磁通量传感器索力监测系统设计指南.

磁通量传感器索力监测系统设计指南.
磁通量传感器索力监测系统设计指南.

磁通量传感器索力监测系统

设计使用指南

柳州欧维姆结构检测技术有限公司

目录

前言 (3

1. 磁通量传感器原理 (4

2. 磁量传感器的技术特点 (4

3. 主要技术指标 (5

4. 磁通量传感器的应用 (5

5、磁通量传感器索力监测系统 (8

6. 索力监测系统的配置 (10

7. 传感器选型与安装 (12

8. 磁通量传感器监测系统建立过程及注意事项 (14

9. 主要工程业绩 (15

前言

拉索是缆索支承型桥梁的核心构件之一,素有“生命线”之称,其服役状况直接关系到桥梁的安全运营与使用寿命。因此,对桥梁拉索进行安全监测,及时了解拉索和桥梁的服役状态是十分必要的。拉索的安全监测,主要是通过监测拉索的索力,来判断其使用状况,评定其安全性。一方面,一根拉索的损伤变化会在其本身的索力变化和相邻索力的变化上表现出来,在外部则表现为主梁挠度发生变化;另一方面,主梁或塔的损伤变化也会引起索力的变化。通过对索力的监测,不仅能为总体评价其技术状况提供依据,同时也可以在一定程度上发现拉索锚固系统、防护系统是否完好,也可以更好地理解桥梁结构机理,验证设计理论从而指导设计。

索力监测所应用的传感器技术主要有:振动频率法、压力传感器(振弦式、应变片、液压式、光纤光栅、磁通量传感器(EM sensor等。各种索力测量方法,各有其特点,振动频率法是通过建立拉索的简化模型,实测拉索的振动频率,经过计算间接得出索力,因为受减震器、拉索实际长度、外护套等影响,其测量精度比较差。压力型传感器是比较传统的传感器技术,需要串接在受力结构中,将传递到传感器上面的力直接测量出来,短期精度高、动态性好,但由于受荷载长期作用、材料徐变、形变传递失真等方面的影响,耐久性和长期精度很难保证,在受力状态下无法重新校准,无法更换,因此压力型的传感器用于长期监测有一定的局限性,只能在桥梁建设或换索时预装。

针对传统的传感器技术的局限,磁通量传感器(EM Sensor较好地解决了这些问题:

1、通过非接触式测量解决传感器受力疲劳影响寿命问题;

2、用模拟标定来实现运营状态的数据校准;

3、可以设计成哈弗式传感器,直接在已受力的拉索上制作及安装,实现运

营中桥梁拉索的索力监测。

4、可以实现体内预应力(有粘结多截面应力监测。

1. 磁通量传感器原理

磁通量传感器基于铁磁性材料的磁弹效应原理进行测量,当受到外力作用时,铁磁性材料内部产生机械应力或应变,其磁导率发生相应变化,通过测定磁导率的变化来反映应力(或索力的变化。

传感器实物图

2. 磁量传感器的技术特点

(1磁通量传感器为非接触性测量,不损伤结构;

(2不需对被测件进行表面处理,不破坏构件原有防腐保护层;

(3传感器维护成本低、使用寿命长;

(4抗干扰能力强、测量精度高、重复性好;

(5系统可自动测量和自动温度补偿。

(6可直接显示力值。

(7可与计算机系统相连,进行多通道数据采集和远程健康监测

3. 主要技术指标

(1测量范围:0~屈服应力;

(2接线长度:≤300m

(3适应环境温度为:-20~80℃;

(4长期误差:≤3%FS;

(5供电电源:AC 100~240V,60/50HZ。

4. 磁通量传感器的应用

常规应用

由铁磁性材料制成的棒材和拉索,包括平行钢丝索、钢绞线索、体内预应力钢绞线束、钢丝绳、精轧螺纹钢等构件。

精轧螺纹钢应力监测

钢丝绳张力监测

专业应用

有粘结预应力多截面监测利用磁通量传感器非接触式测量的特点,可以很方便地实现体内预应力筋不同截面的应力监测。

成都双流机场飞机滑行道桥中幅桥永存预应力测试截面示意图

广元市白水河大桥体内预应力监测示意图(部分

磁通量监测体内预应力安装示意图

运营中桥梁拉索索力监测

可以设计成哈弗式的结构,直接在运营中的拉索上制作传感器,通过模拟标定进行曲线拟合和校准,实现运营中桥梁拉索的索力监测。

在运营中的拉索上制作磁通量传感器

5、磁通量传感器索力监测系统

实现索力监测的最基本的配置是磁弹仪(读数仪和磁通量传感器,二者即可实现人工索力测量。当组建系统时,根据投资额及重要度,可选择离线检测系统或在线监测系统两种不同形式,前者造价低但需人工现场采集数据,后者可实现自动化在线监测,但造价相对较高。

