国内外超级电容器的研究发展现状_周晓航

国内外超级电容器的研究发展现状_周晓航
国内外超级电容器的研究发展现状_周晓航

碳电极涂层铝箔

分隔符

图4 (a)商业化卷绕式双电层超级电容器内部结构 (b)卷绕式电容器外观

(c)纽扣式电容器[31]

印工艺可以制作相对较厚的电极膜,而且添加的表面活性剂不会对电容性能造成影响反而可以增大电极材料与离子的接触面积,从而提高电容[32]。除了打印工艺,干法压片也可以制作出较厚的电极片,但是这种工艺用于坚硬松散的颗粒材料时,必须加入大量的粘合剂,大大影响电容性能。所以根据电极材料特性选择电极膜的制作工艺才可以更好的发挥电极材料的电容性能。

再有,如果想提高活性材料的比例得到更高的功率和能量密度,改善设计上的缺陷也是首要考虑的问题。2012年,以钛片为双极板的叠片式水相超级电容堆可以到达20V工作电压。这种双极板的设计,对活性材料厚度没有局限,并且减小了集流体材料的使用,可有效降低成本和减轻整体超级电容池堆的质量[33]。以往电容池堆的设计是外部串联或并联多个电容器单体,这样的问题是增大了电容池堆的接触电阻,降低了其性能。双极板的设计直接有效地减小了接触电阻(图5)。这种叠片式的设计延用了燃料电池的结构设计,所以很多工艺制作可以效仿燃料电池的制造工艺设计。

除了电容器结构的设计,研究人员对于电容器正负电极材料的控制也做了大量的研究。不对称电极设计就用2种不同的电极材料作为正负极。利用有更宽负电位的碳材料为负极材料,用有更宽正电位范围的材料为正极材料,如金属氧化物或导电聚合物与碳材料的复合物,可以增大电容器单体工作电压。此外,不对称电极材料的质量比例调节也可以有效拓宽工作电压[34]。报道中的水相电容器单体工作电压可以达到1.5V,提升了50%。利用这个设计,原有的能量和功率密度可以翻倍。表2列出了不同正、负电

新材料产业?NO.03 2015

钛双板

负极材料

多空分离器密封橡胶垫圈正极材料

积极的钛终板绝缘胶板

不锈钢板

图5 (a)涂层有活性电极材料的钛片(b)水相超级电容池堆外观的照片(c)以钛为双极板、PPy碳纳米管复合物和活性炭为活性电极材料的水相超级电容

池堆的内部结构[33]是工业界的重要任务。

10.3969/j.issn.1008-892X.2015.03.014

参考文献

[1] Dario?Galizzioli,Trasatti?S.Work?function,electronegativity,and?electrochemical?behaviour?of?metals:II.Potentials?of?zero?charge?and"electrochemical"work?

functions[J].Journal?of?Electroanalytical?Chemistry?and?Interfacial?Electrochemistry,1971,33(2):351-378.

Advanced Materials Industry

超级电容器电极材料的研究进展

2011年第3期 新疆化工 11 超级电容器电极材料的研究进展 摆玉龙 (新疆化工设计研究院,乌鲁木齐830006) 摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。 关键词:超级电容器;电极材料 1 前言 超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。 2 碳材料类电极材料 在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。其研究是从1957年Beck发表的相关专利开始的。碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。 活性炭(AC)是超级电容器最早采用的碳电极材料[2]。它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。 活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。ACF的制备一般是将有机前驱体纤维在低温(200℃~400) ℃下进行稳定化处理,随后进行炭化、活化(700℃~1000) ℃。日本松下电器公司早期使用活性炭粉为原料制备双电层电容器的电极,后来发展的型号则是用导电性优良、平均细孔孔径2~5nm、细孔容积0.7~1.5m3/g、比表面积达1500~3000m2/g的酚醛活性炭纤维[5],活性炭纤维的优点是质量比容量高,导电性好,但表观密度低。H. Nakagawa采用热压的方法研制了高密度活性炭纤维(HD-ACF)[6],其密度为0.2~0.8g/m3,且不用任何粘接剂。这种材料的电子导电性远高于活性炭粉末电极,且电容值随活性炭纤维密度的提高而增大,是一种很有前途的电极材料。用这种HD-ACF 制作超级电容器电极[7],结果表明,对于尺寸相同的单元电容器,采用HD-ACF为电极的电容器的电容明显提高。 炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸<50nm,网络胶体颗粒尺寸3~20nm,比表面积高达60~1000m2/g,密度为0.05~0.80g/m3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[8]。孟庆函,

