CKD缓冲器选型指南

CKD缓冲器选型指南
CKD缓冲器选型指南

488

RRC

GRC

RV 489

490

491

492

493

压力变送器选型标准

压力变送器选型标准 一、变送器要测量什么样的压力 先确定系统中测量压力的最大值,一般而言需要选择一个具有比最大值还要大1.5倍左右的压力量程的变送器。这主要是在许多系统中,尤其是水压测量和加工处理中,有峰值和持续不规则的上下波动,这种瞬间的峰值能破坏压力传感器。持续的高压力值或稍微超出变送器的标定最大值会缩短传感器的寿命,这样做还会使精度下降。于是可以用一个缓冲器来降低压力毛刺,但这样会降低传感器的响应速度。所以在选择变送器时要充分考虑压力范围、精度与其稳定性。 二、什么样的压力介质 黏性液体、泥浆会堵上压力接口,溶剂或有腐蚀性的物质会不会破坏变送器中与这些介质直接接触的材料。以上这些因素将决定是否选择直接的隔离膜及直接与介质接触的材料。 三、变送器需要多大的精度 决定精度的有,非线性,迟滞性,非重复性,温度、零点偏置刻度,温度的影响。但主要由非线性,迟滞性,非重复性,精度越高,价格也就越高。 四、变送器的温度范围 通常一个变送器会标定两个温确段,其中一个温度段是正常工作温度,另外一个是温度补偿范围,正常工作温度范围是指变送器在工作状态下不被破坏的时候的温度范围,在超出温度补偿范围时可能会达不到其应用的性能指标。 温度补偿范围是一个比工作温度范围小的典型范围。在这个范围内工作变送器肯定会达到其应有的性能指标。温度变从两方面影响着其输出,一是零点漂移,二是影响满量程输出。如:满量程的+/-X%/℃,读数的+/-X%/℃,在超出温度范围时满量程的+/-X%,在温度补偿范围内时读数的+/-X%,如果没有这些参数,会导至在使用中的不确定性。变送器输出的变化到度是由压力变化引起的,还是由温度变化引起的。温度影响是了解如何使用变送器时最复杂的一部分。 五、需要得到怎样的输出信号 mV、V、mA及频率输出数字输出,选择怎样的输出取决于多种因素,包括变送器与系统控制器或显示器间的距离,是否存在“噪声”或其他电子干扰信号,是否需要放大器,放大器的位置等。对于许多变送器和控制器间距离较短的OEM设备采用mA输出的变送器最为经济而有效的解决方法。 如果需要将输出信号放大,最好采用具有内置放大的变送器。对于远距离传输或存在

为高速ADC选择最佳的缓冲放大器

为高速ADC选择最佳的缓冲放大器 现代通信系统创新设计主要表现在直接变频和高中频架构,全数字接收机的设计目标要求模数转换器(ADC)以更高的采样率提供更高的分辨率(扩大系统的动态范围)。在新兴的3G 和4G数字无线通信系统中,无杂散动态范围(SFDR)和线性度都需要高性能的ADC来保证。幸运的是,在接收信号链路中,ADC的前级增益电路—缓冲放大器的性能在最近几年得到了极大提高,有助于ADC确保满足现代无线通信系统的带宽和失真要求。但是,缓冲放大器和ADC之间的匹配要求非常严格,深刻理解缓冲放大器对ADC性能指标的影响非常重要。 长期以来,得到无线通信系统设计工程师认可的理想数字接收机的信号链路是:天线、滤波器、低噪声放大器(LNA)、ADC、数字解调和信号处理电路。虽然实现这个理想的数字接收机架构还要若干年的时间,但用于射频前端的ADC的性能越来越高,通信接收机正逐渐消除频率变换电路。从发展趋势看,接收机的一些中间处理级会被逐步消除掉,但ADC前端的缓冲放大级却是接收机中相当重要的环节,它是保证ADC达到预期指标的关键。信号链路的缓冲放大器是包括混频器、滤波器及其它放大器的功能模块的一部分,它必须作为一个独 立器件考察其噪声系数、增益和截点指标。给一个既定的ADC选择合适的缓冲放大器,可以在不牺牲总的无杂散动态范围的前提下改善接收机的灵敏度。 定义动态范围 接收灵敏度是系统动态范围的一部分,它定义为能够使接收机成功恢复发射信息的最小接收信号电平,动态范围的上限是系统可以处理的最大信号,通常由三阶截点(IP3)决定,对应于接收机前端出现过载或饱和而进入限幅状态的工作点。当然,动态范围也需要折衷考虑,较高的灵敏度要求低噪声系数和高增益。然而,具有30dB或者更高增益、噪声系数低于2dB 的LNA其三阶截点会受到限制,常常只有+10到+15dBm。由此可见,高灵敏度的放大器有可能在接收前端信号处理链路中成为阻塞强信号的瓶颈。在接收机的前端加入ADC后,对动态范围的折衷处理变得更加复杂。引入具有数字控制的新型线性放大器作为缓冲器,能够在扩展动态范围的同时提高接收机的整体性能。 为了理解缓冲放大器在高速ADC中的作用,我们需要了解一下每个部件的基本参数及其对接收机性能的影响。传统的接收机前端一般采用多级变频,将来自天线的高频信号解调到中频,然后再作进一步处理。通常,信号链路会将射频输入转换到第一中频的70MHz或140MHz,然后再转换到第二中频的10MHz,甚至进一步转换至第三中频的455kHz。这种多级变频的超外差接收机架构的应用仍然很广泛,但考虑到现代通信系统所面临的降低成本、缩小尺寸的压力,设计工程师不得不尽一切可能去除中间变频电路。长期以来,军品设计工程师也一直都在探索实现全数字化接收机的解决方案,用ADC直接数字化来自天线和滤波器组的射频信号。 近几年,ADC的性能指标得到了飞速提高,但还没有达到可以支持全数字化军用接收机的水平。尽管如此,商用接收机的设计已经从三级或更多级的变频架构简化到一次变频架构。减少频率变换级意味着ADC输入将是较高中频的信号,需要ADC和缓冲放大器具有更宽的频带。对ADC分辨率的要求取决于具体的接收机,对于一些军用设备,例如有源接收机,10位分辨率即可满足要求。对于当前和正在兴起的商用通信接收机,比如3G、4G蜂窝系统,为了降低经过复杂的相位和幅度调制的波形的量化误差,需要ADC具有更高的分辨率。对于多载波接收机,通常需要14位甚至更高的分辨率,同时也要足够的带宽来处理整个中频频带的信号。 如果一个接收机架构已具备高速、高分辨率ADC,那么关系到灵敏度和动态范围的其它关键参数是什么呢?ADC常用SFDR作为其关键指标,SFDR定义为输入信号的基波幅度与指定