磁通量传感器测量系统主要配件

离线检测系统

磁通量传感器测量系统的基础配置主要包括磁通量传感器、开关集线箱、磁

弹仪、数据传输线及布线管、仪器保护箱,构成数据采集系统(数据采集箱,根据传感器的数量及分布情况在桥梁上设置一个或多个数据采集箱,构成离线检测系统,实现人工定期数据采集。

离线检测系统示意图(数据采集箱

在线监测系统

在离线检测系统的基础上,增加数据传输系统(有线、无线或以太网传输和数据处理系统,就可实现索力数据的实时在线监测,具有自动测量、异常预警等功能,可以根据需要自主设定采集的时间、频率,操作简单。

在线监测系统示意图

6. 索力监测系统的配置

(1传感器布置:接线长度小于等于300米,既可以每根索上安装,也可只选择重要截面上安装。传感器与数据采集箱之间用专用信号线连接,用线管或线槽进行保护,传输线的距离一般控制在300米以内,避免距离过长使信号失真。

(2数据采集箱常用规格:8通道、16通道、24通道。数据采集箱集成的传感

器数量,按通道数最多可分别集成8、16、24台磁通量传感器。

(3数据采集箱的数量及分布。根据传感器的数量和分布来决定数据采集箱的型号(通道数、数量(总通道数、安装位置。

吊杆索力监测系统布置示例

斜拉索索力监测系统布置示例

7. 传感器选型与安装

(1传感器选型:由构件的外径确定传感器的型号,一般要求传感器的内径大于传感器外径1mm~20mm,以方便袖套安装。平行钢丝索、钢绞线成品索、钢丝绳、精轧螺纹钢等使用整束式传感器、平行钢绞线拉索体系可使用单根钢绞线用传感器或整束式传感器,也可两种形式的传感器一起使用。

各种型号的磁通量传感器的命名规则如下:

图5 命名规则

常用传感器型号及外形尺寸:

(2传感器安装位置:

建议将传感器安装在拉索的下预埋管内或桥面自由段,如下图。

传感器在斜拉索上的安装

传感器在吊杆上的安装

整束式传感器直接套在索体外,选用单根钢绞线用传感器监测平行钢绞线拉索体系时,安装在锚具内的单根钢绞线上。

(3传感器选择考虑的问题

(a 传感器的安装空间,能放置相应型号的传感器。

(b 信号传输线通道,需将传输线从预埋管内引至可以进行测量操作或加长布线的位置。

(c 传感器需在安装拉索锚具之前套入索体,建议在设计文件中做相关说明。

8. 磁通量传感器监测系统建立过程及注意事项

(1拉索监测系统设计。需要考虑传感器型号、走线方式、数据采集箱的数量与放置点。

(2传感器生产周期。磁通量传感器生产周期约为40天。

(3传感器安装与标定。磁通量传感器需要在拉索制索过程中,未安装锚具之前套到拉索上,并利用拉索出厂前的超张拉工艺逐一进行标定,也可采用样品索在张拉台座上进行标定。平行钢绞线拉索体系、精轧螺纹钢等锚具现场安装的情况,一般采用样品索在张拉台座上进行标定。标定需采用符合精度要求的标准传感器。

(4传感器现场安装。磁通量传感器随拉索运往现场,挂索后将传感器就位到安装位置。

(5传感器走线与保护。一般将传感器放在预埋管内,传感器信号线通过预留的走线孔道,引至数据采集箱,并采用布线专用线管或线槽进行保护。

(6系统安装与调试。系统调试主要包括硬件调试和软件调试。

9. 主要工程业绩

(1香港昂船洲大桥体外索在线监测;

(2美国Penoscot River Bridge拉索监测

(3杭州湾大桥体内索在线监测;

(4湛江海湾大桥斜拉索在线监测;

(5宜宾长江大桥斜拉索在线监测;

(6江西吉安赣江大桥加固体外索监测;

(7江西剑邑大桥斜拉索监测;

(8九甸峡水利枢纽工程调压井环锚监测;

(9厦门集美大桥体内预应力及体外索监测

(10夷陵长江大桥斜拉索索力监测

(11宜宾长江大桥斜拉索索力监测

(12广东阳江市西江特大桥斜拉索索力监测

(13天津南仓桥斜拉索监测

(14武广高铁武汉东湖特大桥吊杆索力监测

(15京沪高铁拱桥吊杆索力监测(共十座

(16宁杭高铁拱桥吊杆索力监测(两座

(17广珠铁路白坭河特大桥、虎跳门特大桥、杜坑特大桥吊杆索力监测(18广深港沙湾特大桥吊杆索力监测(两座

(19广元市白水大桥体内预应力监测

(20成都双流机场飞机滑行道桥永存预应力监测

(21南宁葫芦鼎大桥体内预应力监测

(22南宁永和大桥吊杆索力监测

(23柳州文惠桥吊杆索力监测

......