国内外分组密码理论与技术的研究现状及发展趋势

国内外分组密码理论与技术的研究现状及发展趋势 1 引言 密码(学)技术是信息安全技术的核心,主要由密码编码技术 和密码分析技术两个分支组成。密码编码技术的主要任务是寻求产 生安全性高的有效密码算法和协议,以满足对数据和信息进行加密 或认证的要求。密码分析技术的主要任务是破译密码或伪造认证信 息,实现窃取机密信息或进行诈骗破坏活动。这两个分支既相互对 立又相互依存,正是由于这种对立统一的关系,才推动了密码学自 身的发展[6]。目前人们将密码(学)理论与技术分成了两大类, 一类是基于数学的密码理论与技术,包括分组密码、序列密码、公 钥密码、认证码、数字签名、Hash函数、身份识别、密钥管理、 PKI技术、VPN技术等等,另一类是非数学的密码理论与技术,包括 信息隐藏、量子密码、基于生物特征的识别理论与技术等。 在密码(学)技术中,数据加密技术是核心。根据数据加密所 使用的密钥特点可将数据加密技术分成两种体制,一种是基于单密 钥的对称加密体制(传统加密体制),包括分组密码与序列密码, 另一类是基于双密钥的公钥加密体制。本文主要探讨和分析分组密 码研究的现状及其发展趋势。 2 国内外分组密码研究的现状 2.1 国内外主要的分组密码 美国早在1977年就制定了本国的数据加密标准,即DES。随着 DES的出现,人们对分组密码展开了深入的研究和讨论,已有大量 的分组密码[1,6],如DES的各种变形、IDEA算法、SAFER系列算 法、RC系列算法、Skipjack算法、FEAL系列算法、REDOC系列算 法、CAST系列算法以及Khufu,Khafre,MMB,3- WAY,TEA,MacGuffin,SHARK,BEAR,LION,CA.1.1,CRAB,Blowfish,GOST,SQUA 算法和AES15种候选算法(第一轮),另有NESSIE17种候选算法 (第一轮)等。 2.2 分组密码的分析 在分组密码设计技术不断发展的同时,分组密码分析技术也得 到了空前的发展。有很多分组密码分析技术被开发出来,如强力攻 击(穷尽密钥搜索攻击、字典攻击、查表攻击、时间存储权衡攻 击)、差分密码分析、差分密码分析的推广(截段差分密码分析、 高阶差分密码分析、不可能差分密码分析)、线性密码分析、线性 密码分析的推广(多重线性密码分析、非线性密码分析、划分密码 分析)、差分线性密码分析、插值攻击、密钥相关攻击、能量分 析、错误攻击、定时攻击等等。 其中,穷尽密钥搜索攻击是一种与计算技术密不可分的补素密码分 析技术,也是最常用的一种密码分析技术。通过这种技术,可以破 译DES的算法。在DES最初公布的时候,人们就认为这种算法的密钥 太短(仅为56bit),抵抗不住穷尽密钥搜索的攻击。因此,1997 年1月28日,美国colorado的程序员Verser从1997年3月13日起, 在Internet上数万名志愿者的协同下,用96天的时间,于1997年6

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

国内外密码学发展现状

国内外密码学发展现状 简述国内外密码学发展现状 一、近年来我国本学科的主要进展 我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。 (一)最新理论与技术研究进展 我国学者在密码学方面的最新研究进展主要表现在以下几个方面。 (1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。 (2)分组密码方面,我国许多学者取得了重要的研究成果。吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。 (3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。 (4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。