缓冲区分析

1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。 图2 线状缓冲区信息设置1

图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置 2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。

具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图 (3)从娱乐场所数据“Rec_sites”提取娱乐场所欧氏距离数据集: 打开工具箱→“Spatial Analyst 工具”→“距离分析”→“欧氏距离”工具;在打开对话框中设置,如图7所示;生成欧氏距离数据集,如图8所示。

气缸选型对照表

气缸的选型 根据气缸推力拉力的大小要求,选定气缸使用压力参数以及缸径尺寸 气缸推力计算公式:气缸推力F1=πD2P 气缸拉力计算公式F2=π(D2-d2)P 公式式中:D-气缸活塞直径(cm) d-气缸活塞杆直径(cm) P-气缸的工作压力(kgf/cm2) F1,F2-气缸的理论推拉力(kgf) 上述出力计算适用于气缸速度50~500mm/s的范围内 气缸以上下垂直形式安装使用,向上的推力约为理论计算推力的50% 气缸横向水平使用时,考虑惯性因素,实际出力与理论出力基本相等 为了避免用户选用时的有关计算,下附双作用气缸输出力换算表,用户可根据负载、工作压力、动作方向从表格中选择合适的缸径尺寸 双作用气缸输出力表单位Kgf 缸径mm 气缸的理论输出力(推力)单位:KG/公斤 使用空气压力MPa 10 16 20 25 32 40

50117137157 63125156187218250 80100151201251300352402 100157236314393471550628 125245368491615736859982 1604026038041005120614071608 18050876310181272152717812036 20062894212571571188521992514 250981147319632454294534363926 3201608241232164021482556296432 40025313796502662837539879610052 选定气缸的行程:确定工作的移动距离,考虑工况可选择满行程或预留行程。当行程超过推荐的最长行程时,要考虑活塞杆的刚度,可以选择支撑导向或选择特殊气缸。 选定气缸缓冲方式:根据需要选择缓冲形式,无缓冲气缸,固定缓冲气缸,可调缓冲气缸 选择润滑方式:有给油润滑气缸,无给油润滑气缸 选择气缸系列:根据以上条件,按需选择适当系列的气缸 选择气缸的安装形式:根据不同的用途和安装需要,选用适当的安装形式 气缸附件的选择:前(后)法兰,脚架,单(双)悬耳,中间铰轴式,铰轴支座式

