双筋矩形截面受弯构件正承载力计算

双筋矩形截面受弯构件正承载力计算
双筋矩形截面受弯构件正承载力计算

二、双筋矩形截面受弯构件正承载力计算

(一)计算简图

在进行双筋矩形截面受弯构件正截面承载力计算时,计算简图如图3-19所示。

(二)基本公式

(1)设计表达式

根据图3-19所示的计算简图和内力平衡条件,可列出基本设计计算公式

()?

?

?

?

?

?

'

-

'

'

+

?

?

?

?

?

-

=

≤a

h

A

f

x

h

bx

f

M

M

s

y

c

d

d

u

2

1

γ

γ

(3-14)

s

y

s

y

c

A

f

A

f

bx

f'

'

-

=(3-15)为了计算方便,将0h

=代入式(3-14)、式(3-15),可得

()

[]a

h

A

f

bh

f

M

M

s

s

'

-

'

'

+

=

y

2

c

d

d

u

1

α

γ

γ

(3-16)

s

y

s

y

c

A

f

A

f

h

b

f'

'

-

=

ξ(3-17)式中f y'——钢筋抗压强度设计值,按附录4表3取用;

A's——受压区纵向钢筋截面面积;

a'——受压钢筋合力点至受压区边缘的距离。

(2)适用条件

1)与单筋截面一样,为避免发生超筋情况,要求

ξ≤ξb (3-18)2)保证受压钢筋应力能够达到抗压强度设计值,要求

x≥2a'(3-19)因为如果x值太小,受压钢筋就太靠近中和轴,将得不到足够的变形,应力也就达不到抗压强度设计值,因而基本公式便不能成立。双筋截面承受的弯矩较大,相应配置的受拉钢筋也较多,一般不必验算ρ≥ρmin的条件。

(3)x<2a' 时的计算公式

对于x<2a' 的情况,受压钢筋应力达不到f y'。此时可近似假定受压钢筋的压力与受压混凝土的压力作用于同一直线上,且经过受压钢筋重心位置(图3-20)。以受压钢筋合力点为力矩中心?,可得

()a

h

A

f

M

M'

-

=

s

y

d

d

u

1

γ

γ

(3-20)

式(3-20)是双筋截面在x<2a' 时的唯一基本公

式。据此可计算受拉钢筋的用量。

(三)截面承载力计算方法

1.截面设计

截面设计时,常遇到下列两种情况:

图3-19 双筋矩形截面承载力计算图

图3-20 x<2a' 时的双筋截面计算图

(1)已知弯矩设计值M 、截面尺寸b 和h 、混凝土和钢筋等级,需求受拉钢筋与受压钢筋截面面积(A s 及A's )。

基本公式只有两个,而此时共有三个未知数(x 和A s 及A's ),所以必须补充一个条件。这个条件是根据充分利用混凝土的抗压能力,使用钢量(A s +A's )为最小的原则定出的,即令ξ=ξb (或x =ξb h 0)。

αsb 与相对界限受压区计算高度ξb 有关,通过计算可以得到。如钢筋等级为I 、II 、III 、IV 级的热轧钢筋,αsb 分别为、、、。

这种情况下的计算步骤为:

1)计算αsb :αsb =ξb (1–ξb )。

2)计算受压钢筋截面面积:

)

(0y 20c sb d a h f bh f M A s '--='αγ (3-21) 3)计算受拉钢筋截面面积:

()y s y 0

b c s f A f bh f A ''+=ξ (3-22)

(2)已知弯矩设计值M 、截面尺寸b 与h 、钢筋与混凝土等级、受压钢筋截面面积A's ,求受拉钢筋截面面积A s 。

此时共有两个未知数(A s 与x ),可由基本方程直接求解,计算步骤为:

1)计算αs :

20c 0s y d s )(bh f a h A f M '-''-=

γα (3-23)

2)计算ξ: s αξ211--=求得值,

若ξ>ξb ,则说明所配的受压钢筋A's 数量不够,应将此A's 看作未知,按第一

种情况重新计算A's 与A s 。

3)若0b 2h x a ξ≤≤',则由式(3-17)

y s

y 0c f A f bh f A s ''+=ξ (3-24)

4)若a x '<2,则由式(3-20)

)

(0y d a h f M A s '-=γ (3-25) 最后选配钢筋的方法与单筋截面设计基本相同。

2.截面复核

已知构件截面尺寸、混凝土和钢筋等级、受压钢筋和受拉钢筋截面面积,需要复核正截面受弯承载力,可按下列步骤进行:

(1)计算相对受压区计算高度:

c y y bh f A f A f s s ''-=ξ (2)计算u M :

若ξ>ξb ,则令ξ=ξb ,αs =αsb ,

则 ()a h A f bh f M s '-''+=0y 20c sb u α (3-26)

若ξ≤ξb ,且a x '>2,αs =ξξ),

则 ()a h A f bh f M s s '-''+=0y 20c u α (3-27)

若a x '<2,

则 ()a h A f M s '-=0y u (3-28)