应变式测力传感器设计

1前言 1.1研究课题背景及意义 应变式测力传感器早已在众多测控领域中得到了广泛的应用,尤其在测量重量方面,其技术已非常成熟。所以,国内外众多科技人员努力争取更大的突破。得到更优良的弹性体结构,非常合适的弹性体材料,合乎测量要求的应变片,完善的测量电路及补偿电路是需要努力的。当然,非常好的外观质量也是一大竞争力。现已有的应变式测力传感器大致有这么几种:桥式、剪切梁式、单点式、柱式、轮辐式、板式、平行梁式、S型。它们主要用于称重领域。国外企业在以下几个方面进行了许多研究和实验工作,如结构设计、制造工艺、电路补偿及调整、稳定性方面。并取得了一定的进展。这些进展主要包括在设计和计算过程中引入了先进的分析方法,如用计算机拟实技术进行动态仿真和动力学分析及工艺设计过程里运用虚拟技术,对生产工艺进行仿真检验。在弹性体加工方面,使用先进制造技术,将刚性制造转为柔性制造,加工中心、柔性制造系统和柔性制造单元得到普遍采用。在生产过程中尽量采用半自动和自动控制、自动检验程序和计算机网络技术。改进了工艺装备也是主要成就之一。最终提高了应变式测力传感器的稳定性和可靠性。 转子在高速运转过程中,由于种种原因,诸如转子的偏心问题,会产生不容忽视的径向力,使转轴的径向误差加大。在自动控制系统中,便需要得到径向力这个信号,然后对执行机构才能进行控制。要得到理想的控制刚度,不仅需要控制系统的稳定可行,测试系统的重要性同样不可忽视。所以,传感器性能的好坏和选取的是否恰当是个非常关键的问题。在现有的径向力测量中,人们并不是直接去测径向力的值,而是将其转化为其它量,比如位移量。然后使用位移传感器进行测量,控制径向位移量便使得径向力引起的问题得到解决。在高速运转的系统中,如磁悬浮系统,人们便广泛采用这样一些位移传感器:电容式传感器、电涡流式传感器、电感式传感器。并都取得了不错的测量控制效果。但是,还不能忽视他们的缺点。电容式传感器,其电容小,容易受到外界诸多因素的影响,在高速旋转的转子系统中其可靠性大大降低。电涡流式传感器相对来讲比较合适,但是当附近存在高频磁场和工作的高频开关器件,它的可靠性也将变得不理想。电感式传感器由于自身的频率响应特性不适合于快速动态测量。 其实在转子系统中,转子肯定要有轴承支承。前面所讲都是将传感器作为一个附属测量器件,纯粹起测量作用。考虑轴承的刚度问题和受力问题,一个新的测量方向便产生了,何不设计一个既能其支撑作用,就像轴承一样,又起测量作用个,就像传感器一样。如果要同时具有这两种作用,那么前面所说的电容式传感器、电涡流式传

META_SLS激光传感器操作说明

Meta Vision Systems Smart Laser Probe Operating Manual ? Meta Vision Systems Ltd. March 2011 Version 1.0 Part number: DOC-S1E-10

Foreword This manual describes the operation of the Smart Laser Probe seam tracking system. Meta Vision Systems Ltd. has made every effort to ensure that the information presented in this user manual is correct. If you have any comments on the manual, please send them to us on the form at the end of this manual. Any questions about information contained in this manual or requests for further information should be forwarded to your equipment provider or Meta Vision Systems at the address below. This manual and its contents is copyright ? Meta Vision Systems Ltd. No part of this manual may be copied or distributed without the written consent of Meta Vision Systems. Meta Vision Systems Ltd. Oakfield House Oakfield Industrial Estate Eynsham Oxfordshire OX29 4TH UNITED KINGDOM Tel: +44 (0)1865 887900 Fax: +44 (0)1865 887901Meta Vision Systems Inc. 8084 TransCanada Highway St-Laurent Québec H4S 1M5 CANADA Tel: +1 514 3330140 Fax: +1 514 3338636 Web page: https://www.360docs.net/doc/4b17599829.html, Email: support@https://www.360docs.net/doc/4b17599829.html,

传感器电路设计毕业论文范文

毕业设计 设计题目:传感器电路设计

目录 1. 引言 1 2. 溶解氧传感器简介 1 3.信号输入部分电路 4 3.1 电源滤波电路图 4 3.2 信号放大电路 5 3.2.1信号放大电路图 5 3.3 AD623放大器简介 6 3.3.1AD623放大器的特点 6 3.3.2AD623放大器的工作原理 6 4 单片机电路7 4.1 单片机电源电路图8 4.2 89LPC925芯片简介8 4.2.1 P89PLC925芯片主要功能8 4.2.2 P89PLC925的低功耗选择11 4.2.3 P89PLC925的极限参数11 4.2.4 P89PLC925芯片管脚图11 5.MiniICP下载线的电路连接13 6.PCB板的绘制13 7.程序流程14 8. 总结16 参考文献16

