旋转变压器(resolver)原理

旋转变压器(resolver)原理
旋转变压器(resolver)原理

§4—1旋转变压器

旋转变压器是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。

一、旋转变压器的结构

旋转变压器的结构和两相绕线式异步电机的结构相似,可分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的槽状铁心内。定子绕组通过固定在壳体上的接线柱直接引出。转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变压器分为有刷式和无刷式两种结构形式。

图4-1是有刷式旋转变压器。它的转子绕组通过滑环和电刷直接引出,其特点是结构简单,体积小,但因电刷与滑环是机械滑动接触的,所以旋转变压器的可靠性差,寿命也较短。

图4-1 有刷式旋转变压器

图4-2 无刷式旋转变压器

图4—2是无刷式旋转变压器。它分为两大部分,即旋转变压器本体和附加变压器。附加变压器的原、副边铁心及其线圈均成环形,分别固定于转子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转子绕组与附加变压器原边线圈连在一起,在附加变压器原边线圈中的电信号,即转子绕组中的电信号,通过电磁耦合,经附加变压器副边线圈间接地送出去。这种结构避免了电刷与滑环之间的不良接触造成的影响,提高了旋转变压器的可靠性及使用寿命,但其体积、质量、成本均有所增加。

常见的旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。

二、旋转变压器的工作原理

由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z为阻抗。设

加在定子绕组的激磁电压为

sin ω=- S m V V t (4—1)

图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为

sin sin sin θθω== (4-2)B s m V KV KV t (4—2)

式中K ——旋转变压器的变化;—的幅值m s V V ;

θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过的角度,它间接反映了机床工作台的位移。

由式(4-2)可知,转子绕组中的感应电势B V 为以角速度ω随时间t 变化的交变电压信号。 其幅值sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。

以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。

1

鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时

s m V V cos (43);V V sin (44)ωω--= = t t (4—3)

s m V V cos (43);V V sin (44)ωω--= = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生感应电势BS V 和BK V 之和,即

m m m sin()cos V cos sin V sin cos V sin()θθωθωθωθ=+=-+=-+-= (4-5)

B BS BK

s k V V V KV KV K t K t K t (4—5)

m m sin()cos V cos sin V sin cos V sin()θθωθωθωθ=+=-+=-+-= (4-5) B BS BK s k V V V KV KV K t K t K t

图 4-4 旋转变压器电气工作原理

由式(4—4)和(4—5)可见,旋转变压器转子绕组中的感应电势B V 与定子绕组中的激磁电压同频率,但相位不同,其差值为θ。而θ角正是被测位移,故通过比较感应电势B V 与定子激磁电压信号k V 的相位,便可求出θ。

在图4—4中,转子绕组12A

A 接一高阻抗,它不作为旋转变压器的测量输出,主要起平衡磁场的作用,目的是为了提高测量精度。

2.鉴幅式工作方式

鉴幅式工作方式是通过对旋转变压器转子绕组中感应电势幅值的检测来实现位移检测的。其工作原理如下:

参看图4-4,设定子主绕组12S S 和辅助绕组12K K 分别输入交变激磁电压 s m V V cos sin (46);V V sin sin (47)

αωαω--= = t t (4—6) s m V V cos sin (46);V V sin sin (47)αωαω--= = t t (4—7) 式中m V cos α和m V sin α分别为激磁电压S V 和k V 的幅值。α角可以改变,称其为旋转变压器的电气角。 根据线性叠加原理,得出转子绕组12B B 中的感应电势B V 如下:

m m m sin()cos V cos sin sin V sin sin cos V sin()sin (48)θθαωθαωθαθω=+=-+=-+--=

B BS BK s k V V V KV KV K t K t K t m sin()cos V cos sin sin V sin sin cos V sin()sin (48)θθαωθαωθαθω=+=-+=-+--= B BS BK s k V V V KV KV K t K t K t (4—8)

由式(4-8)可以看出,感应电势B V 是幅值为m V sin()αθ-K 的交变电压信号,我们只要逐渐改变α值,使B V 的幅值等于零,这时,因

m V sin()0αθ-= (4-9)K (4—9)