(3)当已知截面弯矩设计值M 时,应满足M ≤M u /γd 。

双筋矩形梁正截面承载力计算讲解

双筋矩形梁正截面承载力计算 一、双筋矩形梁正截面承载力计算图式 二、基本计算公式和适用条件 1.根据双筋矩形梁正截面受弯承载力的计算图式,由平衡条件可写出以下两个基本计算公式: 由 ∑=0X 得: s y s y c A f A f bx f =''+1α 由 ∑=0M 得: )(2001a h A f x h bx f M M s y c u '-''+??? ? ? -=≤α 式中' y f —— 钢筋的抗压强度设计值; 's A —— 受压钢筋截面面积; 'a —— 受压钢筋合力点到截面受压边缘的距离。

其它符号意义同前。 2.适用条件 应用式以上公式时必须满足下列适用条件: (1)0h x b ξ≤ (2)' 2a x ≥ 如果不能满足(2)的要求,即' 2a x <时,可近似取' 2a x =,这时受压钢筋的合力将与受压区混凝土压应力的合力相重合,如对受压钢筋合力点取矩,即可得到正截面受弯承载力的计算公式为: )(0a h A f M M s y u '-=≤ 当b ξξ≤的条件未能满足时,原则上仍以增大截面尺寸或提高混凝土强度等级为好。只有在这两种措施都受到限制时,才可考虑用增大受压钢筋用量的办法来减小ξ。 三、计算步骤 (一)截面选择(设计题) 设计双筋矩形梁截面时,s A 总是未知量,而's A 则可能有未知或已知这两种不同情况。 1.已知M 、b 、h 和材料强度等级,计算所需s A 和's A (1)基本数据:c f ,y f 及'y f ,1α, 1β,b ξ (2)验算是否需用双筋截面 由于梁承担的弯矩相对较大,截面相对较小,估计受拉钢筋较多,需布置两排,故取mm a 60=,a h h -=0。单筋矩形截面所能承担的最大弯矩为: M bh f M b b c u <-=)5.01(2 01max 1ξξα,说明需用双筋截面。 (3)取0h x b ξ=,则 )5.01(2 01max 1b b c u bh f M ξξα-= (4)计算受压钢筋 12u u M M M -= ) (02 a h f M A y u s '-'=' 从构造角度来说,'s A 的最小用量一般不宜小于2φ12,即2' min 226 mm A s =。 (5)求受拉钢筋总面积为 y s y b c s f A f h b f A ' '+= 01ξα (6)实际选用钢筋,画截面配筋图 2.已知M 、b 、h 和材料强度以及's A ,计算所需s A (1)基本数据:c f ,y f 及' y f ,1α, 1β,b ξ

结构设计原理 第三章 受弯构件 习题及答案

结构设计原理第三章受弯构件习题及答案

第三章 受弯构件正截面承载力 一、填空题 1、受弯构件正截面计算假定的受压区混凝土压应力分布图形中,0ε= ,cu ε= 。 2、梁截面设计时,可取截面有效高度:一排钢筋时,0h h =- ;两排钢筋时,0h h =- 。 3、梁下部钢筋的最小净距为 mm 及≥d 上部钢筋的最小净距为 mm 及≥1.5d 。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计算以 阶段为依据;③承载能力计算以 阶段为依据。 5、受弯构件min ρρ≥是为了 ;max ρρ≤是为了 。 6、第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是 及 。 7、T 形截面连续梁,跨中按 截面,而支座边按 截面计算。 8、界限相对受压区高度b ζ需要根据 等假定求出。 9、单筋矩形截面梁所能承受的最大弯矩为 ,否则应 。 10、在理论上,T 形截面梁,在M 作用下,f b '越大则受压区高度χ 。内力臂 ,因而可 受拉钢筋截面面积。 11、受弯构件正截面破坏形态有 、 、 3种。 12、板内分布筋的作用是:(1) ;(2) ;(3) 。 13、防止少筋破坏的条件是 ,防止超筋破坏的条件是 。 14、受弯构件的最小配筋率是 构件与 构件的界限配筋率,是根据 确定的。 15、双筋矩形截面梁正截面承载力计算公式的适用条件是:(1) 保证 ;(2) 保证 。当<2s a χ'时,求s A 的公式为 , 还应与不考虑s A '而按单筋梁计算的s A 相比,取 (大、小)值。 16、双筋梁截面设计时,s A 、s A '均未知,应假设一个条件为 ,

基本构件计算单筋矩形截面受弯构件承载力计算

单筋矩形截面受弯构件承载力计算 一、计算简图 二、基本公式与适用条件 1.基本公式 由截面上水平方向内力之和为零,得到 g g a A R bx R = 由截面上对受拉钢筋合力T 作用点的力矩之和等于零,可得 ??? ?? -= ≤20x h bx R M M c a u j γ 对压区混凝土合力C 作用点取力矩,可得 ??? ? ? -= ≤20x h A R M M g s g u j γ 式中: M j ——考虑了荷载安全系数后计算截面上的荷载效应(计算弯矩); M u ——受弯构件计算截面的承载能力(抗力); R a ——混凝土轴心抗压设计强度; R g ——钢筋抗拉设计强度; x ——按等效矩形应力图的计算受压区高度; b ——截面宽度; h 0——截面有效高度;h 0=h -a (a 为钢筋截面中心至截面受拉边缘距离) γc ,γS ——分别为混凝土和钢筋的材料安全系数。25.1==S c γγ 2.系数法公式 )5.01(0ξξ-=A ) 0211A --=ξ ξγ5.010-=;)211(5.000A -+=γ 则可得 02 01 A bh R M a c u γ= 001 γγh A R M g g S u =