传感器电路设计 摘要:溶解氧数字化传感器是应用单片机控制的智能化传感器,它可以对液体中溶解氧 的含量进行准确的测量。本设计从总体上介绍了溶解氧数字化传感器的工作原理,着重介 绍了电路元器件的选取以及输入信号的放大和P89LPC925芯片的工作原理,利用P89LPC925 芯片实现对溶解氧浓度的准确测量。 关键词:溶解氧传感器;P89LPC925;AD623 The design of the dissolved oxygen sensor (College of Physics and Electronic Engineering, Electrical Engineering and Its Automation, Class2 Grade2003, 0323110235) Abstract:Dissolved oxygen digital sensor is a king of intelligent sensor which use single-chip computer to control, it could measure the oxygen dissolved in liquid accurately. This design introduces the work principle of dissolved oxygen digital sensor, it introduces the selection of the circuit components and amplification of input signals and the work principle of P89LPC925 chip, P89LPC925 chip using the dissolved oxygen concentration on the measurement accuracy. Key Words: dissolved oxygen sensor; P89LPC925; AD623 1 引言 氧是维持人类生命活动必不可少的物质,它与人类的生存息息相关。氧也是与化学、生化反应、物理现象最密切的一种化学元素,无论是在工业、农业、能源、交通、医疗、生态环境等各个方面都有重要作用。特别是在水产养殖中,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响。缺溶氧(溶解氧低于4mg/L)时将导致水生物窒息死亡;低溶氧导致水生物生长缓慢,增重率低而饵料系数高,对疾病的抵抗能力发病率高,生物的生长受到限制;高溶氧时某些鱼类幼体可能会出现气泡病。因此溶解氧浓度的精确测量显得尤为重要。 2 溶解氧传感器简介 溶解氧是溶解在水中的分子态氧,该定义是可查资料[1]-[4],随着科技和经济的发展,溶解氧测量已从水介质延伸到了非水液体介质,如丙酮、苯、氯苯、环乙烷、甲醇、正辛烷。分布方式有水平分布和垂直分布两种.溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。

压力传感器的基本特性测量及电子秤的设计

压力传感器的基本特性测量及电子秤的设计 一、实验目的 1.了解金属箔式应变片的应变效应和性能,单臂单桥的工作原理和工作情况。 2.测量应变式传感器的压力特性,计算其灵敏度。 3.测量应变式传感器的电压特性,作出输出电压与工作电压的关系特性图。 4.根据应变式传感器的压力特性设计一个电子秤。 三、实验仪器 YJ-WLT-I物理综合实验平台、压力传感器实验装置、电桥模块与差动放大器(含调零模块)一起提供线路板、万用表、标准砝码等。 四、实验原理 金属导体的电阻随其所受机械形变(伸长或缩短)的大小而发生变化,其原因是导体的电阻与材料的电阻率以及它的几何尺寸(长度和截面)有关。由于导体在承受机械形变过程中,其电阻率、长度和截面积都要发生变化,从而导致其电阻发生变化,因此电阻应变片能将机械构件上应力的变化转换为电阻的变化。电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: △R/R=Kε(1) 式中△R/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=△ L/L为电阻丝长度相 对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转 换被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,电桥的输出电压 反映了相应的受力状态。 要由双孔平衡梁和粘贴在梁上的电阻应变片 R1—R4组成,电阻应变片一般由敏感栅、基底、 粘合剂、引线、盖片等组成。应变片的规格一 般以使用面积和电阻值来表示,如 “3×10mm2,350Ω”。 敏感栅由直径约0.01mm--0.05mm高电阻 系数的细丝弯曲成栅状,它实际上是一个电阻 元件,是电阻应变片感受构件应变的敏感部分。 敏感栅用粘合剂将其固定在基片上.基底应保证将构件上的应变准确地传送到敏感栅 上去,故基底必须做得很薄(一般为0.03mm--0.06mm),使它能与试件及敏感栅牢固 地粘结在一起;另外,它还应有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜

传感器仿真软件使用说明书

传感器仿真软件使用说明 书 The Standardization Office was revised on the afternoon of December 13, 2020