汽缸密封脂选用指南

汽缸密封脂选用指南 【摘要】采用博科斯汽缸密封脂针对汽轮机汽缸中分面进行密封;对汽轮机密封失效原因和现场修复的优势进行了分析; 【关键词】汽缸密封脂、汽缸密封剂、气缸中分面密封、高温密封脂、博科斯高温密封剂 一、汽缸密封脂国内现状 汽缸密封脂是用于火力发电厂汽轮机汽缸结合面的密封剂。汽轮机的汽缸结合面是曲线形缸面,密封面积很大,密封性能要求很严格,为减少热损失,要求接近于零泄漏。超高压机组最大压差为13.24MPa ,温度540℃,密封脂必须在这种工况下长期运行、性能稳定,无任何形式的破坏造成泄漏,并且能在大修时易于清除。密封脂是由两部分组成的,即油脂和固体密封粉料,国内过去无定型产品,最早由用户自行熬制。为保证使用质量,提高涂料技术性能,近期国内不少厂家纷纷研制汽轮机汽缸中分面密封脂,在吸收国外同类产品的优点和进行大量试验研究的基础上,研制出了多种汽缸密封脂,其技术性能有所创新。但与国外同类产品相比仍有较大差距,其主要缺点为油脂耐温低、易固化粘附,造成密封过程中耐温差、易粘附于缸面,难以清除等缺陷,另外,还有保质期较短等缺点。 二、博科斯汽缸密封脂 博科思汽缸密封脂是一种单组份、膏状密 封剂,用于极端温度及压力环境的优质密封混合 物。博科斯普通型产品适用于对光滑、平整密封 面(对接接头)的温度和压力情况要求高的工况。 博科思高温F 系列产品是一种高质量、单组份的膏状密封材料。处理因气缸变形(包括内张口、外张口)、水槽状腐蚀或侵蚀损坏(孔洞)、铸造缺陷、划伤、划痕、磕碰等原因造成的间隙对密封剂的质量有着非常高的要求。使用F 系列产品意味着不再需要昂贵的机械预处理,可以作为修复上述工况时的首选方案。 博科斯汽缸密封脂,在世界一流实验室中研发, 并经过了几十年实际应用检

提升系统选型计算

提升系统选型及验算方法 一、提升井架 井筒利用矿建用凿井井架施工,凿井井架必须能承载井筒装备安装施工荷载,且其天轮平台满足提升悬吊天轮布置的要求。必要时可采用永久井架施工。 二、提升机 井筒装备安装用的提升机,应根据井筒安装的提升方式及提升量进行选择。必要时可采用矿永久提升机施工。列出提升机技术参数表(表3.4.3)。 三、提升系统选型验算 根据矿建所用提升机或矿永久提升机进行提升能力验算。 (1)、提升绞车凿井提升计算 ①滚筒直径(D) D≥60ds D≥900δ 式中:ds—钢丝绳直径,mm;δ—钢丝绳最粗钢丝直径,mm; ②选定提升机型号 DT≥D DT—所选提升机的滚筒直径,Mm; ③校验滚筒宽度 B={[(H0+30)/3.14DT]+3}(ds+ε)≤BT 式中:30—钢丝绳试验长度,m; DT—提升机名义直径,mm ; 3—摩擦圈数; BT—提升机滚筒宽度,mm; ε—钢丝绳绳圈间隙,取2~3mm ; ④计算提升高度H0=H1+H2+H3+H4,m。 其中:H1—井筒深度,m H2—井架高度,m H3—提升天轮半径,m H4—提升天轮梁高度,取0.75m ⑤设计选用多层股不旋转钢丝绳作为提升绳,绳重Ps= kg/m,钢丝绳最小破断拉力Q断为kg,配提升钩头,提升钩头应与提升荷载配套。

⑥提升容器自重: 吊桶:Q Z=G1+ G2+ G3+ G4; 其中:G1—吊桶重量,kg G2—钩头重量,kg G3—滑架重量,kg G4—滑架缓冲器重量,kg ⑦提升载荷: Q=最大提升重量,kg; Q绳:提升钢丝绳重:提升高度绳重,kg ⑧提升钢丝绳静张力: Q总= Q + Q绳,kg; 其中: Q—最大提升重量,kg Q绳—提升高度的钢丝绳重量,kg 提升人员时:Q 人总 = Q Z +n Q人+ Q绳,kg 其中:Q1—提升容器总重量,kg Q人—吊桶乘人总重量,取75kg/人 Q绳—提升高度的钢丝绳重量,kg n—吊桶乘人数,根据吊桶容积确定 以上计算的钢丝绳静张力Q 总 应小于绞车最大静张力差,可以满足使用。 ⑨以最大静张力验算提升绳安全系数Ma: 提料:Ma=Q 断/Q 总 >7.5,提人:Ma= Q 断 / Q 人总 >9,满足要求。 ⑩电机功率验算: P o=Q o V=Q o WπD/(102×η×60×i)<绞车电机额定功率 结论:该提升绞车挂吊桶、重物提升到合理位置;实际施工时,绞车实际电流不得超过额定电流,确保提升安全。 (11)提升偏角验算 滚筒中心与天轮中心距离L(不超过60m),钢丝绳距提升中心线的最大偏移量为B。 钢丝绳最大偏角α=arctg(B/L)= °<1.5°,满足要求。 (12)提升过卷高度验算(以最大长度的吊物为例) 绞车最大绳速为m/s。 h4=H-(h1+h2+h3+0.5R) m, 式中:H—为井架高度即井口水平到天轮平台的距离,m