3.适用条件 (1)为防止出现超筋梁情况,计算受压区高度x 应满足 0h x ig ξ≤ 或 g a ig R R ξμμ=≤max 混凝土受压区界限高度系数 (2)为防止出现少筋梁的情况,计算的配筋率μ应满足 min μμ≥ 纵向受拉钢筋最小配筋率(%) 注:受压区有翼缘的T 形截面构件,表中配筋率系指钢筋截面面积与构件腹板宽乘以有效高度的截面面积之比。 三、计算方法及计算步骤 1. 截面设计 已知:计算弯矩M j ,混凝土和钢筋材料级别,截面尺寸b 及h 求:钢筋截面面积A g 解: (1)假设钢筋截面积的重心至截面受拉边缘距离为a 。对于绑扎钢筋骨架的梁,可设a ≈40mm (布置一层钢筋时)或65mm (布置两层钢筋时)。对于板,一般可根据板厚假设a 为25mm 或35mm 。这样可得到有效高度h 0 a h h -=0 (2)求A 0 0bh R M A a j c γ= (3)计算相应的ξ及γ0 0211A --=ξ ξγ5.010-=;)211(5.000A -+=γ (4)求得所需的钢筋面积

第三章__受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行正截面承载力 、 抗弯,抗剪 验算。 2、简支梁中的钢筋主要有丛向受力筋 、 架立筋 、 箍筋 、 弯起 四种。 3、钢筋混凝土保护层的厚度与 环境 、 混凝土强度等级 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 0.002 、=cu ε 0.0033 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时ho=h-40 、两排钢筋时 ho=h-60 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 ho=h-35 、两排钢筋时 。 7、单筋梁是指 只在受拉区配置纵向受力筋 的梁。 8、双筋梁是指 受拉区和受拉区都配置纵向受力钢筋 的梁。 9、梁中下部钢筋的净距为 25MM ,上部钢筋的净距为 30MM 和1.5d 。 10、受弯构件min ρρ≥是为了防止 少梁筋 ,x a m .ρρ≤是为了防止 超梁筋 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 b ξξ≤ 和 m i n 0 ρρ≥= bh A s 。 12、受弯构件正截面破坏形态有 少筋破坏 、 适筋破坏 、 超筋破坏 三种。 13、板中分布筋的作用是 固定受力筋 、 承受收缩和温度变化产生的内力 、 承受分布板上局部荷载产生的内力,承受单向板沿长跨方向实际存在的某些弯矩 。 14、双筋矩形截面的适用条件是 b ξξ≤ 、 s a x '≥2 。

15、单筋矩形截面的适用条件是 b ξξ≤ 、 min 0 ρρ≥= bh A s 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 b ξξ= 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。 18、受弯构件梁的最小配筋率应取 %2.0m in =ρ 和 y t f f /45m in =ρ较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。 二、判断题: 1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s = ρ。( )

双筋矩形截面承载力计算

4.3.3 双筋矩形截面承载力计算 如前所述,不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。双筋矩形截面适用于下面几种情况: ※结构或构件承受某种交变的作用(如地震),使截面上的弯矩改变方向; ※截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩,而截面尺寸和材料品种等由于某些原因又不能改变; ※结构或构件的截面由于某种原因,在截面的受压区预先已经布置了一定数量的受力钢筋(如连续梁的某些支座截面)。 应该说明,双筋截面的用钢量比单筋截面的多,因此,为了节约钢材,应尽可能地不要将截面设计成双筋截面。 ◆计算公式及适用条件 双筋矩形截面受弯构件正截面承载力计算中,除了引入单筋矩形截面受弯构件承载力计算中的各项假定以外,还假定当x≤2a's时受压钢筋的应力等于其抗压强度设计值f'y(图4-18)。 图4-18 双筋矩形截面计算简图

对于图4-18的受力情况,可以像单筋矩形截面一样列出下面两个静力平衡方程式: (4-28) (4-29) 式中: A's——受压区纵向受力钢筋的截面面积; a's——从受压区边缘到受拉区纵向受力钢筋合力作用之间的距离。对于梁,当受压钢筋按一排布置时,可取a's=35mm;当受拉钢筋按两排布置时,可取a's=60mm。对于板,可取a's=20mm。 式(4-28)和式(4-29)是双筋矩形截面受弯构件的计算公式。它们的适用条件是: (4-30) (4-31) 满足条件式(4-30),可防止受压区混凝土在受拉区纵向受力钢筋屈服前压碎。满足条件式(4-31),可防止受压区纵向受力钢筋在构件破坏时达不到抗压强度设计值。因为当x<2a's时,由图4-18可知,受压钢筋的应变ε'y很小,受压钢筋不可能屈服。 当不满足条件式(4-31)时,受压钢筋的应力达不到f'y而成为未知数,这时可近似地取x=2a's,并将各力对受压钢筋的合力作用点取矩得 (4-32) 用式(4-32)可以直接确定纵向受拉钢筋的截面面积A s。这样有可能使求得的A s比不考虑受压钢筋的存在而按单筋矩形截面计算的A s还大,这时应按单筋截面的计算结果配筋。 ◆计算公式的应用

受弯构件正截面受弯承载力计算.