故可得 : θ=α (4—10) α值就是被测角位移θ的大小。由于α是我们通过对它的逐渐改变,实现使B V 幅值等于零的,其值自然是应该知道的。

三、 旋转变压器的应用

在旋转变压器的鉴相式工作方式中,感应信号和激磁信号K V 之间的相位差θ角,可通过专用的鉴相器线路检测出来并表示成相应的电压信号,设为U (θ),通过测量该电压信号,便可间接地求得θ值。但由于B V 是关于θ的周期性函数,U(θ)是通过比较B V 和K V 之值获得的,因而它也是关于θ的周期性函数,即 U(θ)=U(n ×2π+θ) (n=1,2,3,…)

(4—9)

故在实际应用中,不但要测出U(θ)的大小,而且还要测出U(θ)的周期性变化次数n ,或者将被测角位移θ角限制在±π之内。 在旋转变压器的鉴幅式工作方式中,B V 的幅值设为Bm V ,由式(4--8)可知

Bm m V V sin()αθ-= (4-12)K

(4—10) 它也是关于θ的周期性函数,在实际应用中,同样需要将θ角限制在±π之内。在这种情况下,若规定和限制α角只能在[-π,π]内取值,利用式(4-10),便可唯一地确定出θ之值。否则,如θ=3π/2(>π),这时,α=3π/2和α=-π/2都可使Bm V 0=,从而使θ角不能唯一地确定,造成检测结果错误。

由上述知,无论是旋转变压器的鉴相式工作方式,还是鉴幅式工作方式,都需要将被测角位移θ角限定在±π之内,只要θ在±π之内,就能够被正确地检测出来。事实上,对于被测角位移大于π或小于-π的情况,如用旋转变压器检测机床丝杠转角的情况,尽管总的机床丝杠转角θ可能很大,远远超出限定的±π范围,但却是机床丝杠转过的若干次小角度θi 之和,即

121θθθθθ==+++=∑ (4-13)

N N i i (4—11) 而θi 很小,在数控机床上一般不超过3°,符合-π≤θi ≤π的要求,旋转变压器及其信号处理线路可以及时地将它们一一检测出来,并将结果输出。因此,这种检测方式属于动态跟随检测和增量式检测。

第四章旋转变压器

第四章 旋转变压器 工作原理:一、二次绕组的电磁感应耦合程度由转子的转角决定。当旋转变压器的一次侧外施单相交流电压励磁时,二次侧的输出电压将与转子转角严格保持某种函数关系。 第一节 旋转变压器的结构特点和分类 结构: 旋转变压器的典型结构由定子和转子两部分构成。 铁心:高磁导率的铁镍软磁合金片或硅钢片经冲制、绝缘、叠装而成。定、转子之间的气隙是均匀的,绕组:两个轴线在空间互相垂直的分布绕组。 转子绕组引出线和滑环相接,滑环应有四个,固定在转轴的一端, 分类: 按照输出电压和转子转角的函数关系来分: 1) 正余弦旋转变压器(代号XZ) 2) 线性旋转变压器(代号XX) 3) 比例式旋转变压器(代号XL) 4) 特殊函数旋转变压器(正切函数、倒数函数、圆函数、对数函数等) 按照电机极对数多少来分:单极对和多极对(可以提高系统的精度)。 按照有无电刷与滑环间的滑动接触来分:接触式和无接触式两类。 第二节 正余弦旋转变压器的工作原理 4.2.1正弦绕组 在旋转变压器中常用的绕组有两种形式,即双层短距分布绕组和同心式正 弦绕组。 双层短距分布绕组能够达到较高的绕组精度并有良好的工艺性,但在绕组中存在一定量的谐波磁动势分量,其所引起的正余弦函数的误差达0.01%-0.07%,再加上工艺因素引起的误差,使旋转变压器的精度受到一定的限制,故双层短距分布绕组只适合对精度要求不很高的旋转变压器。 同心式正弦绕组为高精度绕组,它使各次谐波削弱到相当小,正余弦函数的误差从0.06%降到0.03%以下。缺点为工艺性差,绕组系数低。 正弦绕组是指绕组各元件的导体数沿定子内圆或转子外圆按正弦规律分布的同心式绕组。通常有两种分布形式:第一类是绕组的轴线对准槽的中心线,第二类是绕组的轴线对准齿的中心线。旋转变压器大都采用这两类正弦绕组。 图4-2表示了正弦绕组中各元件在空间沿转子圆周外圆分布的情况及空间磁动势的分布情况。为了使正弦绕组中各元件匝数沿圆周按正弦分布,各元件的匝数应满足 Z )i (cos N N cm ci π 12-= 正弦绕组每相的总匝数为 ])142cos(...3cos [cos 4 1 Z Z Z Z N N N cm Z i ci π ππ-+++==∑= 4.2.2 正余弦旋转变压器的工作原理 正余弦旋转变压器通常为两极结构,定子和转子分别安装两套互相垂直的正弦绕组。 定子绕组:21D D ——励磁绕组,43D D ——交轴绕组(或补偿绕组)。 转子绕组(输出绕组):21Z Z ——正弦绕组,43Z Z ——余弦绕组。定、转子间的气隙是均匀的。 图4-2 正弦绕组 f U α 图4-1 正余弦旋转变压器 的原理示意图