(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。该项成果获得2005年国家科技进步二等奖。 (6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。 (7)实验方面,主要有郭光灿院士领导的团队和潘建伟教授领导的团队取得了 一些令人瞩目的成绩,其中的“量子政务网”和“量子电话网”均属世界首创。 (二)最新成果应用进展 2009年是我国《商用密码管理条例》发布实施10周年。10年来我国的商用密码取得了长足发展。尤其值得一提的是可信计算和WAPI方面的密码应用。 (1)通过在可信计算领域中的密码应用推广,推出了我国自主的《可信计算密码支撑平台功能与接口规范》,大大提升了我国密码算法的应用水平和密码芯片的设计和研制水平。 (2)我国自主研发的宽带无线网络WAPI安全技术,弥补了同类国际标准的安全缺陷,形成并颁布了两项国家标准;其中的加密算法采用了自主研发的分组密码算法SMS4。该成果2005年获得国家发明二等奖。 二、密码学的发展趋势和展望 (1)密码的标准化趋势。密码标准是密码理论与技术发展的结晶和原动力,像AES、NESSE、eSTREAM和SHA 3等计划都大大推动了密码学的研究。 (2)密码的公理化趋势。追求算法的可证明安全性是目前的时尚,密码协议的形式化分析方法、可证明安全性理论、安全多方计算理论和零知识证明协议等仍将是密码协议研究的主流方向。

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

国内外密码理论与技术研究现状及发展趋势

国内外密码理论与技术研究现状及发展趋势 一、国外密码技术现状 密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。 自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码。由于分解大整数的能力日益增强,所以对RSA的安全带来了一定的威胁。目前768比特模长的RSA已不安全。一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。 公钥密码主要用于数字签名和密钥分配。当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS),部分州已制定了数字签

超级电容器的研究进展

超级电容器的研究进展

超级电容器的研究进展 摘要:超级电容器是一种新型储能装置,它具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。近年来,各种新兴材料 的发展,为超级电容器电极材料的选取提供了更多的选择条件,促进了超级电 容器的快速发展。本文总结了超级电容器的特点,重点介绍了超级电容器的工 作原理、分类以及超级电容器的材料。并简要展望了超级电容器电极材料的发 展方向和前景。 关键词:超级电容器碳电极贵金属氧化物导电聚合物 Abstract: Super capacitor is a new type of energy storage device. It has the characteristics of high power density, short charging time, long service life, good temperature characteristics, energy saving and green environmental protection. In recent years, the development of a variety of new materials, for the selection of the super capacitor electrode materials to provide more options to promote the rapid development of the super capacitor. This paper summarizes the characteristics of the super capacitor, and introduces the working principle of the super capacitor, classification and the material of the super capacitor. And briefly discussed the developing direction of super capacitor electrode materials and prospect. Key words: Super capacitor Carbon electrode Precious metal oxide Conducting polymer 一、引言 超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双 电层理论基础上的一种全新的电容器,又叫电化学电容器(Electrochemcial Capacitor, EC)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电

密码学及其研究现状(2014年)

密码学及其研究现状(2014年) {摘要}: 密码系统的两个基本要素是加密算法和密钥管理。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。由于密码系统的反复使用,仅靠加密算法已难以保证信息的安全了。事实上,加密信息的安全可靠依赖于密钥系统,密钥是控制加密算法和解密算法的关键信息,它的产生、传输、存储等工作是十分重要的。{关键词}:密码技术安全网络密匙管理 密码技术是信息安全的核心技术。如今,计算机网络环境下信息的保密性、完 整性、可用性和抗抵赖性,都需要采用密码技术来解决。密码体制大体分为对称密 码(又称为私钥密码)和非对称密码(又称为公钥密码)两种。公钥密码在信息安全中 担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这 些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早 期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据 等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的 应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信 息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府 现用的密码编制及破译手段都具有高度的机密性。 进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它 们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱--按照 规定的图形和线路,改变明文字母或数码等的位置成为密文;代替--用一个或多 个代替表将明文字母或数码等代替为密文;密本--用预先编定的字母或数字密码 组,代替一定的词组单词等变明文为密文;加乱--用有限元素组成的一串序列作 为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单 独使用,也可混合使用,以编制出各种复杂度很高的实用密码。 当前,公钥密码的安全性概念已经被大大扩展了。像著名的RSA公钥密码算法、 Rabin公钥密码算法和ElGamal公钥密码算法都已经得到了广泛应用。但是,有些公