第4章受弯构件正截面受弯承载力计算 一、判断题 1.界限相对受压区高度ξb与混凝土等级无关。 ( √ 2.界限相对受压区高度ξb由钢筋的强度等级决定。 ( √ 3.混凝土保护层是从受力钢筋外侧边算起的。 ( √ 4.在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。 ( × 5.在适筋梁中增大截面高度h对提高受弯构件正截面承载力的作用不明显。 ( × 6.在适筋梁中其他条件不变时ρ越大,受弯构件正截面承载力也越大。√ 7.梁板的截面尺寸由跨度决定。 ( × 8,在弯矩作用下构件的破坏截面与构件的轴线垂直,即正交,故称其破坏为正截面破坏。( √ 9.混凝土保护层厚度是指箍筋外皮到混凝土边缘的矩离。 ( × 10.单筋矩形截面受弯构件的最小配筋率P min=A s,min/bh0。 ( × 11.受弯构件截面最大的抵抗矩系数αs,max由截面尺寸确定。 ( × 12.受弯构件各截面必须有弯矩和剪力共同作用。 ( × 13.T形截面构件受弯后,翼缘上的压应力分布是不均匀的,距离腹板愈远,压应力愈小。( √ 14.第一类T形截面配筋率计算按受压区的实际计算宽度计算。 ( × 15.超筋梁的受弯承载力与钢材强度无关。 ( × 16.以热轧钢筋配筋的钢筋混凝土适筋粱,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入强化阶段。(×) 17.与素混凝土梁相比钢筋混凝土粱抵抗混凝土开裂的能力提高很多。(×) 18.素混凝土梁的破坏弯矩接近于开裂弯矩。(√) 19.梁的有效高度等于总高度减去钢筋的保护层厚度。(×) 二、填空题 1.防止少筋破坏的条件是___ρ≥ρmin_______,防止超筋破坏的条件是__ρ≤ρmax____。

钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

受弯构件正截面承载力计算练习题

第四章受弯构件正截面承载力计算 一、一、选择题(多项和单项选择) 1、钢筋混凝土受弯构件梁内纵向受力钢筋直径为( B ),板内纵向受力钢筋直径为( A )。 A、6—12mm B、12—25mm C、8—30mm D、12—32mm 2、混凝土板中受力钢筋的间距一般在( B )之间。 A、70—100mm B、100---200mm C、200---300mm 3、梁的有效高度是指( C )算起。 A、受力钢筋的外至受压区混凝土边缘的距离 B、箍筋的外至受压区混凝土边缘的距离 C、受力钢筋的重心至受压区混凝土边缘的距离 D、箍筋的重心至受压区混凝土边缘的距离 4、混凝土保护层应从( A )算起。 A、受力钢筋的外边缘算起 B、箍筋的外边缘算起 C、受力钢筋的重心算起 D、箍筋的重心算起 5、梁中纵筋的作用( A )。 A、受拉 B、受压 C、受剪 D、受扭 6、单向板在( A )个方向配置受力钢筋。 A、1 B、2 C、3 D、4 7、结构中内力主要有弯矩和剪力的构件为( A )。 A、梁 B、柱 C、墙 D、板 8、单向板的钢筋有( B )受力钢筋和构造钢筋三种。 A、架力筋 B、分布钢筋 C、箍筋 9、钢筋混凝土受弯构件正截面的三种破坏形态为( A B C ) A、适筋破坏 B 、超筋破坏 C、少筋破坏 D、界线破坏 10、钢筋混凝土受弯构件梁适筋梁满足的条件是为( A )。

A、p min≤p≤p max B、p min>p C、p≤p max 11、双筋矩形截面梁,当截面校核时,2αsˊ/h0≤ξ≤ξb,则此时该截面所能承担的弯矩是( C )。 A、M u=f cm bh02ξb(1-0.5ξb); B、M u=f cm bh0ˊ2ξ(1-0.5ξ); C、M u= f cm bh02ξ(1-0.5ξ)+A sˊf yˊ(h0-αsˊ); D、Mu=f cm bh02ξb(1-0.5ξb)+A sˊf yˊ(h0-αsˊ) 12、第一类T形截面梁,验算配筋率时,有效截面面积为( A )。 A、bh ; B、bh0; C、b fˊh fˊ; D、b fˊh0。 13、单筋矩形截面,为防止超筋破坏的发生,应满足适用条件ξ≤ξb。与该条件等同的条件是( A )。 A、x≤x b; B、ρ≤ρmax=ξb f Y/f cm; C、x≥2αS; D、ρ≥ρmin。 14、双筋矩形截面梁设计时,若A S和A Sˊ均未知,则引入条件ξ=ξb,其实质是( A )。 A、先充分发挥压区混凝土的作用,不足部分用A Sˊ补充,这样求得的A S+A Sˊ较小; B、通过求极值确定出当ξ=ξb时,(A Sˊ+A S)最小; C、ξ=ξb是为了满足公式的适用条件; D、ξ=ξb是保证梁发生界限破坏。 15、两类T形截面之间的界限抵抗弯矩值为( B )。 A、M f=f cm bh02ξb(1-0.5ξb); B、M f=f cm b fˊh fˊ(h0-h fˊ/2) ; C、M=f cm(b fˊ-b)h fˊ(h0-h fˊ/2); D、M f=f cm(b fˊ-b)h fˊ(h0-h fˊ/2)+A Sˊf Yˊ(h0-h fˊ/2)。 16、一矩形截面受弯构件,采用C20混凝土(f C=9.6Ν/mm2)Ⅱ级钢筋(f y=300N/mm2,ξb=0.554),该截面的最大配筋率是ρmax( D )。 A、2.53% ; B、18% ; C、1.93% ; D、1.77% 。 17、当一单筋矩形截面梁的截面尺寸、材料强度及弯矩设计值M确定后,计算时发现超筋,那么采取( D )措施提高其正截面承载力最有效。 A、A、增加纵向受拉钢筋的数量; B、提高混凝土强度等级; C、加大截截面尺寸; D、加大截面高度。 二、判断题 1、当截面尺寸和材料强度确定后,钢筋混凝土梁的正截面承载力随其配筋率ρ的提高而提高。(错) 2、矩形截面梁,当配置受压钢筋协助混凝土抗压时,可以改变梁截面的相对界限受压区高度。(对) 3、在受弯构件正截面承载力计算中,只要满足ρ≤ρmax的条件,梁就在适筋范围内。(错) 4、以热轧钢筋配筋的钢筋混凝土适筋梁,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入了强化阶段。(错) 5、整浇楼盖中的梁,由于板对梁的加强作用,梁各控制截面的承载力均可以按T形截面计算。(错)

