变形监测数据处理课程教案第一章

变形监测数据处理课程教案第一章
变形监测数据处理课程教案第一章

《变形监测数据处理》课程教案

班级

测绘工程

0841-08420-1021

科目变形监测课程类型专业课学时数 4 教学内容第一章绪论

教学目的通过本章的学习,要求学生掌握变形监测的内容、目的与意义,熟悉变形监测技术及其发展,变形分析的的内涵及其研究进展。

重点变形监测的主要内容及其目的

难点本章无难点

教学方法课堂讲授

教学进程

第一讲变形监测的内容、目的与意义(2学时)

第二讲变形监测技术及其发展;变形分析的的内涵及其研究进展(2学时)

课后总结各种工程建筑物、构筑物变形监测的主要内容

变形监测三个方面的目的及三个方面的意义。

熟悉常见的几种变形监测技术,了解变形监测分析的内涵。

作业无

第一章变形监测数据处理

主要参考书:

1.陈永奇,吴子安,吴中如.变形监测分析与预报.北京:测绘出版社,1998

2.吴子安.工程建筑物变形观测数据处理.北京:测绘出版社,1989

3.陈永奇.变形观测数据处理.北京:测绘出版社,1988

4.吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003

5.吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000

6.夏才初,潘国荣.土木工程监测技术.北京:中国建筑工业出版社,2001

7.王尚庆.长江三峡滑坡监测预报.北京:地质出版社,1999

8.李珍照.大坝安全监测.北京:中国电力出版社,1997

9.岳建平等.变形监测技术与应用. 国防工业出版社 2007

10.何秀凤.变形监测新方法及其应用.科学出版社 2007

11.伊晓东等.变形监测技术及应用.黄河水利出版社,2007

12.白迪谋.工程建筑物变形观测和变形分析.西南交通大学出版社,2002

13.朱建军等.变形测量的理论与方法.中南大学出版社,2004

14.唐孟雄等.深基坑工程变形控制.中国建筑工业出版社,2006

15.黄声享等.小浪底水利枢纽外部变形规律研究. 测绘出版社,2008.12

规范:

1.中华人民共和国行业标准.建筑变形测量规范(JGJ8-2007). 北京:中国建筑工业

出版社,2008

2.中华人民共和国水利行业标准. 混凝土大坝安全监测技术规范(DL/T 5178-2003).

北京:中国水利水电出版社, 2004

1.1 变形监测的内容、目的与意义

本节要求了解并掌握三方面的内容:变形监测的基本概念;变形监测的内容;变形监

测的目的和意义。

1.1.1 变形监测的基本概念

变形的概念:变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。变形体的变形在一定范围内被认为是允许的,如果超出允许值,则可能引发灾害。自然界的变形危害现象时刻都在我们周边发生着,如地震、滑坡、岩崩、

地表沉陷、火山爆发、溃坝、桥梁与建筑物的倒塌等。

变形监测的概念:所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象

进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。变形监测工作是人们通过变形现象获得科学认识、检验理论和假设的必要手段。

变形体的范畴:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体,

它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样

三类:

?全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等;

?区域性变形研究,如地壳形变监测、城市地面沉降等;

?工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。

最典型的变形体:大坝;桥梁;高层(耸)建筑物;矿区;防护堤;边坡;隧道;地铁;地表沉降;高速铁路;核电站;大型科学实验装置等。

1.1.2 变形监测的内容

变形监测的内容,应根据变形体的性质与地基情况来定。要求有明确的针对性,既要有重点,又要作全面考虑,以便能正确反映出变形体的变化情况,达到监视变形体的安全、了

解其变形规律之目的。

工业与民用建筑物:主要包括基础的沉陷观测与建筑物本身的变形观测。就其基础而言,主要观测内容是建筑物的均匀沉陷与不均匀沉陷。对于建筑物本身来说,则主要是观测倾斜与裂缝。对于高层和高耸建筑物,还应对其动态变形(主要为振动的幅值、频率和扭转)进

行观测。对于工业企业、科学试验设施与军事设施中的各种工艺设备、导轨等,其主要观测内容是水平位移和垂直位移。

水工建筑物:对于土坝,其观测项目主要为水平位移、垂直位移、渗透以及裂缝观测。

对于混凝土坝,以混凝土重力坝为例,由于水压力、外界温度变化、坝体自重等因素的作用,其主要观测项目主要为垂直位移(从而可以求得基础与坝体的转动)、水平位移(从而可以求得坝体的扭曲)以及伸缩缝的观测,这些内容通常称为外部变形观测。此外,为了了解混

凝土坝结构内部的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容通常称为内部观测。

地面沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象。这种沉降现象严重的城市地区,暴雨以后将发生大面积的积水,影响仓库的使用与居民的生活。有时甚至造成地下管线的破坏,危及建筑物的安全。因

此,必须定期地进行观测,掌握其沉降与回升的规律,以便采取防护措施。对于这些地区主要应进行地表沉降观测。

1.1.3 变形监测的目的和意义

科学、准确、及时地分析和预报工程及工程建筑物的变形状况,对工程建筑物的施工和运营管理极为重要,这一工作属于变形监测的范畴。由于变形监测涉及到测量、工程地质、

水文、结构力学、地球物理、计算机科学等诸多学科的知识,是一项跨学科的研究,正向边

缘学科的方向发展,已成为测量工作者与其它学科专家合作研究的领域。

变形监测所研究的理论和方法主要涉及到这样三个方面:

?变形信息的获取;

?变形信息的分析与解释;

?以及变形预报。

其研究成果对预防自然灾害及了解变形机理是极为重要的。对于工程建筑物,变形监测除了作为判断其安全的耳目之外,还是检验设计和施工的重要手段。

对于工程建筑物,变形监测的意义重点表现在:

?确保安全

?验证设计

?灾害防治

?具有实用上的意义,主要是掌握各种建筑物和地质构造的稳定性,为安全性诊断提供必要信息,及时发现问题,以便采取措施;

?具有科学上的意义,包括更好地理解变形的机理,验证有关工程设计的理论和地壳运动的假说,进行反馈设计,以及建立有效的变形预报模型。

1.2 变形监测技术及其发展

变形信息获取方法的选择取决于变形体的特征、变形监测的目的、变形大小和变形速度等因素。

?在全球性变形监测方面,空间大地测量是最基本最适用的技术,它主要包括全球定位系统(GPS)、甚长基线射电干涉测量(VLBI)、卫星激光测距(SLR)、激光测月技

术(LLR)以及卫星重力探测技术(卫星测高、卫星跟踪卫星和卫星重力梯度测量)

等技术手段;

?在区域性变形监测方面,GPS已成为主要的技术手段。近十年发展起来的空间对地观测遥感新技术——合成孔径雷达干涉测量(InSAR,Interferometric Synthetic

Aperture Radar),在监测地震变形、火山地表移动、冰川漂移、地面沉降、山体滑

坡等方面,其试验成果的精度已可达厘米或毫米级,表现出很强的技术优势。但精

密水准测量依然是高精度高程信息获取的方法。

?在工程和局部性变形监测方面,地面常规测量技术、地面摄影测量技术、特殊和专用的测量手段、以及以GPS为主的空间定位技术等均得到了较好的应用。

合理设计变形监测方案是变形监测的首要工作,对于监测网设计而言,其主要内容包括:确定监测网的质量标准;选择观测方法;点位的最佳布设和观测方案的最优选择。在过去三十年里,变形监测方案设计和监测网优化设计的研究较为深入和全面,取得了丰富的理论研究成果和实用效益,这一点可从众多文献中得到体现。目前,在变形监测方案与监测系统

设计方面,其主要发展是监测方案的综合设计和监测系统的数据管理与综合处理。例如,在大坝的变形监测中,要综合考虑外部观测和内部观测设计,大地测量与特殊测量的观测量(geodetic and geotechnical observations)要进行综合处理与分析。