2019超级电容器行业分析报告及技术研究现状

2012超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F以下、5F~200F、200F以上它们由于其特点的不同运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。 2.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 2.1.1 碳材料 碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及 以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔 径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径 大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性 能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。 2.1.2 金属氧化物材料 金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

国内外测试仪器发展现状及趋势

国内外测试仪器发展现状及趋势 科学是从测量开始的—这是19世纪著名科学家门捷列夫的名言。到了21世纪的今天,作为信息产业的三大关键技术之一,测试测量行业已经成为电子信息产业的基础和发展保障。 而测试仪器作为测试测量行业发展不可或缺的工具,在测试测量行业的发展中起到了巨大的作用。中国“十一五”期间,由于国家不断增加基础建设的投入力度,在旺盛市场需求的带动下,对仪器需求不断增加,同时测试仪器市场也正在快速发展。 全球测试仪器市场情况及分析 国内电子测量仪器行业在经过一段沉寂后,慢慢开始复苏。产品大幅增长主要有两个原因,一是市场的巨大需求,特别是通信、广播电视市场的巨大发展,引发了电子测量仪器市场的迅速增长,二是电子测量仪器行业近几年迅速向数字化、

智能化方向发展,推出了部分数字化产品,因而在若干个门类品种上取得了较快增长。从近期中国仪表行业发展的情况来看势头喜人的,与全国制造业一样,虽然遇到了不少困难但仍然保持了向上发展的态势。 尽管中国仪器市场正在快速的发展着,但与国外仪器生产企业比较仍然有很大的差距。中国主要科研单位、学校以及企业等单位中使用的高档、大型仪器设备几乎全部依赖进口。同时,国外公司还占有国内中档产品以及许多关键零部件市场60%以上的份额。世界测试仪器市场对中国的影响依然非常大。目前,在世界电子测量仪器市场上,竞争日趋激烈。以往,测试仪器生产厂商主要都将仪器产品的高性能作为竞争优势,厂商开发什么,用户买什么。而今则已变成厂商努力开发用户需要的仪器,并且把更便宜、更好、更快、更易使用的测试仪器作为奋斗目标。在信息化的推动下,全世界测试仪器市场将继续保持增长的势头。人们普遍认为,电子测量仪器市场的前景依然乐观。 国际仪器发展趋势和国内现状 一、国际趋势

国内外公路研究现状与发展趋势

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧张状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

超级电容器研究进展

超级电容器研究进展 XXX 摘要:超级电容器是一种介于化学电池与普通电容器之间的新型储能装置。本文主要介绍了超级电容器的原理、电极材料和电解质研究进展。 关键词:超级电容器电极材料电解质 Research Progress of Super Capacitor Abstract:Super capacitor is a new energy storage device between battery and conventional capacitor. In this paper, super capacitor’s principle,research progress on electrode materials and electrolytes were introduced. Key Word: super capacitor electrode materials electrolytes 1 引言 超级电容器是最近几十年来,国内外发展起来的一种新型储能装置,又被称为电化学电容器。超级电容器兼具有静电电容器和蓄电池二者优点。它既具有普通静电电容器那样出色的放电功率,又具备蓄电池那样优良的储备电荷能力。与普通静电电容器相比较,超级电容器具有法拉级别的超大电容、非常高的能量密度和较宽的工作温度区间[1-3]。此外由于超级电容器材料无毒[4]、无需维护,有极长的循环充放电寿命,可作为一种绿色环保、性能优异的的储能装备在便携式仪器设备、数据记忆存储系统、电动汽车电源等[5]方面有着广泛的应用前景。超级电容器从出现到成熟,经历漫长的发展过程。当今世界,越来越多的科研机构和商业公司致力于超级电容器的研制与开发工作。美国、日本、俄罗斯超级电容器界的三大巨头,其产品几乎占据了超级电容器市场的绝大部分。与这些超级电容强国相比,我国超级电容器研发工作起步晚,发展快,如今已初具规模,并渐趋成熟,但仍存在一定差距。 2 超级电容器工作原理 当前得到大家广泛认可的超级电容器的工作原理主要是双电层电容理论和