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、(XDX )----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种,前者(XX )实际上也是正--余弦旋转变压器,不同的是采用了特定的变比和接线方式。后者(XDX )称单绕组线性旋转变压器。 3. 比例式旋转变压器(XL )----其输出电压与转角成比例关系。 二、 旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z 为阻抗。设加在定子绕组的激磁电压为 sin ω=- S m V V t (4—1) 图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为 sin sin sin θθω== (4-2)B s m V KV KV t (4—2) 式中K ——旋转变压器的变化;—的幅值m s V V ; θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子 安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过 的角度,它间接反映了机床工作台的位移。 由式(4-2)可知,转子绕组中的感应电势 B V 为以角速度ω随时间t 变化的交变电压信号。 其幅值 sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感 应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。 以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1.鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12 K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时 s m V V cos (43);V V sin (44)ωω--= = t t (4—3) s m (43);V V sin (44)ω-- = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生 感应电势BS V 和BK V 之和,即

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

单相变压器的基本工作原理和结构

变压器是一种静止电器,它通过线圈间的电磁感应,将一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能. 3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行 3.4 变压器的参数测定 3.5 变压器的运行特性 隐形专家改编于2009-05

3.1 变压器的基本工作原理和结构 3.1.1 基本工作原理和分类 一、基本工作原理 变压器的主要部件是铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电联系。在一 次绕组中加上交变电压,产生交链一、二次绕 组的交变磁通,在两绕组中分别感应电动势。 1 u 1 e 2 e 2u 1i 2 i Φ 1 U 2 U 1 u 2u L Z 1 2 12d Φe =-N dt d Φe =-N dt 只要(1)磁通有 变化量;(2)一、二次绕组的匝数不同,就能达到改变压的 目的。

二、分类 按用途分:电力变压器和电子变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器、壳式变压器、环形变压器。 按工作频率分:低频(工频)与高频变压器

3.1.2基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成或卷绕而成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、胶心 胶心也可称骨架,用塑料压制而成,用来固定线圈。 四、固定夹 固定夹也可称牛夹,用铁板冲压而成,用来将变 压器固定在底板上。

旋转变压器(resolver)原理

§4—1旋转变压器 旋转变压器是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 一、旋转变压器的结构 旋转变压器的结构和两相绕线式异步电机的结构相似,可分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的槽状铁心内。定子绕组通过固定在壳体上的接线柱直接引出。转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变压器分为有刷式和无刷式两种结构形式。 图4-1是有刷式旋转变压器。它的转子绕组通过滑环和电刷直接引出,其特点是结构简单,体积小,但因电刷与滑环是机械滑动接触的,所以旋转变压器的可靠性差,寿命也较短。 图4-1 有刷式旋转变压器

图4-2 无刷式旋转变压器 图4—2是无刷式旋转变压器。它分为两大部分,即旋转变压器本体和附加变压器。附加变压器的原、副边铁心及其线圈均成环形,分别固定于转子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转子绕组与附加变压器原边线圈连在一起,在附加变压器原边线圈中的电信号,即转子绕组中的电信号,通过电磁耦合,经附加变压器副边线圈间接地送出去。这种结构避免了电刷与滑环之间的不良接触造成的影响,提高了旋转变压器的可靠性及使用寿命,但其体积、质量、成本均有所增加。 常见的旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z为阻抗。设 加在定子绕组的激磁电压为