数十年变形监测技术的发展,传统的地表变形监测方法主要采用的是大地测量法。

1)常规地面测量方法的完善与发展,其显著进步是全站型仪器的广泛使用,尤其是全

自动跟踪全站仪(RTS, Robotic Total Stations),也称测量机器人(Georobot),为局部

工程变形的自动监测或室内监测提供了一种很好的技术手段,它可进行一定范围内无人值

守、全天侯、全方位的自动监测。

例如,在美国加州南部的一个新水库(Diamond Valley Lake已安装了由8个永久性 RTS 和218个棱镜组成的地面自动监测系统。但是,TPS(Terrestrial Positional System)的最大缺陷是受测程限制,测站点一般都处在变形区域范围之内。

2)地面摄影测量技术在变形监测中的应用起步较早,但是由于摄影距离不能过远,绝

对精度较低,使得其应用受到局限,仅大量应用于高塔、烟囱、古建筑、船闸、边坡体等的

变形监测。后来发展起来的数字摄影测量和实时摄影测量为地面摄影测量技术在变形监测中

的深入应用开拓了非常广泛的前景。地面三维激光扫描系统将是变形监测领域的一种重要技

术。

3)光、机、电技术的发展,研制了一些特殊和专用的监测仪器可用于变形的自动监测,

它包括应变测量、准直测量和倾斜测量。采用光纤传感器测量系统将信号测量与信号传输合

二为一,具有强的抗雷击、抗电磁场干扰和抗恶劣环境的能力,便于组成遥测系统,实现在

线分布式监测。

4)GNSS作为一种全新的现代空间定位技术,已逐渐在许多领域取代常规光学和电子

测量仪器,在变形监测领域也不例外。

自从上世纪80年代以来,尤其是进入90年代后,GPS卫星定位和导航技术与现代通信

技术相结合,在空间定位技术方面引起了革命性的变化。用GPS同时测定三维坐标的方法将

测绘定位技术从陆地和近海扩展到整个海洋和外层空间,从静态扩展到动态,从单点定位扩展到局部与广域差分,从事后处理扩展到实时(准实时)定位与导航,绝对和相对精度扩展

到米级、厘米级乃至亚毫米级,从而大大拓宽了它的应用范围和在各行各业中的作用。

数据通讯技术、计算机技术和以GPS为代表的空间定位技术的日益发展和完善,使得

GPS法由原来的周期性观测走向高精度、实时、连续、自动监测成为可能。

GPS用于变形监测的作业方式可划分为周期性和连续性两种模式(episodic and continuous mode)。

1)周期性变形监测与传统的变形监测网没有多大区别,因为有的变形体的变形极为缓

慢,在局部时间域内可以认为是稳定的,其监测频率可以是几个月,有的长达几年,此时,

采用GPS静态相对定位法进行测量,数据处理与分析一般都是事后的。经过十多年的努力,

GPS静态相对定位数据处理技术基本成熟,在周期性监测方面,其最大屏障还是变形基准的

选择与确定,已成为近几年研究的关键。

2)连续性变形监测指的是采用固定监测仪器进行长时间的数据采集,获得变形数据序

列。虽然连续性监测模式也是对测点进行重复性的观测,但其观测数据是连续的,具有较高的时间分辨率。根据变形体的不同特征,GPS连续性监测可采用静态相对定位和动态相对定

位两种数据处理方法进行观测,一般要求变形响应的实时性,它为数据解算和分析提出了更

高要求。比如,大坝在超水位蓄洪时就必须时刻监视其变形状况,要求监测系统具有实时的

数据传输和数据处理与分析能力。当然,有的监测对象虽然要求较高的时间采样率,但是数据解算和分析可以是事后的。比如,桥梁的静动载试验和高层建筑物的振动测量,其监测的目的在于获取变形信息,数据处理与分析可以事后进行。

在动态监测方面,过去一般采用加速度计、激光干涉仪等测量设备测定建筑结构的

振动特性,但是,随着建筑物高度的增高,以及连续性、实时性和自动化监测程度的要求加强,常规测量技术已越来越受到局限。GPS作为一种新方法,由于其硬件和软件的发展与完

善,特别是高采样率(目前有的已高达20Hz)GPS接收机的出现,在大型结构物动态特性和

变形监测方面已表现出其独特的优越性。近几年来,一些学者已开展了卓有成效的GPS动态监测实验与测试工作。目前,GPS动态监测数据处理主要采用OTF方法,同时,GPS变形监测单历元求解算法及其相应软件开发的研究也在发展之中。令人鼓舞的是,正如Loves等(1995)所言,随着GPS动态变形监测能力的进一步证实,这一技术可望被采纳为测量结构

振动的标准技术。

展望变形监测技术的未来:

①多种传感器、数字近景摄影、全自动跟踪全站仪和GPS的应用,将向实时、连续、

高效率、自动化、动态监测系统的方向发展;

②变形监测的时空采样率会得到大大提高,变形监测自动化可为变形分析提供极为丰

富的数据信息;

③高度可靠、实用、先进的监测仪器和自动化系统,要求在恶劣环境下长期稳定可靠

地运行;

④实现远程在线实时监控,在大坝、桥梁、边坡体等工程中将发挥巨大作用,网络监

控是推进重大工程安全监控管理的必由之路。

1.3 变形分析的的内涵及其研究进展

人们对自然界现象的观察,总是对有变化、无规律的部分感兴趣,而对无变化、规律性很强的部分反映比较平淡。如何从平静中找出变化,从变化中找出规律,由规律预测未来,

这是人们认识事物、认识世界的常规辨证思维过程。变化越多、反应越快,系统越复杂,这

就导致了非线性系统的产生。人的思维实际是非线性的,而不是线性的,不是对表面现象的简单反应,而是透过现象看本质,从杂乱无章中找出其内在规律性,然后遵循规律办事。变

形分析的真正内涵就是这样。

变形分析的内涵就是从错综复杂的变形现象中找出其内在规律性。

变形分析的研究内容涉及到变形数据处理与分析、变形物理解释和变形预报的各个方

面,通常将其划为两部分:

1)变形的几何分析;

2)变形物理解释。

变形的几何分析是对变形体的形状和大小的变形作几何描述,其任务在于描述变形体变形的空间状态和时间特性。

变形物理解释的任务是确定变形体的变形和变形原因之间的关系,解释变形的原因。

1.3.1 变形分析方法简介

传统的变形几何分析,主要包括:

(1)参考点的稳定性分析

监测点的变形信息是相对于参考点或一定基准的,如果所选基准本身不稳定或不统一,

则由此获得的变形值就不能反映真正意义上的变形,因此,变形的基准问题是变形监测

数据处理首先必须考虑的问题。

过去对参考点的稳定性分析主要局限于周期性的监测网,方法有很多:?以方差分析进行整体检验为基础的“平均间隙法”;

?以B检验法为基础的单点位移分量法;

?以方差分析和点的位移向量为基础的检验法;

?考虑大地基准的检验法;

?以位移的不变函数分析为基础的检验法等。

?后来发展的稳健-S变换法,也称逐次定权迭代法。

(2)观测值的平差处理和质量评定

?观测值的平差处理和质量评定非常重要,观测值的质量好坏直接关系到变形值的精度和可靠性。在这方面,涉及到观测值质量、平差基准、粗差处理、变形的可区分

性等几项内容。

?经典平差——固定基准

?自由网平差——重心基准

?拟稳平差——拟稳基准

?在W.Baarda(1968)数据探测法提出后,粗差探测与变形的可区分性研究成果极为丰富的。

(3)变形模型参数估计

陈永奇(1988)概括了两种基本的分析方法:

?直接法是直接用原始的重复观测值之差计算应变分量或它们的变化率;

?位移法是用各测点坐标的平差值之差(位移值)计算应变分量。

同时,提出了变形分析通用法,研制了相应的软件DEFNAN。

自1978年,FIG工程测量专业委员会设立了由国际测绘界五所权威大学组成的特别委

员会“变形观测分析专门委员会”,极大地推动了变形分析方法的研究,并取得了显著成果。

正如A.Chrzanowski(1996)所评价的,变形几何分析的主要问题已经得到解决。

实质上,自20世纪70年代末至90年代初,几何变形分析研究较为完善的是常规地面

测量技术进行周期性监测的静态模型,考虑的仅是变形体在不同观测时刻的空间状态,并没有很好地建立各个状态间的联系,更谈不上变形监测自动化系统的变形分析研究。

事实上,变形体在不同状态之间是具有时间关联性的。为此,后来许多学者将目光转向时序观测数据的动态模型研究,如:

?变形的时间序列分析方法建模;

?基于数字信号处理的数字滤波技术分离时效分量;

?变形的卡尔曼滤波模型;

?用FIR(Finite Impulse Response)滤波器抑制GPS多路径效应。

动态变形分析既可以在时间域进行,也可以在频率域进行。

频谱分析方法是将时域内的数据序列通过傅立叶(Fourier)级数转换到频域内进行分析,它有利于确定时间序列的准确周期并判别隐蔽性和复杂性的周期数据。频谱分析法用于确定动态变形特征(频率和幅值)是一种常用方法,尤其在建筑物结构振动监测方面被广为

采用。

但是,频谱分析法的苛刻条件是数据序列的等时间间隔要求,这为一些工程变形监测分析的实用性增加了难度,因为对于非等间隔时间序列进行插补和平滑处理必然会带入人为因

素的影响。

多年来,对变形数据分析方法研究是极为活跃的,除了传统的多元回归分析法以及上述

的时间序列分析法、频谱分析法和滤波技术之外,灰色系统理论、神经网络等非线性时间序列预测方法也得到了一定程度的应用。比如,

?应用灰关联分析方法研究多个因变量和多个自变量的变形问题;

?应用灰色理论建模预测深基坑事故隐患;

?应用人工神经网络建模进行短期变形预测。

变形分析中,为弥补单一方法的缺陷,多种方法的结合得到了发展,例如:

?模糊数学与灰色理论相结合,应用灰关联聚类分析法进行多测点建模预测;

?模糊数学与人工神经网络相结合,应用模糊人工神经网络方法建模进行边坡和大坝的变形预报;

?应用抗差估计理论对多元回归分析模型进行改进的抗差多元回归模型,处理数据序列的粗差问题;

?研究认为,人工神经网络与专家系统相结合,是解决大坝安全监控专家系统开发

由于变形体变形的错综复杂,可以看作为一个复杂性系统。复杂系统含有许多非线性、

不确定性等复杂因素及它们之间相互作用所形成复杂的动力学特性。创立于20世纪70年代的非线性科学理论在变形研究中也得到了反映。例如,根据突变理论,用尖点突变模型研究

大坝及岩基的稳定性;将大坝运行性态看成为一种非线性动力系统,研究了大坝观测数据序

列中的混沌现象。

在变形分析中,出于实用、简便上的考虑,我们一般应用较多的是单测点模型,为顾及

监测点的整体空间分布特性,多测点变形监控模型也得到了发展。

从现行的变形分析方法中,我们不难发现,大多都是离线的(事后的),不能进行即时预报与监控,无法在紧急关头为突发性灾害提供即时决策咨询,这与目前自动化监测系统的

要求很不相符,为此,研究在线实时分析与监控的方法成为技术关键。已有研究表明,采用递推算法的贝叶斯动态模型进行大坝监测的动态分析认为是可行的。在隔河岩大坝GPS自动化监测系统中,我们采用递推式卡尔曼滤波模型进行全自动在线实时数据处理起到了较好效

果。

在GPS监测系统中,数据处理的主要工作是观测资料的解算,如GPS差分求解、GPS监测网平差等,以提供高精度、高可靠性的相对位置信息。而数据分析的重点则包括变形基准

的确定,正确区分变形与误差,提取变形特征,并对变形成因作解释。

诞生于20世纪80年代末的小波分析理论,是一种最新的时频局部化分析方法,被认为是傅立叶分析方法的突破性进展。应用小波方法,进行时频分析,可望有效地求解变形的非

线性系统问题,通过小波变换提取变形特征。这一研究领域才刚刚起步。第21届IUGG大会“小波理论及其应用”被IAG确定为大地测量新理论研究方向之一。在1999年召开的第22届IUGG大会上,“小波理论及其在大地测量和地球动力学中的应用”再次被IAG确定为GIV 分会(大地测量理论与方法)的新的研究小组。可见,开展小波理论及其应用研究的重要性。

从目前应用来看,虽然小波分析要求大子样容量的时间序列数据,但是,长序列数据可从GPS、TPS等集成的自动化监测系统中得到保障。小波分析为高精度变形特征提取提供了

一种数学工具,可实现其它方法无法解决的难题,对非平稳信号消噪有着其它方法不可比拟

的优点。小波理论在变形监测(尤其是动态变形监测)的数据分析方面将会发挥巨大作用。

现代变形分析方法:

?时间序列分析

?频谱分析

?小波分析

?滤波技术:数字滤波、卡尔曼滤波、贝叶斯滤波

?灰色理论:灰关联分析

?神经网络:人工神经网络、专家系统

?模糊数学:模糊人工神经网络

?抗差估计理论:抗差多元回归模型

?非线性理论:突变理论、混沌现象

1.3.2 变形物理解释的进展

变形物理解释的方法可分为:

?统计分析法

?确定函数法

?混合模型法

统计分析法:以回归分析模型为主,是通过分析所观测的变形(效应量)和外因(原因

量)之间的相关性,来建立荷载-变形之间关系的数学模型,它具有“后验”的性质,是目

前应用比较广泛的变形成因分析法。

?由于影响变形因子的多样性和不确定性,以及观测资料本身的有限,因此,很大程度上制约着回归分析建模的准确性。

?回归分析模型中包括多元回归分析模型、逐步回归分析模型、主成份回归分析模型和岭回归分析模型等。

?统计模型的发展包括时间序列分析模型、灰关联分析模型、模糊聚类分析模型以及动态响应分析模型等。

确定函数法:以有限元法为主,它是在一定的假设条件下,利用变形体的力学性质和物

理性质,通过应力与应变关系建立荷载与变形的函数模型,然后利用确定函数模型,预报在

荷载作用下变形体可能的变形。确定性模型具有“先验”的性质,比统计模型有更明确的物

理概念,但往往计算工作量较大,并对用作计算的基本资料有一定的要求。

统计模型和确定性模型的进一步发展是混合模型和反分析方法的研究,已在大坝安全监

测得到了较好应用。

混合模型:是对于那些与效应量关系比较明确的原因量(比如水质分量)用有限元法(FEM, Finite Element Method)的计算值,而对于另一些与效应量关系不很明确或采用相应的物

理理论计算成果难以确定它们之间函数关系的原因量(比如温度,时效)则仍用统计模式,

然后与实际值进行拟合而建立的模型。

反分析方法:是仿效系统识别理论,将正分析成果作为依据,通过一定的理论分析,借

以反求建筑物及其周围的材料参数,以及寻找某些规律和信息,及时反馈到设计、施工和运

行中去,它包含有反演分析和反馈分析。

由于变形的物理解释涉及到多学科的知识,已远不是测量人员所能够独立完成的,所以需要相关学科专家的共同合作。

1.3.3 变形分析研究的发展趋势

回顾变形分析方面所取得的大量实践及研究成果,展望变形分析研究的未来,其发展趋

势将主要体现在如下几个方面:

①数据处理与分析将向自动化、智能化、系统化、网络化方向发展,更注重时空模型

和时频分析(尤其是动态分析)的研究,数字信号处理技术将会得到更好应用;

②会加强对各种方法和模型的实用性研究,变形监测系统软件的开发不会局限于某一

固定模式,随着变形监测技术的发展,变形分析新方法研究将不断涌现

③由于变形体变形的不确定性和错综复杂性,对它的进一步研究呼唤着新的思维方式

和方法。由系统论、控制论、信息论、耗散结构论、相同学、突变论、分形与混沌动力学等

所构成的系统科学和非线性科学在变形分析中的应用研究将得到加强;

④几何变形分析和物理解释的综合研究将深入发展,以知识库、方法库、数据库和多

媒体库为主体的安全监测专家系统的建立是未来发展的方向,变形的非线性系统问题将是一个长期研究的课题。

变形观测与数据处理复习

《变形观测与数据处理》考试复习要点 题型:填空题(20分) 名词解释(10分) 简答(20分) 综合题(问答、计算、填表、绘图等)(50分) 关注课后思考题 第一章概述:变形监测意义与目的;监测周期、精度;监测点、基准点布设原则; 变形观测的定义 通过一定的观测方法和仪器测定构筑物或 工程建筑物各种变形量大小的工作。 变形观测的目的: 1、分析与评价建筑物的安全状态 2、验证设计数据 3、反馈设计施工质量 4、研究正常变形规律和预报变形的方法 ◆安全:其目的是监测建(构)筑物在施工 过程中和竣工后,投入使用中的安 全情况; ◆设计施工:验证地质勘察资料和设计数据 的可靠程度,以改进设计理论和施 工方法;

◆ 科研:研究变形的原因和规律,建立正确 的预报模型,准确的分析预报。 变形观测的意义 1、安全 2、验证与改进设计 3、科学研究 对于机械技术设备:为改进提供技术数据 对于滑坡:成因预报 对于矿山:开挖量加固方法 对于地壳运动: 监测周期:根据变形物的大小、速度而制定出的监测频次。 1)当埋设的沉降观测点稳固后,在建筑物主体开工前,进行第一次观测。 2)在建(构)筑物主体施工过程中,一般每盖1~2层观测一次。如中途停工时间较长,应在停工时和复工时进行观测。 3)当发生大量沉降或严重裂缝时,应立即或几天一次连续观测。 4)建筑物封顶或竣工后,一般每月观测一次,如果沉降速度减缓,可改为2~3个月观测一次,直至沉降稳定为止。 观测点(监测点/工作点)布设方案 一般原则: ? 反应整体变形(均匀布点); ? 变形量大的地段多布点; ? 工程重点地段多布点; ? 其它原因专门提出; ? 有利于观测 1.3.1 精度确定依据 具体工程建筑物的允许误差大小、变形 速度、变形观测的目的 一般而言:从安全角度:观测中误差应小于 允许变形量的1/10~1/20;典型精度±1mm 或相 对精度为10-6 从科学研究角度:应尽量提高精度 2、精度确立原则: 实用、经济、科学、实际 沉降观测的精度应根据建筑物的性质而定。 1)多层建筑物的沉降观测,可采用DS 3水准仪,用普通水准测量的方法进行,其水准路线的闭合差不应超过 (n 测站数)。 2)高层建筑物的沉降观测,则应采用DS 1精密水准仪,用二等水准测量的方法进行,其水准路线的闭合差不应超过: 沉降监测方法; 观测时先后视水准基点,接着依次前视各沉降观测点,最后再次后视该水准基点,两次后视读数之差不应超过±1mm 。 mm 0 .2n ±mm 0.1n ±

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

变形监测及数据处理方案

目录 摘要.............................................................................................................................................. I Abtract.............................................................................................................................................. I I 1 工程概况 (1) 2 监测目的 (2) 3 编制依据 (3) 4 控制点和监测点的布设 (4) 4.1 变形监测基准网的建立 (4) 4.2 监测点的建立 (4) 4.3 监测级别及频率 (5) 5 监测方法及精度论证 (6) 5.1水平位移观测方法 (6) 5.2沉降观测方法 (8) 5.3基坑周围建筑物的倾斜观测 (9) 6 成果提交 (10) 7 人员安排及施工现场注意事项 (11) 8 报警制度 (13) 9 参考文献 (13) 附录1 基准点布设示意图 (15) 附录2 水准观测线路设示意图 (16) 附录3 水平位移和沉降观测监测报表 (17) 附录4 巡视监测报表样表 (18) 附录5 二等水准测量观测记录手薄 (19) 附录6 水平位移记录表 (20)

1 工程概况 黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。 由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。为此,编制以下检测方案。

变形观测与数据处理论文

变形观测与数据处理论文 题目:土木工程变形监测研究现状 学院: 专业:测绘工程 班级: 姓名: 学号: 指导教师: 完成日期:2012/12/27 摘要 变形监测是工程施工、安全运行的保证,通过监测进行设计验证,可以达到优化设计的效果,同时也为工程变形预测预报提供依据。根据我国目前已有监测方法,分析了桥梁、大坝、高层建筑物、地下建筑物、滑坡体等变形监测的研究现状,并对今后有待于进一步开展的工作做了展望。

关键词土木工程变形监测现状 1问题的提出 变形监测的对象时多种多样的,变形体的范围大到整个地球,小到一个工程建筑物的块体。也就是说一切关系到人们生活的实物对象都可以成为变形监测的对象,而同一类型的对象,其产生变形的原因不同,则变形分布及其规律也不相同。所以,在变形监测实施之前,必须弄清楚产生变形的原因,才能布设检测控制网,观测得到可靠的变形数据和正确的变形分析结果。本文将对国内近几年来工程监测的方法及其相关问题作综合性的阐述。 2基坑工程变形测量 我国城市化进程正在方兴未艾,基本建设规模庞大。由于城市用地价格昂贵,为提高土地的空间利用率,同时也是为了满足高层建筑抗震和抗风等结构要求,地下室由一层发展到多层,相应的基坑开挖深度也从地表以下5-6m增大到12-13m。例如,北京中国国家大剧院基坑最深处在35m。当前,中国的深基坑工程在数量、开挖深度、平面尺寸以及使用领域等方面都得到高速的发展。 在深基坑开挖过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起围护结构承受荷载并导致围护结构和土体的变形,当变形中任一量值超过容许范围时,将造成基坑的失稳破坏或对周围环境造成不利影响。深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑

变形监测数据处理课程教案第一章

《变形监测数据处理》课程教案 班级 测绘工程 0841-08420-1021 科目变形监测课程类型专业课学时数 4 教学内容第一章绪论 教学目的通过本章的学习,要求学生掌握变形监测的内容、目的与意义,熟悉变形监测技术及其发展,变形分析的的内涵及其研究进展。 重点变形监测的主要内容及其目的 难点本章无难点 教学方法课堂讲授 教学进程 第一讲变形监测的内容、目的与意义(2学时) 第二讲变形监测技术及其发展;变形分析的的内涵及其研究进展(2学时) 课后总结各种工程建筑物、构筑物变形监测的主要内容 变形监测三个方面的目的及三个方面的意义。 熟悉常见的几种变形监测技术,了解变形监测分析的内涵。 作业无 第一章变形监测数据处理 主要参考书: 1.陈永奇,吴子安,吴中如.变形监测分析与预报.北京:测绘出版社,1998 2.吴子安.工程建筑物变形观测数据处理.北京:测绘出版社,1989 3.陈永奇.变形观测数据处理.北京:测绘出版社,1988 4.吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003 5.吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000 6.夏才初,潘国荣.土木工程监测技术.北京:中国建筑工业出版社,2001 7.王尚庆.长江三峡滑坡监测预报.北京:地质出版社,1999