计量泵的选型参数

计量泵的选型参数 恰当地选择计量泵都需要哪些信息? 1. 被计量液体的流量。 2. 被计量液体的主要特性,例如化学腐蚀性、黏度和比重等。 3. 系统的背压。 4. 合适的吸升高度。 5. 需要的其他选项,如模拟量控制、脉冲量控制、流量监视和定时器。 电磁驱动计量泵有哪些主要优势? 电磁驱动计量泵只有一个运动部件—电枢轴。通常来讲,运动部件越少则计量泵工作越可靠。计量泵非常适合于低流量、低压力工作场合,并且在供电电压波动时有良好的补偿作用。 与固定频率、改变冲程长度的计量泵相比较,固定冲程长度、改变频率的计量泵有哪些优势? 通过校正,每一个冲程的投加量是已知的。因此总的投加量可以通过计算得出(投加量=每冲程投加量*频率)。总投加量与频率成线性关系(50 % 频率 = 50 % 投加量) 。通过外部的脉冲或模拟量控制,投加量可以在一秒钟之内从最小调到最大。另外它比电机驱动的冲程长度调节成本要低的多。 如何使用计量泵的性能曲线图? 1. 找到与所选用的计量泵相应的性能曲线图。 2. 在下面的图表中标示出当前的背压。 3. 确定修正因数,取以bar为单位的背压值,向上延伸至曲线,在交叉点垂直向左读取修正因数值。 4. 用需要的投加量值除以修正因数值,得出以 ml/min.或 L/h为单位的值。 5. 把计算结果放在投加量刻度的中间。 6. 当把这个值放在投加量刻度上时,可以使用一把直尺,查找出冲程长度设定和冲程频率设定。

计量泵的基本工作原理 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 1、柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2、隔膜式计量泵 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。 作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 计量泵配件的基本知识

三态缓冲器 74系列芯片的型号区别与功能略表

三态缓冲器 74系列芯片的型号区别与功能略表 74系列集成电路大致可分为6大类: .74××(法式型); .74LS××(低功耗肖特基); .74S××(肖特基); .74ALS××(进步前辈低功耗肖特基); .74AS××(进步前辈肖特基); .74F××(高速)。 近年来还出现了高速CMOS电路的74系列,事实上芯片。该系列可分为3大类: .HC为COMS电平; .HCT为TTL电平,可与74LS系列互换行使; .HCU适用于无缓冲级的CMOS电路。 这9种74系列产品,只消后边的标号雷同,其逻辑功效和管脚摆列就雷同。依据不同的条件和不同类型的74系列产 品,例如电路的供电电压为3V就应拣选74HC系列的产品 系列电平典型传输耽误ns 最大驱动电流(-Ioh/Lol)mA AHC CMOS 8.5 -8/8 AHCT COMS/TTL 8.5 -8/8 HC COMS 25 -8/8 HCT COMS/TTL 25 -8/8 ACT COMS/TTL 10 -24/24 F TTL 6.5 -15/64 ALS TTL 10 -15/64 LS TTL 18 -15/24 注:同型号的74系列、74HC系列、74LS系列芯片,逻辑功效上是一样的。 74LSxx的行使证据倘使找不到的话,可参阅74xx或74HCxx的行使证据。 有些原料里蕴涵了几种芯片,如74HC161原料里蕴涵了74HC160、74HC161、74HC162、74HC163四种芯片的原料。找不到某种芯 片的原料时,可试着观察一下临近型号的芯片原料。 74HC的速度比4000系列快,引脚与法式74系列兼容 4000系列的优点是有的型号可就业在+15V 。新产品最好不消LS。 功效略表 74HC01 2输入四与非门 (oc) 74HC02 2输入四或非门 74HC03 2输入四与非门 (oc) 74HC04 六倒相器

气缸选型步骤及技巧

气缸选型步骤 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、气缸型号分类 (1)从动作上分为单作用和双作用,结构示意图如图所示,前者又分弹簧压回和压出两种,一般用于行程短、对输出力和运动速度要求不高的场合(价格低、耗能少),双作用气缸则更广泛应用。(注:不要把单双作用气缸跟带还是不带磁环气缸等同了) (2)从功能上来分(比较贴合设计情况),类型较多,如标准气缸、复合型气缸、特殊气缸、摆动气缸、气爪等,其中比较常用的为自由安装型气缸、薄型气缸、笔形气缸、双杆气缸、滑台气缸、无杆气缸、旋转气缸、夹爪气缸等,如图所示,大家只要了解各种气缸大致特性和对应型号,要用时调(标准件图纸)出来即可! 基于对气缸在动力特性或空间布局方面的应用特长,我们在实际选用气缸时,首先是确定一个合适的类别从三面考虑:功能要求、空间要求,精度要求。 气缸型号、气缸种类、气缸规格、最全面的气缸大全选型介绍与分析 ●节省空间 指气缸的轴向或径向尺寸比标准气缸的较大或较小的气缸,具有结构紧凑、重量轻、占用空间小等优点,比如薄型气缸(如SDA系列,缸径=Φ12mm~Φ100mm,行程≤100mm)和自由安装型气缸(如CU系列,缸径=Φ6mm~Φ32mm,行程≤100mm),如图所示:

广泛应用的气缸具有节省空间特长的还有无杆气缸,形象地说,有杆气缸的安装空间约2.2倍行程的话,无杆气缸可以缩减到约1.2倍行程,一般需要和导引机构配套,定位精度也比较高。 磁偶式无杆气缸:活塞两侧受压面积相等,具有同样的推力,有利于提高定位精度,适合长行程,重量轻、结构简单、占用空间小,如图所示 机械式无杆气缸:“有较大的承载能力和抗力矩能力,适用缸径Φ10mm~Φ80mm,此外,同样希望节省空间兼顾导向精度要求时,往往会用到双杆气缸(相当于两个单杆气缸并联成一体)。 ●精度要求 一般采用滑台气缸(将滑台与气缸紧凑组合的一体化的气动组件),也有各种细分的类型,工件可安装在滑台上,通过气缸推动滑台运动,适用于精密组装、定位、传送工件等。 ●摆动/旋转运动 遇到需要摆动或转动的场合,一般采用旋转气缸,主要有以下几类: 叶片式旋转缸:用内部止动块或外部挡块来改变其摆动角度。止动块于缸体固定在一起,叶片于转轴连在一起。气压作用在叶片上,带动转轴回转,并输出力矩。叶片式摆缸由单片式和双片式。双片式的输出力矩比单片式大一倍,但转角小于180度。 齿轮式旋转缸:气压力推动活塞带动齿条作直线运动,齿条推动齿轮作回转运动,由齿轮轴输出力矩并带动外负载摆动。齿轮齿条式摆缸有CRJ、CRJU(缸大小代号0.5、1mm),CRA1(缸径30~100mm标准型)、CRQ2(缸径10~40mm薄型)、MSQ(缸径10~200mm 摆动平台)系列可供选择。 转角下压气缸:也称回转夹紧气缸,旋转到一定角度后下压夹紧 ●夹持/固定产品

起重机用聚氨酯缓冲器型号

JHQ-A型聚氨酯缓冲器: 序号型号 D mm H mm M mm h mm 缓冲容量 KN.m 缓冲行程 mm 缓冲力 KN 1JHQ-A-1658016350.57347.0526.47 2JHQ-A-2808016350.4006042 3JHQ-A-38010016350.5027542 4JHQ-A-41008016350.6286066 5JHQ-A-510010016350.7857566 6JHQ-A-610012516350.9809466 7JHQ-A-71251001635 1.22775103 8JHQ-A-81251251635 1.53394103 9JHQ-A-91251601635 1.960720169 10JHQ-A-101601251635 2.51294169 11JHQ-A-111601601635 3.215120169 12JHQ-A-121602001635 4.019150265 13JHQ-A-132001602045 5.024120265 14JHQ-A-142002002045 6.280150265 15JHQ-A-1520025020457.850188265 16JHQ-A-1625020020459.810150414 17JHQ-A-17250250204512.266188414 18JHQ-A-18250320204515.700240414 19JHQ-A-19320250204520.096188675 20JHQ-A-20320320204525.732240675

JHQ-C型聚氨酯缓冲器: 序号型号D H B b缓冲容量缓冲行程缓冲力 mm KN.m mm KN 1JHQ-C-16580100700.2656028 2JHQ-C-28080115850.46042 3JHQ-C-380100115850.5027542 4JHQ-C-4100801301000.6286066 5JHQ-C-51001001301000.7857566 6JHQ-C-61001251301000.989042 7JHQ-C-7125100165130 1.22275103 8JHQ-C-8125125165130 1.53394103 9JHQ-C-9125160165130 1.96120103 10JHQ-C-10160125200160 2.51294169 11JHQ-C-11160160200160 3.215120169 12JHQ-C-12160200200160 4.019150169 13JHQ-C-13200160250200 5.024120265 14JHQ-C-14200200250200 6.28150265 15JHQ-C-152002502502007.85188265 16JHQ-C-162502003202509.81240414 17JHQ-C-1725025032025012.266188414 18JHQ-C-1825032032025015.7240414 19JHQ-C-1932025040031520.096188675 20JHQ-C-2032032040031525.723240675 21JHQ-C-2132040040031532.154300675

液压缓冲器型号

型号 D1 (mm) D (mm) L (mm) B1 (mm) B (mm) T (mm) n_Ф (mm) 缓冲 容量 (KN.m) 缓冲 行程 (mm) 缓冲 力(KN) 总量 (kg) HYD2-50835327080110144-1425040 6.4 HYD2-6012762280125160164-14 2.5604512 HYD4-509566280100130164-18450 809.5 HYD4-9012762355125160164-144904513 HYD6-8015980360155200204-18 5.680 7022 HYD7-10011466410100130204-1871007014 HYD8-11015980440155200204-1881107525 HYD10-7013380367130170204-21107014019 HYD10-200140110710170220254-21102005041 HYD12-90203100430195250254-2112.59014046 HYD14-80180125360170220224-26148017533 HYD14-12013380537130170204-251412012024 HYD17-100168100515170220254-251710017039 HYD18-6013356440125170304-25186030030 HYD18-120203100520195250254-251812015050 HYD20-250168125856200260304-28202508067 HYD25-130245125580230285304-252513020080 HYD26-80180122400170220224-25268032541