THSRZ-2型传感器系统综合实验装置仿真软件使用说明书THSRZ-2型传感器系统综合实验装置仿真软件 ................. 错误!未定义书签。 实验一属箔式应变片――单臂电桥性能实验。 ................. 错误!未定义书签。 实验二金属箔式应变片――半桥性能实验 ......................... 错误!未定义书签。 实验三金属箔式应变片――全桥性能实验 ......................... 错误!未定义书签。 实验四直流全桥的应用――电子秤实验 ............................. 错误!未定义书签。 实验五交流全桥的应用――振动测量实验 ......................... 错误!未定义书签。 实验六扩散硅压阻压力传感器差压测量实验 ..................... 错误!未定义书签。 实验七差动变压器的性能实验 ............................................. 错误!未定义书签。 实验八动变压器零点残余电压补偿实验 ............................. 错误!未定义书签。 实验九励频率对差动变压器特性的影响实验 ..................... 错误!未定义书签。 实验十差动变压器的应用――振动测量实验 ..................... 错误!未定义书签。 实验十一电容式传感器的位移特性实验 ............................. 错误!未定义书签。 实验十二容传感器动态特性实验 ......................................... 错误!未定义书签。 实验十三直流激励时霍尔式传感器的位移特性实验 ......... 错误!未定义书签。 实验十四流激励时霍尔式传感器的位移特性实验 ............. 错误!未定义书签。 实验十五霍尔测速实验 ......................................................... 错误!未定义书签。 实验十六霍尔式传感器振动测量实验 ................................. 错误!未定义书签。 实验十七磁电式转速传感器的测速实验 ............................. 错误!未定义书签。 实验十八压电式传感器振动实验 ......................................... 错误!未定义书签。 实验十九电涡流传感器的位移特性实验 ............................. 错误!未定义书签。 实验二十被测体材质、面积大小对电涡流传感器的特性影响实验错误!未定义书签。 实验二十一电涡流传感器测量振动实验 ............................. 错误!未定义书签。 实验二十二光纤传感器的位移特性实验 ............................. 错误!未定义书签。 实验二十三光纤传感器的测速实验 ..................................... 错误!未定义书签。 实验二十四光纤传感器测量振动实验 ................................. 错误!未定义书签。 实验二十五光电转速传感器的转速测量实验 ..................... 错误!未定义书签。 实验二十六 PT100温度控制实验 .......................................... 错误!未定义书签。 实验二十七集成温度传感器的温度特性实验 ..................... 错误!未定义书签。 实验二十八铂电阻温度特性实验 ......................................... 错误!未定义书签。 实验二十九热电偶测温实验 ................................................. 错误!未定义书签。 实验三十 E型热电偶测温实验 .......................................... 错误!未定义书签。 实验三十一热电偶冷端温度补偿实验 ................................. 错误!未定义书签。 实验三十二气敏传感器实验 ................................................. 错误!未定义书签。 实验三十三湿敏传感器实验 ................................................. 错误!未定义书签。 实验三十四转速控制实验 ..................................................... 错误!未定义书签。

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

角度传感器应用电路设计

磁阻式传感器KMZ41的特点: 内部包含有两个有磁阻构成的、位置成正交的、独立的电桥(Wheatstone Bridge)。其内部结构如下图所示: 将KMZ41置于有X轴、Y轴构成的平面上,当旋转磁场强度变化时,KMZ41就会产生两路正弦输出的信号,两信号的相位差就代表芯片轴向与磁场方向的夹角a,输出信号波形如下图所示: 图1 图2 图1为KMZ41产生的两路正弦输出信号;图2为芯片轴向与磁场方向的夹角。UZZ9001的内部结构与工作原理: UZZ9001的芯片内部包括A/D转换器1和A/D转换器2、滤波器、算法逻辑、SPI接口、时钟振荡器、;逻辑控制及复位等。UZZ9001Y与KMZ41连接,能够将磁阻式传感器KMZ41输出的两个有相位差的正弦信号转换成数字信号输出,与微控制器配套构成一个角度测量系统。 *

角度传感器部分设计: 方案一 由UZZ9000和KMZ41构成的角度检测电路: UZZ9000为线性电压输出式角度传感器调理器电路,输出电压与被测角度信号成正比;测量角度的范围是0~180°,且在0~100°范围内;测量误差小于±0.45°分辨力达0.1°;测量范围和输出零点均可调节;电源电压范围为+4.5~+5.5V;电源电流为10mA;工作温度范围是-40~+150℃。 由UZZ9000和KMZ41构成的电压输出式角度检测电路如图所示。改变R2和R3的比值,可以调节传感器1的偏移量;改变R4和R5的阻值,可以调节传感器2的偏移量;改变R6和R7的比值,可以调节零点偏移;改变R8和R9的比值;可以调节测量角度范围。电阻R2~R9可以采用电位器代替。电路输出电压送至数字电压表或者微控制器系统,即可显示出被测角度值。该电路可广泛用于发动机凸轮/曲轴速度及位置检测、节流阀控制、转向操作控制、汽车中的ABS系统等领域。 注:1.设置角度范围。在UZZ9000的引脚端13加上不同的外部电压可以选择0~30到0~180共16个不同的角度范围。

磁通量传感器索力监测系统设计指南.

磁通量传感器索力监测系统 设计使用指南 柳州欧维姆结构检测技术有限公司 目录 前言 (3 1. 磁通量传感器原理 (4 2. 磁量传感器的技术特点 (4 3. 主要技术指标 (5 4. 磁通量传感器的应用 (5 5、磁通量传感器索力监测系统 (8 6. 索力监测系统的配置 (10 7. 传感器选型与安装 (12 8. 磁通量传感器监测系统建立过程及注意事项 (14 9. 主要工程业绩 (15 前言