受弯构件的正截面承载力计算

第4章受弯构件的正截面承载力计算 1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点? 答:第Ⅰ阶段:混凝土开裂前的未裂阶段 当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。 随着荷载的增加,截面上的应力和应变逐渐增大。受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。 第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段 受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。 在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。 还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。这与平截面假定发生了矛盾。但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。因此,各受力阶段的截面应变均假定呈三角形分布。 第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段 随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。 在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。 2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系? 答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。 3.何谓配筋率?配筋率对梁破坏形态有什么的影响? 答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即

双筋矩形截面受弯构件正承载力计算

二、双筋矩形截面受弯构件正承载力计算 (一)计算简图 在进行双筋矩形截面受弯构件正截面承载力计算时,计算简图如图3-19所示。 (二)基本公式 (1)设计表达式 根据图3-19所示的计算简图和内力平衡条件,可列出基本设计计算公式 ()? ? ? ? ? ? ' - ' ' + ? ? ? ? ? - = ≤a h A f x h bx f M M s y c d d u 2 1 γ γ (3-14) s y s y c A f A f bx f' ' - =(3-15)为了计算方便,将0h xξ =代入式(3-14)、式(3-15),可得 () []a h A f bh f M M s s ' - ' ' + = ≤ y 2 c d d u 1 α γ γ (3-16) s y s y c A f A f h b f' ' - = ξ(3-17)式中f y'——钢筋抗压强度设计值,按附录4表3取用; A's——受压区纵向钢筋截面面积; a'——受压钢筋合力点至受压区边缘的距离。 (2)适用条件 1)与单筋截面一样,为避免发生超筋情况,要求 ξ≤ξb (3-18)2)保证受压钢筋应力能够达到抗压强度设计值,要求 x≥2a'(3-19)因为如果x值太小,受压钢筋就太靠近中和轴,将得不到足够的变形,应力也就达不到抗压强度设计值,因而基本公式便不能成立。双筋截面承受的弯矩较大,相应配置的受拉钢筋也较多,一般不必验算ρ≥ρmin的条件。 (3)x<2a' 时的计算公式 对于x<2a' 的情况,受压钢筋应力达不到f y'。此时可近似假定受压钢筋的压力与受压混凝土的压力作用于同一直线上,且经过受压钢筋重心位置(图3-20)。以受压钢筋合力点为力矩中心?,可得 ()a h A f M M' - = ≤ s y d d u 1 γ γ (3-20) 式(3-20)是双筋截面在x<2a' 时的唯一基本公 式。据此可计算受拉钢筋的用量。 (三)截面承载力计算方法 1.截面设计 截面设计时,常遇到下列两种情况: 图3-19 双筋矩形截面承载力计算图 图3-20 x<2a' 时的双筋截面计算图

双筋矩形截面例题

双筋矩形截面例题 例题1 某矩形截面梁,截面b×h =300×500,混凝土为C30,该截面承担 弯矩为400kNm,所有配置钢筋为HRB335级,请计算该截面所需配置的最小 钢筋面积。 果外弯矩大于该弯矩,则要考虑双筋截面。当单筋配筋承担玩 具为最大值时,相应的计算受压区高度为: 对于C30混凝土与HRB335级钢筋,ξb=0.55 x b= ξb h0 =0.55×(500-60)= 242mm 因此,最大单筋截面弯矩: M b=а1f c bx b(h0-x b/2) =14.3×300×242(440-242/2) =331.18kNm< 400kNm 因此要配双筋。 Σx=0 а1f c bx + f y’A s’ = f y A s ΣM=0 M=а1f c bx (h0-x/2) + f y’A s’ (h0-as’) 由于混凝土强度等级为C30,不超过C50,所以а1取为1.0,可以查相应 的材料表格,f c=14.3 N/mm2;对于HRB335级钢筋,f y=300 N/mm2。 将已知条件代入方程: 14.3×300×x + 300×As’ = 300 As 400 ×106 = 14.3×300×x(440- x/2) + 300×As’×(440-35) 在方程组中,未知数为:x、A s’、A s,利用两个方程求解三个未知数,必须直接进行设计,确定一个未知数。通常的做法为: 设x =kξb h0,k不大于1,即保证x≤x b,同时要保证x≥2a s’;为保证混凝土的有效利用,同时保证截面的延性,k宜尽可能大一些。 因此,设x=0.9ξb h0 = 0.9×0.55×440 = 217.8 mm,代入方程组 解得:A s’ = 745.95 mm2