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

磁阻式多极旋转变压器的工作原理

磁阻式多极旋转变压器的工作原理 普通旋转变压器的精度较低,为角分的数量级,一般应用于精度要求不高或大型机床的粗测和中测系统中。为提高精度,近年来数控系统中广泛采用磁阻式多极旋转变压器。 磁阻式多极旋转变压器(又称细分解算器,或游标解算器),它是一种多极角度传感元件,实际上是一种非接触式磁阻可变的耦合变压器,其结构与传统的多极旋转变压器不同之处在于其励磁绕组和输出绕组均安置在定子铁心的槽中,转子仅由带齿的选片叠制而成,不放任何绕组,实现无接触运行。定子冲片内圆冲制有若干大齿(也称为极靴),每个大齿上又冲制若干等分小齿,绕组安放在大齿槽中。转子外圆表面冲制有若干等分小齿,其数与擞对数相等。输出和输入绕组均为集中绕制,其正余弦绕组的匝数控正弦规律变化。而传统结构的多极旋转变压器是采用分布式绕组。图6-4所示为磁阻式多极旋转变压器的原理示意图,其中画出了5个定子齿,4个转于齿。定子槽内安置了逐槽反向串接的输入绕组1-1和两个间隔绕制反向串接的输出绕组2-2,3-3。当给输入绕组1-1加上交流正弦电压时,两个输出绕组2-2、3-3中分别得到两个电压,其幅值主要取决于定子和转子齿的相对位置间气隙磁导的大小。当转子相对定子转动时,空间的气隙磁导发生变化,转子每转过一个转子齿距,气隙磁导变化一个周期;而当转子转过一周时,气隙磁导变化的周期数等于转子齿数。这样,转子的齿数就相当于磁阻式多极旋转变压器极对数,从而达到多极的效果。气隙磁导的变化,导致输入和输出绕组之间互感的变化,输出绕组感应的电势亦发生变化。实际应用中是通过输出电压幅值的变化而测得转子的转角的。

磁阻式多极旋转变压器没有电刷和滑环接触,工作可靠、抗冲击能力强,并能连续高速运行、寿命长,多用于高精度及各种控制式电气变速双通道系统,提高数控机床定位精度。尽管它的测量精度不如感应同步器和光栅,但高于普通旋转变压器,误差不超过3.5角秒,而且成本低,不需维修,输出信号电平高(0.5—1.5V.最高可达4V),所以在数控机床上的应用很有前途。

旋转变压器的工作原理及应用

旋转变压器的工作原理及应用 旋转变压器的工作原理及应用 旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。在结构上与二相线绕式异步电动机相似,由定子和转子组成。定子绕组为变压器的原边,转子绕组为变压器的副边。激磁电压接到转子绕组上,感应电动势由定子绕组输出。常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。 旋转变 压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。因此,在数控机床上广泛应用。 通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。另外,还有一种多极旋转变压器。也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。 什么是旋转变压器以及应用方式 什么是旋转变压器以及应用方式 旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。 在结构上与二相线绕式异步电动机相似,由定子和转子组成。定子绕组为变压器的原边,转子绕组为变压器的副边。激磁电压接到转子绕组上,感应电动势由定子绕组输出。常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。 旋转 变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。因此,在数控机床上广泛应用。 通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。另外,还有一种多极旋转变压器。也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。 旋转变压器的应用 旋转变压器作为位置检测装置有两种应用方式:鉴相方式和鉴幅方式。 1.鉴相工作方式 在旋转变压器定子的两相正交绕组(正弦用s和和余弦用c表示),一般称为正弦绕组和余弦绕组上,分别输入幅值相等,频率相同的正弦、余弦激磁电压 Us=Umsinωt Uc=Umcosωt 两相激磁电压在转子绕组中会产生感应电动势。根据线性叠加原理,在转子绕组中感应电压为 U=kUssinθ机+kUccosθ机=kUmcos(ωt-θ机)

变压器的基本工作原理

变压器的基本工作原理Orga nize en terprise safety man ageme nt pla nning, guida nee, in spect ion and decisi on-mak ing. en sure the safety status, and unify the overall pla n objectives