国外RFID技术发展现状和趋势

国外的RFID射频识别技术发展现状和趋势 技术预见通讯2008年第8期(总第175期) RFID射频识别技术被公认为是本世纪最有发展前途的信息技术之一,已经得到业界高度重视。近年来,RFID技术应用发展迅速。 一、发展现状 RFID射频识别技术正在成为市场关注的热点。RFID射频识别技术正在逐步被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多的领域。各国政府、零售业巨头、IT 业著名厂商给予高度关注,并且大力支持甚至给于巨大的投入,全面推动RFID电子标签产业快速发展。由于发达的国家RFID电子标签工作开展得较早,所以在标准、技术、产业链及应用方面都已经比较完备,并且仍在发展中。发达的国家在核心技术尤其是在芯片技术上目前已经提供了相对完备的产品线,并且由于技术进步和RFID电子标签工艺的提升,以及成本的降低,应用推广进入了良性循环。 随着全球产品电子代码中心推出第2代超高频(UHF)RFID电子标签标准(EPCG2)作为欧美地区的新标准,各大供应商的EPCG2芯片纷纷亮相:飞利浦公司推出UCODEEPCG2芯片;Impinj公司推出Monza芯片和读取器平台;TI也推出EPCG2产品,并且实现量产。相对于第1代标准,EPCGen2具有若干优势,例如,中心频率在900MHz,使读出速率达到500~1500标签/秒,反向散射数据速率提高到650kbps,扫描范围提高到30英尺。许多高科技公司,包括英特尔、微软、甲骨文和SUN等,正在开发支持RFID射频识别电子标签专用的软件和硬件。 二、发展趋势 RFID射频识别技术已经逐步发展成为独立跨学科的专业领域。RFID射频识别技术将大量的来自完全不同的专业领域的技术(例如,高频技术、电磁兼容技术、半导体技术、数据保护和密码学技术、电信技术、制造技术等)综合起来。过去的十多年,RFID射频识别技术得到了快速发展,逐步被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多的溯源和防伪应用领域。而随着技术进步,基于RFID射频识别技术产品的种类将越来越丰富,应用也将越来越广泛,可预计,在今后的几年中,RFID射频识别技术将持续保持高速发展的势头。 总体而言,RFID射频识别技术当前发展趋于标准化、低成本、低差错率、高安全性、低功耗。具体表现在,基于RFID射频识别技术的电子标签产品将达到:芯片所需的功耗更低,无源标签、半有源标签技术更趋成熟;作用距离更远;无线可读写性能更加完善;适合高速移动物品识别;快速多标签读/写功能;一致性更好;强场强下的自保护功能更完善;智能性更强;成本更低。读写器性能将达到:多功能(与条码识读集成、无线数据传输、脱机工作等);智能多天线端口;多种数据接口(RS232,RS422/485,USB,红外,以太网口);多制式兼容(兼容读写多种标签类型);小型化、便携式和嵌入式,以及模块化;多频段兼容;成本更低。管理系统将达到:高频近距离系统具有更高智能、安全特性;超高频远距离系统性能更完备,系统更完善。标准化将达到:标准化基础性研究更深入,也更成熟;标准化为更多企业所接受。系统和模块将达到:可替换性更好,也更普及。自2007年起,RFID 射频识别技术单品级应用是全球最大的RFID射频识别技术应用市场。 据预测,到2009年,全球的RFID射频识别技术的应用市场的规模将由2004年3亿美元增至28亿美元。如果目前有关RFID电子标签的单个条款能得到广泛接纳,RFID射频识别技术单品级的应用市场份额有可能远远超过这个数字——1年中将有超过万亿的邮件使用RFID电子标签。这将是继零售供应链RFID电子标签产品的应用之后,全球使用RFID射频识

相关文档
最新文档