拉索是缆索支承型桥梁的核心构件之一,素有“生命线”之称,其服役状况直接关系到桥梁的安全运营与使用寿命。因此,对桥梁拉索进行安全监测,及时了解拉索和桥梁的服役状态是十分必要的。拉索的安全监测,主要是通过监测拉索的索力,来判断其使用状况,评定其安全性。一方面,一根拉索的损伤变化会在其本身的索力变化和相邻索力的变化上表现出来,在外部则表现为主梁挠度发生变化;另一方面,主梁或塔的损伤变化也会引起索力的变化。通过对索力的监测,不仅能为总体评价其技术状况提供依据,同时也可以在一定程度上发现拉索锚固系统、防护系统是否完好,也可以更好地理解桥梁结构机理,验证设计理论从而指导设计。 索力监测所应用的传感器技术主要有:振动频率法、压力传感器(振弦式、应变片、液压式、光纤光栅、磁通量传感器(EM sensor等。各种索力测量方法,各有其特点,振动频率法是通过建立拉索的简化模型,实测拉索的振动频率,经过计算间接得出索力,因为受减震器、拉索实际长度、外护套等影响,其测量精度比较差。压力型传感器是比较传统的传感器技术,需要串接在受力结构中,将传递到传感器上面的力直接测量出来,短期精度高、动态性好,但由于受荷载长期作用、材料徐变、形变传递失真等方面的影响,耐久性和长期精度很难保证,在受力状态下无法重新校准,无法更换,因此压力型的传感器用于长期监测有一定的局限性,只能在桥梁建设或换索时预装。 针对传统的传感器技术的局限,磁通量传感器(EM Sensor较好地解决了这些问题: 1、通过非接触式测量解决传感器受力疲劳影响寿命问题; 2、用模拟标定来实现运营状态的数据校准; 3、可以设计成哈弗式传感器,直接在已受力的拉索上制作及安装,实现运 营中桥梁拉索的索力监测。 4、可以实现体内预应力(有粘结多截面应力监测。

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

压电式力传感器的设计

机械工程测试课程设计 学院:xxxxxx 专业班级:xxxxxx 学号:xxxxxx 姓名:xxx

《力的测量课程设计》 目录 设计摘要 (1) 引言 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (5) 总结 (6) 参考文献 (6)

设计摘要 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 引言 压电式力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,在工业中有着不可少的作用。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。 传感器原理与应用作为一门课程,我们在认真学好理论课程的同时,还要与实际结合起来,只有这样才能对压电式传感器的使用有更好的理解。 通过对传感器的设计来加深对理论课程的理解,这是王伟老师要求我们进行课程设计的目的。做到理论联系实际,从而学会正确分析传感器使用过程中出现的问题,不断总结经验,进而用来来指导实践,这样我们才能将学好的知识得到很好的应用。也为我们日后再该领域的进一步研究打下坚实的基础。

传感器与测控电路设计说明书

传感器与测控电路课程设计 说明书 设计题目电感式(螺管型)位移传感器的设计 学校湖南科技大学学院机电工程学院 班级 07级测控一班学号 0703030116 设计人李广 指导教师余以道杨书仪 完成日期 2010 年 6 月 22 日

目录 一、设计题目与要求 (2) 二、基本原理简述 (2) 三、设计总体方案拟定 (7) 四、传感器的结构设计 (8) 五、结构设计CAD图 (12) 六、测控电路的设计与计算 (12) 七、电路框图及电路CAD图 (14) 八、精度误差分析 (14) 九、参考文献 (16)

一、设计题目与要求 1、设计题目:电感式(螺管型)位移传感器的设计 2、设计要求: 采用差动变压器原理设计一个测量位移的传感器,并设计一测控电路对传感器的输出量进行处理,使信号能输入到A/D 转换器,进行一系列的测量与控制。 二、基本原理简述 电感式传感器是利用被测量的变化引起线圈自感或互感系数的变化,从而导致线圈电感量改变这一物理现象来实现测量的。因此根据转换原理,电感式传感器可以分为自感式和互感式两大类。 自感式电感传感器可分为变间隙型、变面积型和螺管型三种类型。 一、 螺管型自感传感器 有单线圈和差动式两种结构形式。 单线圈螺管型传感器的主要元件为一只螺管线圈和一根圆柱形铁芯。传感器工作时,因铁芯在线圈中伸入长度的变化,引起螺管线圈自感值的变化。当用恒流源激励时,则线圈的输出电压与铁芯的位移量有关。 铁芯在开始插入(x =0)或几乎离开线圈时的灵敏度,比铁芯插入线圈的1/2长度时的灵敏度小得多。这说明只有在线圈中段才有可能获得较高的灵敏度,并且有较好的线性特性。 1、工作原理 设线圈长度为l 、线圈的平均半径为r 、线圈的匝数为N 、衔铁进入线圈的长度la 、衔铁的半径为ra 、铁心的有效磁导率为μm ,则线圈的电感量L 与衔铁进入线圈的长度la 的关系可表示为 [] 2222 2)1(4a a m r l lr l N L -+=μπ