8.李珍照.大坝安全监测.北京:中国电力出版社,1997 9.岳建平等.变形监测技术与应用. 国防工业出版社 2007 10.何秀凤.变形监测新方法及其应用.科学出版社 2007 11.伊晓东等.变形监测技术及应用.黄河水利出版社,2007 12.白迪谋.工程建筑物变形观测和变形分析.西南交通大学出版社,2002 13.朱建军等.变形测量的理论与方法.中南大学出版社,2004 14.唐孟雄等.深基坑工程变形控制.中国建筑工业出版社,2006 15.黄声享等.小浪底水利枢纽外部变形规律研究. 测绘出版社,2008.12 规范: 1.中华人民共和国行业标准.建筑变形测量规范(JGJ8-2007). 北京:中国建筑工业 出版社,2008 2.中华人民共和国水利行业标准. 混凝土大坝安全监测技术规范(DL/T 5178-2003). 北京:中国水利水电出版社, 2004 1.1 变形监测的内容、目的与意义 本节要求了解并掌握三方面的内容:变形监测的基本概念;变形监测的内容;变形监 测的目的和意义。 1.1.1 变形监测的基本概念 变形的概念:变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。变形体的变形在一定范围内被认为是允许的,如果超出允许值,则可能引发灾害。自然界的变形危害现象时刻都在我们周边发生着,如地震、滑坡、岩崩、 地表沉陷、火山爆发、溃坝、桥梁与建筑物的倒塌等。 变形监测的概念:所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象 进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。变形监测工作是人们通过变形现象获得科学认识、检验理论和假设的必要手段。 变形体的范畴:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体, 它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样 三类: ?全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; ?区域性变形研究,如地壳形变监测、城市地面沉降等; ?工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。

变形监测与数据处理期末试题

1监测网的平差基准包括(固定基准,重心基准,拟稳基准) 2根据变形体的研究范围,可将变形监测研究对象划分为(全球性,区域性,工程和局部性)3变形分析的研究内容通常可分为(几何分析,物理解释) 4变形监测的概念,意义,什么是变形监测的几何分析,物理解释 5变形监测方案的内容 6变形监测网设计的质量准则 7平均间隙法的基本思想 8.变形的频率取决于p45 9.P25平稳随机过程的定义 10对于监测网平差的参考系问题,经典平差采用固定基准,自由网平差采用重心基准,拟稳平差采用拟稳基准 11要搞清变形的规律,必须分析引起变形的因素,对于大坝而言,引起变形的原因主要包括静水压力,坝体的温度变化,时效变化 12测量机器人P31 13常用的变形监测数学模型有:回归分析法,灰色系统模型,时间序列模型,神经网络模型 14变形监测所研究的理论和方法主要涉及到变形信息的获取、变形信息的分析与解释、变形预报 15 GPS用于变形监测的作业模式可分为周期性和连续性两种 16 简述变形监测技术中,地面监测方法的优点 17控制网优化设计问题的分类及解法:零类设计(基准设计)、一类设计(结构图形设计)、二类设计(观测值权的分配)、三类设计(网的改造或加密方案设计)。 18若监测资料分析的结果存在大的偏差, 则有两种可能现象: 误差引起(大误差或粗差);真实变形(突变)。 19变形监测网可分为两类:有固定基准的绝对网(参考网);没有绝对固定基准的相对网(自由网)。 20什么是变形监测的相对网、绝对网,他们之间有什么区别? 绝对网中,固定基准位于变形体之外,在各观测周期中认为是不变的,以作为测定变形点绝对位移的参考点,这种监测网平差采用经典平差方法便可实现。 相对网中,由于全部网点均位于变形体上,没有必要的起算基准,是一种自由网,平差时存在参考系秩亏,为了分析变形,需要寻找一个恰当的变形参考系。 21下表为某坝2个坝段半年的水平位移观测资料,为了分析它们之间相互检核的可能性试利用相关系数检验他们之间的相关程度。(取置信水平α=0.01)

平面移动变形测量系统及其在二维相似模拟实验中的应用的制作流程

本技术公开了一种平面移动变形测量系统及其在二维相似模拟实验中的应用,属于采矿工程中相似模拟实验技术领域。其主要结构包括用于盛放相似模拟材料的二维模拟实验台及岩层移动变形测量系统,岩层移动变形测量系统包括框架体、竖向滑轨、测量头、无线数据采集仪及计算机处理系统,通过对岩层移动变形测量系统的具体部件进行结构及位置的限定,在实验过程中,可以适时、真实准确、全方位的观测二维相似材料模型不同位置处的移动变形值,测量的数据实时传输给采集仪,经计算机数据处理系统处理完毕后,实时将岩层移动变形值显示在电脑屏幕上。本技术测量系统中,测量头的对准,数据的测量、传输和处理均自动同步进行,避免了人为误差。 技术要求 1.一种用于二维相似模拟实验的平面移动变形测量系统,其包括岩层移动变形测量系统及用于盛放相似模拟材料的二维模拟实验台,其特征在于: 所述的相似模拟材料逐层铺设在所述的二维模拟实验台内,并在竖直方向上形成若干分层,在各分层相似模拟材料之间撒有云母粉;

所述的岩层移动变形测量系统包括框架体、竖向滑轨、测量头、无线数据采集仪及计算机处理系统,所述的框架体是由左框体、上框体、右框体及下框体依次连接而成的方形结构,在所述的框架体的四个角上均安装有支座; 所述的竖向滑轨为方形杆件,其与所述的框架体之间通过滑槽滑动连接; 所述框架体通过螺栓与所述的二维模拟实验台的左立柱、右立柱固定连接; 所述左框体的右表面与所述二维模拟实验台的左立柱的内表面位于同一竖直平面内,所述下框体的上表面与所述二维模拟实验台的底座的上表面位于同一水平面内; 所述的测量头与所述的竖向滑轨之间通过滑套连接,所述的测量头包括竖直方向测距仪、水平方向测距仪、滑套、对准装置及无线发射器;所述水平方向测距仪垂直于所述的左框体,所述竖直方向测距仪垂直于所述的下框体;所述对准装置沿水平方向布置,并垂直于所述框架体所在的竖直平面;所述水平方向测距仪、竖直方向测距仪和对准装置的轴线在空间交于一点; 所述测量头测得的数据通过所述的无线发射器传输给所述的无线数据采集仪; 所述无线数据采集仪的输出端通过USB接口与所述计算机数据处理系统连接。 2.根据权利要求1所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于:所述的二维模拟实验台整体呈一无上盖的长方体结构,其包括底座、左立柱、右立柱、活动挡板、反力架及千斤顶,所述的左立柱、右立柱固定连接在所述的底座上,所述的左、右立柱均为顶角朝里的U型钢,所述U型钢的两外侧面上均匀开设有若干螺孔,所述的反力架连接在所述的左、右立柱的顶部;所述的千斤顶设置有若干个,其并列设置在所述的反力架的下方,所述的活动挡板设置有若干块,其两端分别可拆卸连接在所述的左、右立柱上。 3.根据权利要求2所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于:每块活动挡板的两端均设置有通透孔,通过所述通透孔与螺栓配合将所述的活动挡板活动连接在左、右立柱上。