4(2) 受弯构件的正截面受弯承载力-双筋矩形截面-T形截面

第四章
受弯构件的正截面 受弯承载力
主讲人:胡修文 工程地质与岩土工程系 2017 春

4. 5 (1) 概述
双筋矩形截面受弯构件 正截面受弯承载力计算
1. 单筋矩形截面梁的配筋
在受拉区配置纵向受拉钢筋,在受压区配置纵向架立钢 筋,然后用箍筋绑扎成钢筋骨架,计算时不考虑架立钢筋 的作用

2. 双筋矩形截面 --受拉区和受压区布置纵向受力钢筋。 架立钢筋数量多,既起架立钢筋的作用,又在正截面 受弯承载力计算时也考虑,称配筋截面为双筋截面 采用纵向受压钢筋提高砼受压承载力不经济, 应尽量不用 3. 双筋矩形截面的适用情况 1)弯矩很大,按单筋矩形截面计算时 ξ > ξ b 并且截面尺寸和砼强度等级受到限制,不能提高 2)在不同荷载组合作用下,梁截面承受异号弯矩 如:地震作用下,上部截面会产生负弯矩。 3)纵向受压钢筋对截面延性、抗裂性、变形等有利。

(2) 计算公式与适用条件 1. 纵向受压钢筋的 抗压强度的取值 假定:受压区受压钢筋合力 ′ 作用点距砼上边缘的距离- as 受压区砼极限压应变-- cu 截面受压区中和轴高度-- xc 受压区钢筋的应变-- ′ s 平截面假定:
ε
ε
′ xc ? as ε s′ = ε cu ′ β1as xc εs′ = (1? )εcu 等效矩形 x 应力图: x = x β c 1
xc

′ = 0.5x 若令:as 受压钢筋的压应变值:
′ x)εcu εs′ = (1?β1as
0.5 x β1 ε s′ = (1 ? )ε cu = (1 ? 0.5 β1 )ε cu x 对于C80的砼, ε cu = 0.003, β1 = 0.74, 得到ε s′ = 0.00189
′ = ε s′Es = 0.00189 × 2.00 ×105 N mm2 =378 N mm2 其相应的压应力 σ s
若钢筋强度为300、335和400MPa,其相应的压应力已经 达到抗压强度设计值 f y′
纵向受压钢筋的抗压强 x ′ 度采用 f y 的必要条件:
′ ≥ 2 as
其含义:受压钢筋位置不低于 矩形受压应力图形的重心
′ ,则受压区钢筋离中 若 x < 2 as 和轴太近, σ s′ 达不到 f y′ ε s′ 过小,

关于单筋矩形截面受弯构件开裂前受压区高度的探讨

关于单筋矩形截面受弯构件开裂前受压区高度的探讨 【摘要】本文将结合单筋矩形截面受弯构件,探讨其受压区高度由加载至开裂过程中的发展变化状况,以期得出构件开裂前受压区高度的简化公式,从另一角度加深对其开裂前受力机理的认识。 【关键字】单筋矩形截面受弯构件受压区高度发展过程 1.引言 当构件的配筋量适中时,单筋矩形截面受弯构件从加载至破坏,先后经历了受拉区混凝土开裂、受拉区钢筋屈服、受压区混凝土压碎,构件破坏三个阶段。在其由加载至破坏的整个过程中,我们往往更多的关注钢筋、混凝土各自的应力,以及构件的挠度、曲率的变化,对于混凝土受压区高度,并未进行系统的探讨。而以我的浅见,我认为混凝土的受压区高度是这个贯穿构件整个破坏过程的重要参数,是构件自身承载性能的一种外在体现,值得我们进一步的探究。 在国内外教材中,混凝土开裂前的受压区高度变化情况很少有详细介绍。其中多数教材在提到此阶段的混凝土受力分析时,采用了等效的方法,即将钢筋混凝土梁等效为单一混凝土梁。这种方法思路巧妙,但换算惯性矩和换算截面受压区高度求解较繁琐。并且其换算截面受压区高度是针对换算截面的,不能与开裂后混凝土受压区高度的推导公式形成衔接。鉴于以上原因,本文将仍从原始的矩形截面梁入手,试分析开裂前混凝土受压区高度的变化发展状况,并提出自己对于其变化过程的认识。 2.分析 在展开分析前,我们沿用以下五个假定: 1) 平截面假定:即变形之前的平面在变形之后仍为平面。 2) 钢筋与混凝土共同工作:即假定钢筋与混凝土之间粘结可靠,相同位置处,钢筋与混凝土的应变相同。 3) 混凝土受拉时应力-应变关系满足下式: 其中为混凝土的极限拉应变,且满足。 4) 混凝土受压时应力-应变关系满足下式:

结构设计原理第三章受弯构件习题及答案

第三章 受弯构件正截面承载力 一、填空题 1、受弯构件正截面计算假定的受压区混凝土压应力分布图形中,0ε= ,cu ε= 。 2、梁截面设计时,可取截面有效高度:一排钢筋时,0h h =- ;两排钢筋时,0h h =- 。 3、梁下部钢筋的最小净距为 mm 及≥d 上部钢筋的最小净距为 mm 及≥1.5d 。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计算以 阶段为依据;③承载能力计算以 阶段为依据。 5、受弯构件min ρρ≥是为了 ;max ρρ≤是为了 。 6、第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是 及 。 7、T 形截面连续梁,跨中按 截面,而支座边按 截面计算。 8、界限相对受压区高度b ζ需要根据 等假定求出。 9、单筋矩形截面梁所能承受的最大弯矩为 ,否则应 。 10、在理论上,T 形截面梁,在M 作用下,f b '越大则受压区高度χ 。内力臂 ,因而可 受拉钢筋截面面积。 11、受弯构件正截面破坏形态有 、 、 3种。 12、板内分布筋的作用是:(1) ;(2) ;(3) 。 13、防止少筋破坏的条件是 ,防止超筋破坏的条件是 。 14、受弯构件的最小配筋率是 构件与 构件的界限配筋率,是根据 确定的。 15、双筋矩形截面梁正截面承载力计算公式的适用条件是:(1) 保证 ;(2) 保证 。当<2s a χ'时,求s A 的公式为 , 还应与不考虑s A '而按单筋梁计算的s A 相比,取 (大、小)值。 16、双筋梁截面设计时,s A 、s A '均未知,应假设一个条件为 ,

单、双筋矩形截面配筋计算

单、双筋矩形截面配筋计算 矩形截面通常分为单筋矩形截面和双筋矩截面两种形式。只在截面的受拉区配有纵向受力钢筋的矩形截面,称为单筋矩形截面(图4-10)。不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。需要说明的是,为了构造上的原因(例如为了形成钢筋骨架),受压区通常也需要配置纵向钢筋。这种纵向钢筋称为架立钢筋。架立钢筋与受力钢筋的区别是:架立钢筋是根据构造要求设置,通常直径较细、根数较少;而受力钢筋则是根据受力要求按计算设置,通常直径较粗、根数较多。受压区配有架立钢筋的截面,不是双筋截面。 图4-10 单筋矩形截面 根据4.3.1的基本假定,单筋矩形截面的计算简图如图4-11所示。 图4-11 单筋矩形截面计算简图 为了简化计算,受压区混凝土的应力图形可进一步用一个等效的矩形应力图代替。矩形应力图的应力取为α1fc(图4-12),fc为混凝土轴心抗压强度设计值。所谓“等效”,是指这两个图不但压应力合力的大小相等,而且合力的作用位置完全相同。

图4-12 受压区混凝土等效矩形应力图 按等效矩形应力计算的受压区高度x与按平截面假定确定的受压区高度xo之间的关系为: (4-7) 系数α1和β1的取值见表4-2。 系数α1和β1的取值表表4-2 系数α1和β1的取值表表4-2 ◆基本计算公式 由于截面在破坏前的一瞬间处于静力平衡状态,所以,对于图4-12 的受力状态可建立两个平衡方程:一个是所有各力的水平轴方向上的合力为零,即 (4-8) 式中b ——矩形截面宽度; As——受拉区纵向受力钢筋的截面面积。 另一个是所有各力对截面上任何一点的合力矩为零,当对受拉区纵向受力钢筋的合力作用点取矩时,有: (4-9a) 当对受压区混凝土压应力合力的作用点取矩时,有: (4-9b) 式中M——荷载在该截面上产生的弯矩设计值; ho——截面的有效高度,按下计算ho=h-as。 h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。 按构造要求,对于处于室内正常使用环境的梁和板,当混凝土的强度等级不低于C20时,梁内钢筋的混凝土保护层最小厚度(指从构件边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝土保护层不得小于15mm(当混凝土的强度等级小于和等于C20时,梁和板的混凝保护层最小厚度分别为30mm和20mm)。因此,截面的有效高度

受弯构件正截面承载力计算练习题

受弯构件正截面承载力计算练习题

第四章受弯构件正截面承载力计算 一、一、选择题(多项和单项选择) 1、钢筋混凝土受弯构件梁内纵向受力钢筋直径为( B ),板内纵向受力钢筋直径为( A )。 A、6—12mm B、12—25mm C、8—30mm D、12—32mm 2、混凝土板中受力钢筋的间距一般在( B )之间。 A、70—100mm B、100---200mm C、200---300mm 3、梁的有效高度是指( C )算起。 A、受力钢筋的外至受压区混凝土边缘的距离 B、箍筋的外至受压区混凝土边缘的距离 C、受力钢筋的重心至受压区混凝土边缘的距离 D、箍筋的重心至受压区混凝土边缘的距离 4、混凝土保护层应从( A )算起。 A、受力钢筋的外边缘算起 B、箍筋的外边缘算起 C、受力钢筋的重心算起 D、箍筋的重心算起 5、梁中纵筋的作用( A )。 A、受拉 B、受压 C、受剪 D、受扭 6、单向板在( A )个方向配置受力钢筋。 A、1 B、2 C、3 D、4 7、结构中内力主要有弯矩和剪力的构件为( A )。 A、梁 B、柱 C、墙 D、板 8、单向板的钢筋有( B )受力钢筋和构造钢筋三种。 A、架力筋 B、分布钢筋 C、箍筋 9、钢筋混凝土受弯构件正截面的三种破坏形态为( A B C )

