱现场抢修,并负责发电机/应急发电机。 三管轮机舱现场抢修,并注意泵、阀情况。 电机员机舱负责电气设备的修理及发电机及应急照明。 机工长机舱协助大管轮工作或听从轮机长、大管轮指挥,完成指定工作。 值班机工机舱向轮机长、轮机员报告发现的故障情况,听从指挥。 其他机工机舱听从轮机长轮机员指挥,完成指定工作。 其他人员待命,做好援助准备。 操舵系统故障应急计划 职务负责部位应急任务 船长驾驶台总指挥,指挥船舶操纵,发布船舶相关命令,对外联系。 值驾驾驶台发出失控通报或警报,通知机舱变速航行,传达舵令至舵机间,核测船位。驾助驾驶台协助驾驶员工作,显示号灯、号型,传令,内部联络。 值班水手驾驶台悬挂信号,传令,内部联络。 下一班值驾舵机间携带VHF对讲机(或使用驾驶台/机舱直通电话)按驾驶台舵令指挥操

双瑞压载水处理系统说明(林双海)[1]

系统原理的BALCLORTM 电解过程中脱氯过滤 过滤:去除有机物和颗粒物大多数大型多 比最小尺寸为50μm; 电解过程:生产次氯酸钠溶液杀 有害水生物和病原体; 脱氯:周转率将要瓦解以下为0.1mg / L的 电解过程的原理 反应机理如下: 阳极: 2Cl- → Cl2 + 2e 阴极: 2H2O + 2e → 2OH- + H2↑ 氯气可溶于水的生产 次氯酸和盐酸迅速: Cl2 + H2O → HOCl + Cl- + H+因此整体的反应是: NaCl + H2O → NaOCl + H2↑ 作者:HYPOBROMOUS酸生成 由于通常有溴离子密度与 50?70mg / L的天然海水中存在的氧化 反应的次氯酸和溴离子会 生产hypobromous酸: HOCl + Br - → HOBr + Cl – Hypobromous酸也有效的杀菌剂,更稳定的比 氯在碱性海水。 氯胺和发电的 BROMAMINES 次氯酸反应和hypobromous酸 在海水氨会产生氯胺 和Bromamines

HOCl + NH3 == NH2Cl (monochloramine)+ H2O(均未配平) NH2Cl + HOCl ==NHCl2(dichloramine)+ H2O(均未配平) NHCl2 + HOCl ==NCl3(trichloramine)+ H2O(均未配平) 联名作者GEMICIDAL代理:周转率 氯胺和bromamines也gemicidal代理商,并 一般认为,其杀菌的行动是多 弱于HClO/ClO-和HOBr/OBr-人。 因此,gemicidal效果统称代理 总残余氧化剂(周转率),包括HClO/ClO- /氯气,HOBr/OBr-/Br2,氯胺和bromamines。

船舶压载水管理计划 全文

Ballast water management plan 目录 Contents 章节标题页Chapter Title Page 1.介绍 2 Introduction 2.船舶资料 4 Ship's particular 3. 负责人员及职责 5 Responsible officer any their duties 4.培训和教育 6 Training and education 5.压载水管理的手段8 Ballast water management measures 6 安全措施13 Safety Precautions 7 更换压载水程序19 Procedure For Ballast Water Exchange 8 记录和报告程序20 Recording and Reporting Procedures

9 附录23 APPENDIXES Ballast water management plan 压载水管理计划 BALLAST WATER MANAGEMENT PLAN 1.介绍与目的 Introduction and object 1.1 数个国家的研究显示在船上压载水和淤泥中的多种细菌、植物和动物,虽经过数个月的海上旅程,仍能存活。随后在各港口国水域排放压载水或淤泥,将产生对当地的人类,动植物生态,及海洋环境构成威胁的有害水生有机体和病原体。虽然其他媒介已被确定引起有机体在分隔水体之间的传播,但船舶排出的压载水却被列于最显著的媒介之中。Studies carried out in several countries have shown that many species of bacteria, Plants, and animals can survive in a viable from in the ballast water and sediment carried out in ships, even after journeys of several months' during. Subsequent discharge of ballast water or sediment into the water of port States may result in the establishment

船舶压载水处理系统

船舶压载水处理系统 2009年3月9日 [关键词]压载水处理系统;空化;脱氧 [摘要]较详细地介绍了三种符合国际海事组织(IMO)压载水排放标准的压载水处理系统。为2009年以后设计建造的新船以及2016年底前全部现有船舶的改装设计提供了新装备、新技术的线索,值得关注。 0引言 2004年,国际海事组织(IMO)通过了《船舶压载水和沉积物控制和管理国际公约》,旨在达成国际上的一致,“通过控制和管理船舶压载水和沉积物来防止、减少和最终消除有害水生物和病原体的传播”。压载水排放可能扰乱生态平衡,为了应对由此造成的对全球环境的威胁,需要配置得到IMO认可的处理系统。按照公约的要求,如果在2009年1月1日以后建成的新船,必须安装专门的处理设备;从2012年起所有的新船均应装设压载水处理系统,而全部现有船舶则应在2016年底之前配备此项技术装置。 随着2009年的临近,距离公约正式生效的日子已经不远,目前有多少压载水处理系统已经研制成功并得到IMO批准呢? 1国外主要的压载水处理系统介绍 1.1NEI公司的文氏管脱氧方式压载水处理系统(Venturi Oxygen Stripping——VOS) NEI公司从2002年开始致力于研制VOS系统来解决水栖有害生物问题,同时保护压载舱不被腐蚀。该系统使用氮气在船舶压载舱内制造一个低氧的环境,该环境限制了含氧量,避免了氧化铁或锈的形成;同时,该低氧环境极大降低了随压载水带来的水栖生物的生存率。该项技术已在船舶实验中得到证明,完全符合IMO的压载水排放标准。图1为VOS系统流程图。 VOS系统与船舶现有的压载系统相结合,当吸入的压载水流经安装在压载管路上的文氏管喷射器时,将会发生空化现象;同时在其中喷入由制氮装置产生的氮气,使其达到过饱和。经过这一过程,压载水中的含氧量将在l0s内减少95%。当压载水排出压载舱时,VOS系统将通过甲板管路向空舱中注入氮气,以使压

相关文档
最新文档