变形监测数据处理

变形监测数据处理 第一章引论 变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。 变形监测,就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体,它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样三类: 1.全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; 2.区域性变形研究,如地壳形变监测、城市地面沉降等; 3.工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。 变形监测的内容,应根据变形体的性质与地基情况来定。 1)工业与民用建筑物:主要包括基础的沉陷观测与建筑物本身的变形观测。就其基础而言,主要观测内容是建筑物的均匀沉陷与不均匀沉陷。对于建筑物本身来说,则主要是观测倾斜与裂缝。对于高层和高耸建筑物,还应对其动态变形(主要为振动的幅值、频率和扭转)进行观测。对于工业企业、科学试验设施与军事设施中的各种工艺设备、导轨等,其主要观测内容是水平位移和垂直位移。 2)水工建筑物:对于土坝,其观测项目主要为水平位移、垂直位移、渗透以及裂缝观测。对于混凝土坝,以混凝土重力坝为例,由于水压力、外界温度变化、坝体自重等因素的作用,其主要观测项目主要为垂直位移(从而可以求得基础与坝体的转动)、水平位移(从而可以求得坝体的扭曲)以及伸缩缝的观测,这些内容通常称为外部变形观测。此外,为了了解混凝土坝结构内部的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容通常称为内部观测。 3)地面沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象。这种沉降现象严重的城市地区,暴雨以后将发生大面积的积水,影响仓库的使用与居民的生活。有时甚至造成地下管线的破坏,危及建筑物的安全。因此,必须定期地进行观测,掌握其沉降与回升的规律,以便采取防护措施。对于这些地区主要应进行地表沉降观测。 变形监测所研究的理论和方法主要涉及到这样三个方面:变形信息的获取;变形信息的分析与解释;以及变形预报。 对于工程建筑物,变形监测的意义重点表现在:确保安全、验证设计、灾害防治。

变形测量数处理系统(Ver4.1)说明书

形变观测数据处理系统(Just v4.1版) 使 用 说 明 书 南京星星图地理信息科技有限公司 2011年11月18日

目录 第一章绪论 ....................................................................................................................... - 3 -第二章系统安装、简介与基本设置 ............................................................................... - 5 -2.1 系统基本概况 ............................................................................................................ - 5 -2.2 安装与调试方式 ........................................................................................................ - 5 -2.3 系统的功能简介 ........................................................................................................ - 7 -2.4 工程夹的建立 ............................................................................................................ - 7 -2.5 位移和沉降限差设置 ................................................................................................ - 8 -2.6 文件的创建与保存等 ................................................................................................ - 9 -第三章沉降观测数据处理与分析 ................................................................................. - 11 -3.1 初始页面设置 .......................................................................................................... - 11 -3.2 测量数据录入 ........................................................................................................ - 13 -3.3 分次计算沉降量 .................................................................................................... - 14 -3.4 单点处理 ................................................................................................................ - 15 -3.5 多点处理 ................................................................................................................ - 19 -3.6 沉降分析 ................................................................................................................ - 21 -3.7 撰写沉降报告和编制沉降成果表 ........................................................................ - 24 - 3-7-1 撰写沉降报告................................................................................................... - 24 -3-7-2 编制观测成果表............................................................................................... - 26 -3.8 观测点坐标录入 .................................................................................................... - 28 -3.9 绘位置平面图 ........................................................................................................ - 29 -3.10 沉降量展开图绘制 .............................................................................................. - 29 -3.11 绘沉降等值线图 .................................................................................................. - 32 -3.12 沉降速率等值线 .................................................................................................... - 33 -3.13 等值线注记............................................................................................................ - 34 -第四章位移数据处理 ..................................................................................................... - 35 -4.1 表格向导 ................................................................................................................ - 35 -4.2 彩条设置 ................................................................................................................ - 36 -4.3 位移计算 ................................................................................................................ - 37 -4.4 位移图绘制 ............................................................................................................ - 37 -

变形监测数据处理课程教案

《变形监测数据处理》课程教案 第一章变形监测数据处理 主要参考书: 1.陈永奇,吴子安,吴中如.变形监测分析与预报.北京:测绘出版社,1998 2.吴子安.工程建筑物变形观测数据处理.北京:测绘出版社,1989 3.陈永奇.变形观测数据处理.北京:测绘出版社,1988 4.吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003 5.吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000 6.夏才初,潘国荣.土木工程监测技术.北京:中国建筑工业出版社,2001 7.王尚庆.长江三峡滑坡监测预报.北京:地质出版社,1999

8.李珍照.大坝安全监测.北京:中国电力出版社,1997 9.岳建平等.变形监测技术与应用. 国防工业出版社 2007 10.何秀凤.变形监测新方法及其应用.科学出版社 2007 11.伊晓东等.变形监测技术及应用.黄河水利出版社,2007 12.白迪谋.工程建筑物变形观测和变形分析.西南交通大学出版社,2002 13.朱建军等.变形测量的理论与方法.中南大学出版社,2004 14.唐孟雄等.深基坑工程变形控制.中国建筑工业出版社,2006 15.黄声享等.小浪底水利枢纽外部变形规律研究. 测绘出版社,2008.12 规范: 1.中华人民共和国行业标准.建筑变形测量规范(JGJ8-2007). 北京:中国建筑工业 出版社,2008 2.中华人民共和国水利行业标准. 混凝土大坝安全监测技术规范(DL/T 5178-2003). 北京:中国水利水电出版社, 2004 1.1 变形监测的内容、目的与意义 本节要求了解并掌握三方面的内容:变形监测的基本概念;变形监测的内容;变形监测的目的和意义。 1.1.1 变形监测的基本概念 变形的概念:变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。变形体的变形在一定范围内被认为是允许的,如果超出允许值,则可能引发灾害。自然界的变形危害现象时刻都在我们周边发生着,如地震、滑坡、岩崩、地表沉陷、火山爆发、溃坝、桥梁与建筑物的倒塌等。 变形监测的概念:所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。变形监测工作是人们通过变形现象获得科学认识、检验理论和假设的必要手段。 变形体的范畴:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体,它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样三类: ?全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; ?区域性变形研究,如地壳形变监测、城市地面沉降等; ?工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。