费斯托气缸选型手册

神威气动https://www.360docs.net/doc/4d4649833.html, 文档标题:费斯托气缸选型手册 费斯托气缸选型手册的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、

电梯1350kg梯速1.75设计计算

设计计算书TKJ(1350/1.75-JXW)

目录 1设计的目的 2 主要技术参数 3电机功率的计算 4电梯运行速度的计算 5电梯曳引能力的计算 6悬挂绳或链安全系数计算 7绳头组合的验算 8轿厢及对重导轨强度和变形计算 9轿厢架的受力强度和刚度的计算 10搁机梁受力强度和刚度的计算 11安全钳的选型计算 12限速器的选型计算与限速器绳的计算 13缓冲器的选型计算 14轿厢和门系统计算说明 15井道顶层和底坑空间的计算 16轿厢上行超速保护装置的选型计算 17盘车力的计算 18操作维修区域的空间计算 19电气选型计算 20机械防护的设计和说明 21主要参考文献

1设计的目的 TKJ(1350/1.75-JXW-VVVF)型客梯,是一种集选控制的、交流调频调压调速的乘客电梯,额定载重1350Kg,额定运行速度1.75m/s。本客梯采用先进的永磁同步无齿轮曳引机进行驱动,曳引比为2:1,绕绳方式为单绕,采用2导轨结构,用一个主轿架承受轿厢,在曳引绳的牵动下沿着2根主导轨上下运行,以达到垂直运输乘客和医疗设备的目的。 本客梯的轿厢内净尺寸为宽2100mm*深1600mm,内净面积为 3.36M2,完全符合GB7588-2003《电梯制造与安装安全规范》的要求。 本计算书按照GB7588-2003《电梯制造与安装安全规范》的要求进行计算,以验证设计是否满足GB7588-2003标准和型式试验细则的要求。 本计算书验算的电梯为本公司标准的1350kg乘客电梯,主要参数如下: 额定速度1.75m/s额定载重量1350kg 提升高度43.5m 层站数15层15站 轿厢内净尺寸2100mm*1600mm 开门尺寸1100mm*2100mm 开门方式为中分式 本电梯对以下主要部件进行计算: (一)曳引机、承重部分和运载部分 曳引机永磁同步无齿轮曳引机,GETM6.0H型,15 Kw,绕绳比2:1,单绕,曳引轮节径450 mm,速度1.75m/s 搁机大梁主梁25#工字钢 轿厢2100mm*1600mm,2导轨 钢丝绳7-φ10,2∶1曳引方式 导轨轿厢主导轨T89/B (二)安全部件计算及声明 安全钳渐进式AQ11B型,总容许质量3500kg,额定速度1.75m/s 限速器LOG03型,额定速度1.75m/s 缓冲器YH68-210型油压缓冲器,额定速度1.0~1.75m/s,总容许质量800-3500 kg,行程210 mm,总高675mm 2主要技术参数

液压缓冲器的选型

液压缓冲器的选型㈠应用数据 F终值为

㈡撞击模式 ①单纯的水平撞击 ②气缸推力下的水平撞击 ③自由落体撞击 ④气缸推力下向下的撞击 ①单纯的水平撞击(无推力) 步骤1:计算动能E1 计算 数值 E1单位 结果 4.0J(N.m) 步骤2:计算做工能量E2

计算 数值 E2 单位结果 0.0 J(N.m) 步骤3:计算每次做工能量E 计算 数值 E 单位结果 4.0 J(N.m) 步骤4:计算每小时吸收能量E T 计算 数值 E T 单位结果 400.0 J(N.m) 步骤5:有效重量W E 计算 数值 W E 单位结果 0.0 K g 4.0J 400.0J 0.0 kg 步骤6:选型 表如下: 的缓冲器 小时吸收能量大于 有效重量 根据计算结果应选单次吸收能量大于

②气缸推力下的水平撞击 步骤1:计算动能E1 计算 数值 E1单位 结果 4.0J(N.m)

步骤2:计算做工能量E2 计算 数值 E2单位 L的暂定值0.01m 结果0.5J(N.m)步骤3:计算每次做工能量E 计算 数值 E单位 结果 4.5J(N.m)步骤4:计算每小时吸收能量E T 计算 数值 E T单位 结果447.1J(N.m)步骤5:有效重量W E

计算 数值 W E单位 结果 2.2K g 次吸收能量大于 4.0J的缓冲器根据计算结果应选 小时吸收能量大于447.1J 有效重量 2.2kg ③自由落体撞击 步骤1:计算动能E1 计算 数值 E1单位 结果9.8J(N.m) 步骤2:计算做工能量E2 计算 数值 E2单位 结果0.2J(N.m) 步骤3:计算每次做工能量E 计算 数值 E单位 结果10.0J(N.m)