粮仓智能传感器设计

用于粮仓领域的智能温度传感器的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入, 同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应 根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 系统以AT89C51 单片机为控制核心,利用新型一线制温度传感器DS18B20 测量温度值,实现粮仓环境温度的检测和报警。本文给出了由AT89C51 单片机和 DS18B20 构成的单总线温度测量系统的硬件电路及软件流程图。该系统具有测点多、精度高、速度快、稳定性好、报警及时等特点,也可应用于其它相关的温度控制系统,通用性较强。 关键词:一线总线;DS18B20;AT89C51;数字温度传感器 Abstract:The system for the control of the core is AT89C51,the temperature sensors DS18B20 is used to measure temperature and this system can realize ambient temperature measurement and alarm. This article introduces the hardware circuit which the software flow chart constitutes by AT89C51 monolithic integrated circuit and DS18B20. This system has many measuring point, high-precision, wide range of temperature monitoring, good stability and alarms timely, it may also be applied in other related temperature control system and the versatility is strong. Keywords:1-Wire TM;DS18B20;AT89C51;Digit Temperature Densor

传感器技术课程设计(应变式测力仪)

成绩评定: 传感器技术 课程设计 题目应变式测力仪 院系电子工程学院 专业 姓名 年级电 指导教师蔡苗苗 2014年 11 月

摘要 电阻应变式传感器具有灵敏度和精度高,性能稳定、可靠、尺寸小,重量轻、结构简单、使用方便、测量速度快等优点,且能在恶劣的环境下工作,在力、压力和重力要测试中有非常广泛的应用。所以电阻应变式力传感器制作的电子称具有准确度高,易于制作,简单实用、成本低廉、体积小巧、携带方便等特点。 对于电阻应变片式测力传感器(以下简称“测力传感器”)来说,弹性体的结构外形与相关尺寸对测力传感器性能的影响极大。可以说,测力传感器的性能主要取决于其弹性体的外形及相关尺寸。假如测力传感器的弹性体设计不公道,无论弹性体的加工精度多高、粘贴的电阻应变片的品质多好,测力传感器都难以达到较高的测力性能。因此,在测力传感器的设计过程中,对弹性体进行公道的设计至关重要。 关键词:电阻应变片测力传感器精度灵敏度

目录 一、设计目的------------------------- 4 二、设计任务与要求--------------------- 4 2.1设计任务------------------------- 4 2.2设计要求------------------------- 4 三、设计步骤及原理分析 ----------------- 5 3.1设计方法------------------------- 5 3.2设计步骤------------------------- 6 3.3设计原理分析---------------------- 7 四、课程设计小结与体会 ----------------- 9 五、参考文献-------------------------- 9

pf20系列压力传感器手册

efector 500电子压力传感器操作说明

1显示屏菜单结构P.3 (图) 2编程P.4 1.选择参数; 2.设定数值*; 3.参数值确定。 * 当参数调至最大设定值,继续调整参数值将从最小的设定值重新开始循环。在设置开关点(SPx,rPx)或模拟输出信号(ASP,AEP)的限制之前选定显示单位,这将避免单位转换中舍入误差的发生,得到更精确的设定值。 3安全提示 ●安装之前请阅读产品说明; ●请检查该产品是否适合你的使用; ●用户如未遵循本手册的操作说明或技术数据进行操作,可能发生 人身伤害或财产损失; ●在所有应用中,请检查本产品的材料(参看技术数据)是否适用 于所测量的物质。 4控制和显示说明 (图)P.20 5功能及特性 ●该压力传感器检测系统压力;

● 显示屏指示当前系统压力; ● 5.1 程序设定 通过设定各类参数,所测信号的赋值是不同的,可应用于各自不同的应用。(见9、11.1节) 5.2 EHEDG 3A 部件已通过EHEDG 和3A 认证。 5.3 应用 1)如显示到负值小数点后两位,小数点前的0不会显示。如:-0.05显示为-.05 不同显示单位的标示方式封装与设备中,选取传感器上各自的标示或填入空白的标示。 勿使静态或动态的过压超过给定的过载压力。 任何高于爆破压力的瞬时压力都会损伤设备(损伤危险)!

6操作模式 6.1 运行模式(Run mode) 正常操作模式。 当所需电压已经提供时,设备处于运行模式。根据设定参数监视并产生输出信号。 显示屏指示当前系统压力(见11.1节)。 红色发光二极管指示输出的状态切换。 6.2 显示模式(Display mode) 参数指示和参数值设定。 按下Mode/Enter按键,设备进入可以读取参数值的显示模式。此时内部的传感、处理和输出功能仍然继续进行。 ●用Mode/Enter按键选取需要设定的参数; ●按下Set按键,相应的参数值会显示15秒。再经过15秒设备返回运行模式。 6.3 编程模式(Programming mode) 参数值的设定。 看见参数值时,按住Set键5秒以上,设备进入编程模式。Set键改变参数值,按下Mode/Enter键确定新的参数值。该模式期间设备仍将按之前的参数继续进行感应、处理和输出计算,直到新的参数值确定。如果15秒内未按下任何按键,设备将返回运行模式。 7安装 装配和拆除传感器时,确定系统没有承受压力。 7.1 工艺适配器 该设备可采用单独购买的ifm适配器作为其附件。 首先将适配器(C)安装到传感器上,然后传感器+适配器通过螺母、钳位法兰或其他类似原件(B)装上工艺连接件。 (图)P.23