变形监测考试参考

变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置几内部形态随时间的变化特征。 变形监测的目的 1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工4)研究正常的变形监测规律和预报变形的方法 变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 变形监测的特点 1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化 变形监测的主要内容 现场巡视;环境监测;位移监测;渗流监测;应力、应变监测;周边监测 变形监测的精度和周期如何确定,有何依据 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的目的是为了研究其变形的过程,则其中误差应比这个数小的多。 周期:变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 变形监测系统设计的原则 1)针对性2)完整性3)先进性4)可靠性5)经济性 变形监测系统设计主要内容 1)技术设计书2)有关建筑物自然条件和工艺生产过程的概述3)观测的原则方案4)控制点及监测点的布置方案5)测量的必要精度论证6)测量的方法及仪器7)成果的整理方法及其它要求或建议8)观测进度计划表9)观测人员的编制及预算 变形监测点的分类及每类要求 1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。变行监测技术在哪几方面取得了 较好的发展? ①自动化监测技术②光纤传感检 测技术③CT(计算机层析成像)技 术的应用④GPS在变形监中的应 用⑤激光技术的应用⑥测量机器 人技术⑦渗流热监测技术⑧安全 监控专家系统 什么是垂直位移和沉降?建筑物 沉降与哪些因素有关? 从词面来说,垂直位移能同时表示 建筑物的下沉或上升,而沉降只能 表示建筑物的下沉,对大多数建筑 物来说特别是施工阶段,由于垂直 方向上的变形特征和变形过程主 要表现为沉降变化,因此实际应用 中通常采用沉降一词。 影响建筑物沉降的因素有:(1)建 筑物基础的设计(2)建筑的上部 结构(3)施工中地下水的升降 监测方法与技术要求有哪些 视线长度、前后视距差和视线高 度;水准测量主要限差;沉降监测 点的精度要求。 精密水准测量的误差来源有哪 些?如何减弱i角误差对沉降观 测结果的影响? 误差来源:1)仪器误差:水准仪i 角误差;水准尺长与名义尺长不符 2)外界环境引起的误差:高压输 电线和变电站等强磁场的影响;温 度和大气折光影响3)人为引起的 误差 方法:减小i角误差的影响,必 须严格控制前后视距差和前后视 距累计差,又由于i角误差会受温 度等影响,减弱其影响的有效方法 是减少仪器受辐射热的影响;若i 角误差与时间成比例地均匀变化, 则可以采用改变观测程序(奇数站 —后前前后;偶数站—前后后前) 的方法减小i角误差影响。 精密水准测量监测方法与技术要 求有哪些 方法:采用精密水准测量方法进行 沉降监测时,从工作基点开始经过 若干监测点,形成一个或多个闭合 或附合路线,其中以闭合路线为 佳,特别困难的监测点可以采用支 水准路线往返测量。 要求:视线长度、前后视距差和视 线高度;水准测量主要限差;沉降 监测点的精度要求。 测点布设原则与方法 建筑物水平位移监测的测点宜按 两个层次布设,即由控制点组成控 制网,由观测点及所联测的控制点 组成扩展网;对单个建筑物上部或 构件的位移监测,可将控制点连同 观测点按单一层次布设。 水平位移监测常用的观测方法有 1)大地测量法2)基准线法3)专 用测量法4)GPS测量法 交会观测方法有几种及什么情况 用哪种方法 1)测角交会法:采用测角交会法 时,交会角最好接近90°若条件 限制,也可设计在60°~120°, 工作基点到测点的距离不宜大于 300m。2)侧边交会法:r角通常 应保持60°~120°,测距仔细, 交会边长度a和b应力求相等,一 般不大于600m;3)后方交会法 精密导线测量方法 1)边角导线法 2)弦矢导线法 数据处理和分析主要内容 1)粗差检查及处理2)点温度条 件检查3)数据可靠性检查。 挠度及挠度观测及方法 定义:测定建筑物受力后挠曲程 度的工作称为挠度观测。建筑物在 应力的作用下产生弯曲和扭曲,弯 曲变形时横截面形心沿与轴线垂 直方向的线位移称为挠度。 方法:1)高层建筑—前方交会法 2)内部有竖直通道的建筑物—垂 直观测法3)电子传感设备 对于以产生的裂缝应进行哪些内 容的监测工作? 对建筑物的裂缝应进行位置、长 度、宽度、深度和错距等的定期观 测。对建筑物表面及内部可能产生 裂缝的部位应预埋设备,进行定期 观测或临时采用适宜方法进行探 测。 裂缝监测的方法 1)测微器法2)测缝针3)超声波 检测 变形监测数学模型指什么?有哪 些? 表示建筑物的变形与产生变形的 各因素之间的关系的函数,称为变 形监测数学模型。 统计分析模型、确定性模型、混合 模型、灰色系统分析模型、时间序 列分析模型、神经网络模型 变形监测数学模型的分类。 第一类是基于数学统计的数学模 型,有回归、时间序列、灰色系统; 第二类是基于力学理论的数学模 型,有数值数学模型;第三类是人 工智能数学模型,有神经网络模 型。 现代GPS监测技术有哪些(论述 题) 1)GPS实时监测技术;基本思想: 在基准站上安置一台GPS接收机, 对所有可见GPS卫星进行连续观 测,并将其观测数据通过无线电传 输设备发送给流动站,流动站接收 基准站传输的观测数据,然后根据 相对定位原理,实时地计算并显示 用户站的三维坐标及其精度。2) GPS一机多天线监测技术;系统设 计原则:先进性、可靠性、自动化、 易维护、经济性;基本思想:在不 改变己有GPS接收机结构的基础 上,通过一个附加的GPS差分信号 分时器连接开关将多个天线阵列 与同一台接收机连接,通过GPS 数据处理后可获得变形体的变形 规律。组成:控制中心,数据通信, GPS多天线控制系,野外供电系 统。 GPS在变形监测中的应用优势 1)各监测站之间无需通视,是相 互独立的观测值2)GPS可以实现 全天候定位,可以在暴风雨中进行 监测3)GPS测定位移自动化程度 高。所测三维坐标可直接存入监控 中心服务器,并进行安全性分析。 4)GPS定位速度快,精度高。 监测资料的编整的一般规定 监测资料整编包括平时资料整理 和定期资料编印。 平时资料整理包括:适时检查各 观测项目原始观测资料和巡视检 查记录的正确性、准确性和完整 性;及时进行各观测物理量的计 算,填写数据记录表格;随时点绘 观测物理量的过程线图考察和判 断侧枝的变化趋势;随时整理巡视 检查记录,补充和修正,确保资料 的衔接与连续性。 定期资料编印包括:汇集工程监 测的相关资料、报告、文件;对各 项观测物理量进行统计和校对;绘 制各观测物理量的分布特征图,有 关因素的相关图;分析各观测量的 变化,提出意见;对资料进行全面 复核,汇编并说明,刊印成册,建 档保存。 整编资料的审查包括完整性审查, 连续性审查,合理性审查,争辩说 明的审查。 监测资料的定期编印应包含哪些 内容? ①汇集工程基本概况/监测系统布 置和各项考证资料/以及各次巡检 资料和有关报告、数据等 ②在平时资料整理的基础上,对整 编时段内的各项观测物理量按时 序进行列表统计和校对,此时如发 现可疑数据,一半不宣删改,应加 注说明提醒读者注意 ③绘制能表示各观测物理量在时 间上和空间上的分布特征网,以及 有关因素的相关关系图 ④分析与观测物理量及其对工程 安全的影响,并对影响工程安全的 问题提出运行和处理意见 ⑤对上述资料进行全面复核,汇 编,并附以整编说明后,刊印成册, 建档保存,采用计算机数据系统进 行资料存储和整编,整编软件应具 有数据导入,修改,查询,以及整 编图表的输出打印功能,还应复制 软盘备份 如何对检测资料分析(论述题) 常用的分析方法有作图分析,统计 分析,对比分析和建模分析 监测资料的分析一般分为定期分 析和不定期分析。1.定期分析: 1)施工期资料分析2)运营初期 资料分析3)运行期资料分析 2.不定期分析:有特殊需要时才 专门进行的分析,如遇洪水,地震 等。 