亚德客气缸选型手册

标题:亚德客气缸选型手册 亚德客是全球知名专业生产各类气动器材的大型企业集团,致力于向客户提供满足其需求的气动控制元件、气动执行元件、气源处理元件、气动辅助元件等各类气动器材、服务和解决方案,为客户创造长期的价值和潜在的增长。 亚德客始创于1988年,现辖三大生产基地和一家营销中心,亚德客生产基地厂房面积达37万8千平方米,全球员工总计超过4500人,专业研发技术人员300多人,亚德客气缸选型手册总投资1.5亿美元,年生产能力达5,000万件套,产品畅销中国、东南亚、欧美等国家和地区。 亚德客在中国大陆地区拥有近百家直销分公司/营业部,亚德客气缸选型手册在全球更是有数千家经销商,主要位于欧洲、美洲及亚洲,形成了完善的销售网络和售后服务体系,可随时为客户提供便捷的服务。

亚德客以拓展集团生产和服务为未来发展的战略目标,坚持走人本优先、改革创新和集团化道路。秉承“人本、共享、发展、责任”的企业核心价值观,亚德客始终如一地贯彻“以客为尊”的经营理念,始终如一地坚持“以技术创新为核心,亚德客气缸选型手册以市场需求为导向”的经营方针,藉以不断完善“建立共好、责任承担、赏罚分明、学习成长”的集团文化,努力奋斗,自强不息,长久致力于全球工业自动化的持续发展。 台湾亚德客工业股份有限公司(简称台亚)成立于1988年11月,前身系健良股份有限公司,1990年更名为台亚。早期的台亚主要生产电磁阀,此后亚德客气缸选型手册陆续研发生产气缸、气源处理等产品。目前,台亚产品以特殊规格气缸为主,拥有七大类十余系列数百个品种,年产量达到20万件套,主要供应台湾本地市场,满足客户需求及时效性。

美国ACE油压缓冲器

美国ACE油压缓冲器 深圳市佳泰鑫自动化设备有限公司内部培训资料: ACE工业气弹簧是免维护,易安装的。外径8mm~70mm,推力范围10~13000N。ACE气弹簧带有耐磨涂层的活塞杆大大提高了它的使用寿命,同时带油脂室的集成低摩擦轴承保证了非常低的阻力(GS-19~GS-40)。气弹簧可以安装在任何方向,不过,如果要利用内置末端阻尼的优势,最好采用活塞杆向下方式安装。可以根据您的具体要求通过气阀调节压力。多种可互换使用的末端安装附件使安装更加方便和灵活。ACE气弹簧广泛地应用在任何您需要升降的地方,取代了“肌肉力量”,为机盖、罩子、机器保护罩等提供可控的运动。我们可以为您的个性化需求快速选型和快速交货。 美国ACE Controls Inc.,世界减震技术的领导者,致力于为用户提供高性价比、世界一流的减震产品,以提升客户在国际市场的竞争力。ACE回转阻尼器:使产品获得平缓的机械运动,提升产品的品质及寿命。

有单向缓冲及双向缓冲。应用于计算机光驱、CD播放机进出仓、笔记本电脑开合、座椅调节、手机翻盖、卡式磁带盒等处。ACE气弹簧及油压阻尼器:提供一个与负载反向的平衡力。广泛应用汽车、纺织机械、建筑机械、医疗设备、健身器材等行业。 工业油压减震器作为液压机械的零部件,用最小的反作用力使移动负载停止运动。ACE吸震器采用了最前沿的创新技术,比如:活塞管,滚动隔膜密封技术等。因此ACE吸震器在吸收高能量的情况下具有最久的使用寿命。ACE工业油压吸震器操作简单,使用灵活,深受用户的好评和认可。 安全型吸震器,为紧急失控情况下的机器提供安全保护。在装置急停情况下,该系列产品能提供一种成本低但有效的方式为关键机械提供保护,特别是溢油孔的设计能在一个非常紧凑的空间提供非常高的缓冲性能,避免导致大的损坏和危险,典型应用如:龙门起重系统,自动传送

QDY50t×28.5m桥式起重机计算书

通用桥式起重机 (吊运熔融金属QDY50/10t×28.5m) 设计计算书 编制 审核

设计计算依据及采用标准 一.设计计算的依据为合同的技术规范 二.设计计算采用的标准为《GB3811-83》起重机设计规范

目录 一、小车部分的配套选型计算 二、大车部分的配套选型计算 三、桥架部分的主端梁结构强度、刚度计算 四、冶金起重机配置及校核计算说明

一、小车部分的配套选型计算 按合同技术规范:主要参数如下: 起重量:50/10t 起升高度:12/14m 速度:起升7.6/12.8m/min 小车运行43.5m/min 工作级别:主起升:M6 副起升、小车运行:M6 小车轨道型号:38kgf/m 主起升减速器采用中硬齿减速器,运行减速器采用立式减速器ZSC600,副起升采用ZQ500 50t吊钩采用单钩,50t吊钩组重1.527t,倍率m=5 10t吊钩组重量为0.24t, 倍率m=3 小车自重16.9t 小车采用四只φ500车轮 采用集中驱动 车轮材质为ZG55SiMn 制动器采用YWZ-500/90 小车轨距:2.5m 小车运行缓冲器:JHQ-C-7