传感器设计和计算题

设计题(20分,每个10分) 1.依据已学知识设计一光纤位移传感器(要求画出框架图,并解释位移与输出信号的关系) 2.依据已学知识设计一种加速度传感器(要求画出结构图并注明所用的敏感元件) 3.用所学知识设计出一种压力传感器,说明他的工作原理? P103 图4.10 光纤测压传感器或者P151 图6.26 对中套管 光纤 厚的膜片 0.254 mm 膜片管 2 . 7 6 9 3 . 9 3 7 4 . 8 2 6 4.光纤干涉仪有较高的灵敏度,具有非常大的动态范围等优势。利用集成

电路技术和目前的电光技术起来,请画出集成的迈克尔逊(Michelson)干涉仪,并写出具体部件。 激光器光探测器3 dB耦合器 反射的光纤端面 换能器 5.依据已学知识设计一硒蒸发膜湿度传感器(标明电极) 图见书本P187 页 6.用热释电传感器设计一个热释电报警器? 7.CCD图像传感器的工作原理? 8.依据已学知识设计一容器内液体重量传感器 9.依据已学知识设计一种热释电传感器(要求画出结构图并注明所用的敏感元件)

10. 画出你所认知的一种光电式传感器,要求注明结构 如图是光电管 11. 设计微弯光纤传感器104页 12. 依据已学知识设计一种筒式压力传感器(要求画出结构图并注明所用的敏感元件) 13. 依据已学知识设计一应变式感器(要求画出结构图并注明所用的敏感元件) 补偿片 工作片

应变电阻1和4沉积在杆的凹面处 应变电阻2和3沉积在杆的凸面处 14.依据已学知识,设计一个用差动变压式加速度传感器来测量某测试台平台振动的加速度(只画出原理图) 15.依据所学知识,设计一种实现自相关检测传感器(只画出原理图) 16.依据已学知识设计一种零差法检测的光纤相位传感器(要求只画出框架图)

半导体传感器应用电路设计

东北石油大学 课程设计 2012年6 月25

任务书 课程传感器课程设计 题目半导体传感器应用电路设计 专业测控技术与仪器姓名学号 主要内容: 利用温度传感器和热电偶设计制作一个温度测量系统。参考利用半导体温度传感器AD590和单片机技术设计制作一个显示室温的数字温度计的设计提示与分析。进一步了解有关温度传感器的工作原理,制定设计方案,确定温度传感器的型号等参数,掌握温度的检测方法。 基本要求: 1、详细了解所选用的温度传感器的工作原理,工作特性等 2、设计合理的信号调理电路,并列出制作该装置的元器件。 主要参考资料: [1]刘爱华,满宝元.传感器原理与应用技术[M].北京:人民邮电出版社,2006.45-48. [2]王雪文,张志勇.传感器原理及应用[M].北京:航空大学出版社,2004.27-34. [3]张福学.现代实用传感器电路[M].北京:中国计量出版社,1997.16-24. [4]缪家鼎,徐文娟,牟同升.光电技术[M].杭州:浙江大学出版社,1987.22-27. 完成期限2012.6.25—2012.6.29 指导教师 专业负责人 2012年6 月25 日

摘要 传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。利用半导体温度传感器AD590 设计制作一个温度测量系统,AD590是一种集成温度传感器,其实质是一种半导体集成电路。集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。 关键词:关键词传感器;半导体;温度传感器;AD590

传感器技术课程设计(应变式测力仪)

WOIRD格式 成绩评定: 传感器技术 课程设计 题目应变式测力仪 院系电子工程学院 专业 姓名 年级电 指导教师蔡苗苗 2014年11月

摘要 电阻应变式传感器具有灵敏度和精度高,性能稳定、可靠、尺寸小,重量轻、结构简单、使用方便、测量速度快等优点,且 能在恶劣的环境下工作,在力、压力和重力要测试中有非常广泛 的应用。所以电阻应变式力传感器制作的电子称具有准确度高, 易于制作,简单实用、成本低廉、体积小巧、携带方便等特点。 对于电阻应变片式测力传感器(以下简称“测力传感器”)来说,弹性体的结构外形与相关尺寸对测力传感器性能的影响极 大。可以说,测力传感器的性能主要取决于其弹性体的外形及相 关尺寸。假如测力传感器的弹性体设计不公道,无论弹性体的加 工精度多高、粘贴的电阻应变片的品质多好,测力传感器都难以 达到较高的测力性能。因此,在测力传感器的设计过程中,对弹 性体进行公道的设计至关重要。 关键词:电阻应变片测力传感器精度灵敏度

目录 一、设计目的-------------------------4 二、设计任务与要求---------------------4 2.1设计任务-------------------------4 2.2设计要求-------------------------4 三、设计步骤及原理分析-----------------5 3.1设计方法-------------------------5 3.2设计步骤-------------------------6 3.3设计原理分析----------------------7 四、课程设计小结与体会-----------------9 五、参考文献--------------------------9

相关文档
最新文档