监测数据的预处理内容及为什么 要进行预处理 内容:监测物理量的转换、监测 数据的粗差检查、以及系统误差的 检验等。 原因:1)监测数据可能不是我们 想要的格式,必须将其转换成我们 需要的数据格式2)对任何一个监 测系统,其观测数据中或多或少会 存在粗差,在变形分析的开始有必 要先对观测数据进行预处理,将粗 差剔除。 建筑物沉降监测的主要方法有那 些?监测项目的内容有哪些?步 骤有哪些?数据分析处理包括? 方法:精密水准法、沉降仪量测 法、三角高程。 内容:1)基础沉降2)水平位移 3)滑坡监测4)裂缝监测5)内部 监测。 步骤:1)沉降监测方案研究与技 术设计2)沉降监测仪器检验3) 沉降监测点位布设4)沉降监测数 据采集5)沉降监测数据处理6) 沉降量计算与分析7)沉降量报表 8)沉降量过程曲线绘制9)沉降 监测报告编写。 数据分析处理:1)进准网数据处 理,当基准网独立监测时,基准为 可以独立平差计算2)各周期数据 处理,各周期监测后进行数据平差 计算。 建筑物内部监测包括的内容 ①位移监测②应力/应变监测③温 度监测④地下水位及渗流监测⑤ 挠度监测⑥裂缝监测等 建筑物基础沉降数据处理包括哪 些内容? 1)基准网数据处理; 2)各周期数据处理。 建筑物沉降监测项目: 1)基础沉降2)水平位移3)滑坡 监测4)裂缝监测5)内部监测。方 法:1)沉降监测方案研究与技术 设计2)沉降监测仪器检验3)沉 降监测点位布设4)沉降监测数据 采集5)沉降监测数据处理6)沉 降量计算与分析7)沉降量报表8) 沉降量过程曲线绘制9)沉降监测 报告编写。 建筑物倾斜监测的方法有哪些? 纵横距投影法:当测定偏距e的 精度要求不高时,可以采用纵横距 投影法; 角度前方交会法:当测定偏距e 的精度要求较高时,可以采用角度 交会法; 任意点置镜方向交会法:当建筑 物属于非刚体变形,建筑物在施工 阶段其楼体上变形点无法置镜时 采用; 激光垂准法:当需要计算建筑物 某轴线的倾斜度时采用。 工业与民用建筑物变形监测的监 测方案及技术设计有哪些。 精度设计:按《建筑物沉降监测规 范》规定,一般建筑物应反映1mm 的沉降量,这就要求监测精度要高 于±1mm,一般按二等水准测量技 术规定执行。对于研究性的监测, 应采用一等水准测量技术指标。在 实施监测时,某些技术要求要高于 相应等级。②仪器选择:根据规范 的要求,一般采用S1级精密水准 仪(光学或电子)。对于非常重要 建筑或沉降量较大地区的沉降监 测、高速公路等,也可采用三等水 准测量技术指标实施监测。 变形监测实例的内容、方法、数据 分析、处理要求。 工业与民用建筑物变形监测的主 要监测项目: 1.沉降监测 2.水平位移监测 3.倾斜监测 4.裂缝监测 5.振动频率监测。 桥梁变形监测的主要内容:桥梁 墩台变形观测;塔柱变形观测;桥 面挠度观测;桥面水平位移观测。 方法:1)垂直位移监测2)水平 位移监测3)挠度观测。 基坑工程监测内容及方法? 内容:包括围护结构和周围环境 两大部分。围护结构包括维护撞 墙、水平支撑、围檀、和围梁、立 柱、坑底土层和坑内地下水等,周 围环境包括周围土层、地下管线、 周围建筑和坑外地下水等。 方法:水平位移监测:极坐标法、 前方交会法、视准线法等;沉降监 测:精密水准测量、精密三角高程 测量、液体静力水准测量。 基坑工程监测的项目有哪些? 桩墙顶部水平位移和沉降;深沉水 平位移;基坑回弹;土体分层沉降; 结构内力;坑外地下水;周围环境。 基坑监测的数据处理有哪些? 监测前应设计各种不同的外业记 录表格,表格中的数据不得随意更 改;外业监测数据应尽快计算处 理,并提交日报表或技术报告,必 要时还需要提交各种监测图;工程 结束应提交完整的监测技术总结 报告。 基坑施工监测周期和预警值一般 怎样确定? 基坑监测贯穿基坑开挖和地下结 构施工的全过程,即从基坑开挖第 一批土到地下结构施工至标高,基 坑越大,施工时间越长,监测期限 就越长 确定预警值时应注意下列基本原 则:1满足现行相关规范和规程的 要求2满足工程设计的要求3考虑 与主管部门对所辖保护对象的要 求4考虑工程质量,施工进度,技 术措施和经济等因素 盾构隧道施工监测的项目? 1)土体介质的监测:地表的沉降 监测,土地分层沉降和深层位移监 测,土体回弹测量,土体应力和孔 隙水压力测量(2)周围环境的监 测:相邻房屋和重要结构物的变形 监测,相邻地下管线的变形监测 (3)隧道变形的监测:隧道沉降 和水平位移监测,隧道断面收敛位 移监测,隧道应变和预制管片凹凸 接缝处法向应力测量 数据整理:1)校核各项原始记录, 检测各次变形监测值的计算是否 有误2)变形值计算3)绘制各种 变形过程线、建筑物变形分布图。 分析:1)成因分析2)统计分析3) 变形预报和安全判断。 水工建筑物变形监测 主要项目: ①水文:水位,降水,波浪,冲淤, 气温,水温; ②变形:地基,裂缝,接缝,边坡 ③渗流:坝体,坝基,绕渗,渗流 量,地下水,水质 ④应力:应力土壤,混凝土,钢筋, 钢板,接触面,温度 ⑤水流:压强,流压,掺气,消能 ⑥地震:振动 监测方法:1)水平位移监测,2) 垂直位移监测 边坡工程主要项目内容有哪些? 外部变形监测周期和预警值一般 怎样确定? 内容:1)地表位移裂缝2)地下 位移裂缝3)地声4)应变5)地 下水位,孔隙水压力,河库水位, 泉流量6)降雨量,地温,地震。 确定方法:施工阶段的边坡监测 贯穿边坡施工的全过程不同的边 坡工程:由于边坡的类型,规模, 所处阶段,以及边坡变形速率等不 同,其监测期限和频率不同,监测 周期根据边坡类型、规模、所处阶 段以及边坡变形速率影响。预警值 的确定要参照现行规范和规程的 规定值、设计预估值和经验类比 值,从变形总量和变形速率两方面 加以控制。 模型建立思想、过程、优势、依 据 统计分析模型思想:虽然建筑物 变形和各变形因素之间的关系复 杂,但从数理统计的理论出发,对 建筑物的变形量与各种作用因素 的关系,在进行了大量的试验和观 测后,仍有可能找出它们之间的一 定的规律性。这种方法称为回归分 析法,建立起来的数学模型称为统 计分析模型。 逐步回归过程步骤:1)首先根据 经验或对变形值与外界作用因子 间的初步分析,确定回归方程的初 选模型及各个因子2)经回归计算 建立回归方程,在此方程中找出系 数|ai|为最小者,并将其剔除回归 方程后,重新进行回归计算,建立 新的回归方程。3)计算第一次回 归方程的残差平方和Q2以及新的 回归方程之残差平方和Q’2。求 出△Q2=Q2-Q’2,组成统计检验量 并进行f检验。若检验表明该因子 作用不显著,则正式剔除回归方 程,否则应保留在方程内。然后再 对第二个系数|ai|较小的因子进 行显著性检验,一直到全部因子检 验结束为止。4)对最后所建立的 回归方程作回归效果显著性检验。 如不理想,加入一些备选因子并对 新加入的因子逐个进行显著检验。 直到各个因子作用都显著且回归 效果也很理想,就可以得到所需最 佳回归方程。 优势:可以描述随机变量与其他 变量之间的相关关系,是对随机变 量的静态描述。 灰色系统分析模型:优势:首先 是它把离散数据视为连续变量在 其变化过程中所取的离散值,从而 可利用微分方程式处理数据;而不 直接使用原始数据而是由它产生 累加生成数,对生成数列使用微分 方程模型。这样,可以抵消大部分 随机误差,显示出规律性。 灰色关联分析:1)构造灰色关联 因子集2)灰色关联度计算公式3) 灰色关联序 时间序列分析模型:基本思想: 对于平稳、正态、零均值的时间序 列{xt},若xt的取值不仅与其前 N步的各个取值x(t-1),x (t-2),…x(t-n)有关,而且还 与前M步的各个干扰a(t-1),a (t-2),…a(t-m)有关,则按多元 线性回归的思想,可得到最一般的 ARMA模型。 建模步骤:1)数据获取与预处理 2)模型结构选择3)模型结构调 整4)模型参数估计5)模型适用 性检验6)适用模型 优势:是动态模型,是对随机过 程的动态描述。 统计模型的建立及三大类的不同 特点。(综合题) 根据数理统计,对建筑物的变形量 与各种作用因素的关系,在进行了 大量的试验和观测后,仍然有可能 寻找出它们之间的规律性,这种处 理方法称为回归分析法。建立起来 的数学模型称为统计分析模型。 统计分析模型包括:一元线性回归 模型、多元线性回归模型、逐步回 归分析模型。

相关文档
最新文档