1.主起升设计计算: 起重量:50t 工作级别:M6 起升静功率: Kw V G Q P j 7585 .06120106.7527.1506120(3 =???+=?+=)()吊钩η 选用 YZR315M-8 JC40% 90kw n=715r/min 合格 钢丝绳的最大工作拉力: kgf t m G Q S 6000685 .052527 .1502max ==??+= ??+= η 吊钩 按GB3811-83 M6 工作级别 钢丝绳的安全系数6≥k ,钢丝绳计算选用的最小破断拉力:kgf t S K p 40000)(409 .06 69.0max max ==?=?= 选用6W (19)+IWR-24-170 钢丝绳 许用破断拉力为[]kgf p 40800= 实际钢丝绳的安全系数[]12.66 9.08.409.0max =?=?= S p k 合格. 选用φ880x2000卷筒 传动速比:68.486 .75824 .07150=???=???= ππV m D n i 选用ZQ1000-50-3CA 减速器 []m kgf M .20600= []Kw P 82= []tf R 43.18=

曳引力及曳引机选型计算

曳引力及曳引机选型计算 1 电梯曳引的校核计算 1.1 有关电梯曳引的要求: 根据《GB7588-2003 电梯制造与安装安全规》中9.3,本类型乘客电梯的电梯曳引应满足以下三个条件: (1)轿厢装载至125%额定载荷的情况下应保持平层状态不打滑; (2)必须保证在任何紧急制动的状态下,不管轿厢是空载还是满载,其减速度值不能超过缓 冲器(包括减行程的缓冲器)作用时减速度的值;任何情况下,减速度不应小于0.5m/s2; (3)当对重压在缓冲器上而曳引机按电梯上行方向旋转时,应不能提升空载轿厢; (4)设计依据可按照《GB7588-2003 电梯制造与安装安全规》中的附录M。

1.2 电梯曳引的校核计算: 1.2.1计算选用参数: 本类型乘客电梯的曳引轮绳槽采用带切口的半圆槽。表1.1中的参数为本计算选用参数。 表1.1

1.2.2 根据《GB7588-2003 电梯制造与安装安全规》的要求,曳引应满足的计算条件: (1) 在轿厢装载和紧急制动条件时,曳引应满足如下公式: αf 2 1 e T T ≤ 其中: e ――自然对数的底 f ――钢丝绳在绳槽中的当量磨擦系数 α ――钢丝绳在绳轮上的包角 T 1,T 2 ――绳轮两侧的钢丝绳分配的力 (2) 在轿厢滞留条件时,曳引应满足如下公式: αf 2 1 e T T ≥ 其中: e ――自然对数的底 f ――钢丝绳在绳槽中的当量磨擦系数 α ――钢丝绳在绳轮上的包角 T 1,T 2 ――绳轮两侧的钢丝绳分配的力

1.2.3 带切口槽的半圆形绳槽当量摩擦系数的计算: (1) 带切口槽的半圆形绳槽当量摩擦系数可按如下公式计算: 其中: β ――下部切口角度值 γ ――槽的角度值 μ ――磨擦系数 = =1.972μ (2) 摩擦系数μ可按如下公式计算: a. 在装载工况条件下: μ=0.1 b. 在紧急制停条件下: μ= 10 /v +11 .0,其中v 为轿厢额定速度下对应的绳速 v=R t ×V=1×0.75=0.75 m/s ,所以,μ=10/v +11.0=10 /75.011 .0+=0.093 c. 在轿厢滞留工况条件下:μ=0.2 (3) 带切口槽的半圆形绳槽当量摩擦系数的计算: a. 在装载工况条件下: f=1.972μ=1.972×0.1=0.1972 b. 在紧急制停条件下: f=1.972μ=1.972×0.093=0.1834 c. 在轿厢滞留工况条件下: f=1.972μ=1.972×0.2=0.3944 1.2.4 除轿厢、对重装置以外的其它部件的悬挂质量的计算: (1) 曳引钢丝绳质量的计算: 曳引钢丝绳质量 1r W =t r r R H g N ???=8×0.347×57.92×1=120.6 Kg γ βγβπβγμ Sin +Sin )]2/(Sin )2/(Cos [4=f ----γ+βγβπβγμ =Sin Sin )]/(Sin )/(Cos [f ---2-243095-52360-.6581-295-2304Sin Sin .)] /(Sin )/(Cos [+π?μ

相关文档
最新文档