A、适筋破坏 B 、超筋破坏 C、少筋破坏 D、界线破坏 10、钢筋混凝土受弯构件梁适筋梁满足的条件是为( A )。 A、p min≤p≤p max B、p min>p C、p≤p max 11、双筋矩形截面梁,当截面校核时,2αsˊ/h0≤ξ≤ξb,则此时该截面所能承担的弯矩是( C )。 A、M u=f cm bh02ξb(1-0.5ξb); B、M u=f cm bh0ˊ2ξ(1-0.5ξ); C、M u= f cm bh02ξ(1-0.5ξ)+A sˊf yˊ(h0-αsˊ); D、Mu=f cm bh02ξb(1-0.5ξb)+A sˊf yˊ(h0-αsˊ) 12、第一类T形截面梁,验算配筋率时,有效截面面积为( A )。 A、bh ; B、bh0; C、b fˊh fˊ; D、b fˊh0。 13、单筋矩形截面,为防止超筋破坏的发生,应满足适用条件ξ≤ξb。与该条件等同的条件是( A )。 A、x≤x b; B、ρ≤ρmax=ξb f Y/f cm; C、x≥2αS; D、ρ≥ρmin。 14、双筋矩形截面梁设计时,若A S和A Sˊ均未知,则引入条件ξ=ξb,其实质是( A )。 A、先充分发挥压区混凝土的作用,不足部分用A Sˊ补充,这样求得的A S+A Sˊ较小; B、通过求极值确定出当ξ=ξb时,(A Sˊ+A S)最小; C、ξ=ξb是为了满足公式的适用条件; D、ξ=ξb是保证梁发生界限破坏。 15、两类T形截面之间的界限抵抗弯矩值为( B )。 A、M f=f cm bh02ξb(1-0.5ξb); B、M f=f cm b fˊh fˊ(h0-h fˊ/2) ; C、M=f cm(b fˊ-b)h fˊ(h0-h fˊ/2); D、M f=f cm(b fˊ-b)h fˊ(h0-h fˊ/2)+A Sˊf Yˊ(h0-h fˊ/2)。 16、一矩形截面受弯构件,采用C20混凝土(f C=9.6Ν/mm2)Ⅱ级钢筋(f y=300N/mm2,ξb=0.554),该截面的最大配筋率是ρmax( D )。 A、2.53% ; B、18% ; C、1.93% ; D、1.77% 。 17、当一单筋矩形截面梁的截面尺寸、材料强度及弯矩设计值M确定后,计算时发现超筋,那么采取( D )措施提高其正截面承载力最有效。 A、A、增加纵向受拉钢筋的数量; B、提高混凝土强度等级; C、加大截截面尺寸; D、加大截面高度。 二、判断题 1、当截面尺寸和材料强度确定后,钢筋混凝土梁的正截面承载力随其配筋率ρ的提高而提高。(错) 2、矩形截面梁,当配置受压钢筋协助混凝土抗压时,可以改变梁截面的相对界限受压区高度。(对) 3、在受弯构件正截面承载力计算中,只要满足ρ≤ρmax的条件,梁就在适筋范围内。(错)

双筋矩形截面受构件正承载力计算

双筋矩形截面受构件正承载力计算

————————————————————————————————作者:————————————————————————————————日期:

二、双筋矩形截面受弯构件正承载力计算 (一)计算简图 在进行双筋矩形截面受弯构件正截面承载力计算时,计算简图如图3-19所示。 (二)基本公式 (1)设计表达式 根据图3-19所示的计算简图和内力平衡条件,可列出基本设计计算公式 ()?? ????'-''+??? ??-=≤a h A f x h bx f M M 0s y 0c d d u 21γγ (3-14) s y s y c A f A f bx f ''-= (3-15) 为了计算方便,将0h x ξ=代入式(3-14)、式(3-15),可得 ()[] a h A f bh f M M s s '-''+=≤0y 20c d d u 1αγγ (3-16) s y s y 0c A f A f h b f ''-=ξ (3-17) 式中 f y '——钢筋抗压强度设计值,按附录4表3取用; A's ——受压区纵向钢筋截面面积; a'——受压钢筋合力点至受压区边缘的距离。 (2)适用条件 1)与单筋截面一样,为避免发生超筋情况,要求 ξ≤ξb (3-18) 2)保证受压钢筋应力能够达到抗压强度设计值,要求 x ≥2a' (3-19) 因为如果x 值太小,受压钢筋就太靠近中和轴,将得不到足够的变形,应力也就达不到抗压强度设计值,因而基本公式便不能成立。双筋截面承受的弯矩较大,相应配置的受拉钢筋也较多,一般不必验算ρ≥ρmin 的条件。 (3)x <2a' 时的计算公式 对于x <2a' 的情况,受压钢筋应力达不到f y '。此时可近似假定受压钢筋的压力与受压混凝土的压力作用于同一直线上,且经过受压钢筋重心位置(图3-20)。以受压钢筋合力点为力矩中心?,可得 ()a h A f M M '-=≤0s y d d u 1γγ (3-20) 式(3-20)是双筋截面在x <2a' 时的唯一基本公式。据此可计算受拉钢筋的用量。 (三)截面承载力计算方法 1.截面设计 截面设计时,常遇到下列两种情况: 图3-19 双筋矩形截面承载力计算图 图3-20 x <2a' 时的双筋截面计算图

相关文档
最新文档