编制:____________________ 审核:____________________ 时间:____________________

变压器的基本工作原理 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、变压器的种类: 1. 按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。 2. 按防潮方式分类:开放式变压器、灌封式变压器、密封式 变压器。 3. 按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型 铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。 4. 按电源相数分类:单相变压器、三相变压器、多相变压器。 5. 按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器 二、变压器工作原理: 变压器的基本工作原理是:变压器是由一次绕组、二次绕组和铁心组成,当一次绕组加上交流电压时,铁心中产生交变磁

通,交变磁通在一次、二次绕组中感应电动势与在单匝上感应电动势的大小是相同的,但一次、二次侧绕组的匝数不同,一次、二次侧感应电动势的大小就不同,从而实现了变压的目的,一次、二次侧感应电动势之比等于一次、二次侧匝数之比。 当二次侧接上负载时,二次侧电流也产生磁动势,而主磁通由于外加电压不变而趋于不变,随之在一次侧增加电流,使磁动势达到平衡,这样,一次侧和二次侧通过电磁感应而实现了能量的传递。 三、变压器的主要部件结构作用: (2) 变压器组成部件:器身(铁芯、绕组、绝缘、引线)、变压器油、油箱和冷却装置、调压装置(即分接开关,分为无励磁调压和有载调压)、保护装置(吸湿器、安全气道、气体继电器、储油柜、净油器及测温装置等)和出线套管。 (3) 变压器主要部件的作用: (1)铁芯:作为磁力线的通路,同时起到支持绕组的作用。变压器通常由含硅量较高,厚度分别为0.35 mm\0.3mm\0.27 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成铁心分为铁

变压器的工作原理及结构

变压器工作原理: 当一个交流电压U1接到初级绕组的线圈时,由于交流电的强度和极性是不停地正、负交替变化,因此初级绕组的线圈所产生的磁力线数目也不停改变。由于磁场强度的不断变化,促使缠绕在同一铁芯上的另一端线圈产生感应电动势U2 .变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 理想变压器: 不计一次、二次绕组的电阻和铁耗, 其间耦合系数K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化,则有不计铁芯损失,根据能量守恒原理可得由此得出一次、二次绕组电压和电流有效值的关系令K=N1/N2,称为匝比(亦称电压比) U1/U2=N1/N2 ,即对同一变压器的任意两个线圈,都有电压和匝数成正比。P入=P出,即无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率之和. https://www.360docs.net/doc/4e6627005.html,/view/30130.htm https://www.360docs.net/doc/4e6627005.html,/s/blog_4876e83b0100ru0s.html 变压器(transformer)是一种电磁设备,其功能大致可分为以下作用:Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 1可以随意把交流电压值或电流值增加或减少Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 2用作阻抗匹配的设备:变压器可用来匹配不平衡的阻抗。例如某个放大器的输出阻抗是20欧,而接往4欧的扬声器,这时必须用一个变压器以正确的匝数比率来匹配此二个阻抗。Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 3用做信号传输,有些信号要求有电的隔离,这时用变压器就有用了。Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 4用与振荡电路作反馈元件Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 变压器就是利用线圈的互感原理把电压改变。事实上一个电感器的磁场变化可以促使在近距

变压器的工作原理是什么

一.变压器的工作原理 变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件 1.变压器 ---- 静止的电磁装置 变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能 电压器的主要部件是一个铁心和套在铁心上的两个绕组。 变压器原理图(图3.1.2) 与电源相连的线圈,接收交流电能,称为一次绕组 与负载相连的线圈,送出交流电能,称为二次绕组 设 一次绕组的二次绕组的 电压相量 U1 电压相量 U2 电流相量 I1 电流相量 I2 电动势相量 E1 电动势相量 E2 匝数 N1 匝数 N2 同时交链一次,二次绕组的磁通量的相量为φm ,该磁通量称为主磁通 请注意图3.1.2 各物理量的参考方向确定。 2.理想变压器 不计一次、二次绕组的电阻和铁耗, 其间耦合系数 K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为 e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化, 则有

不计铁心损失,根据能量守恒原理可得 由此得出一次、二次绕组电压和电流有效值的关系 令 K=N1/N2,称为匝比(亦称电压比),则 二.变压器的结构简介 1.铁心 铁心是变压器中主要的磁路部分。通常由含硅量较高,厚度为 0.35 或 0.5 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成 铁心分为铁心柱和铁轭俩部分,铁心柱套有绕组;铁轭闭合磁路之用 铁心结构的基本形式有心式和壳式两种 心式变压器结构示意图(图3.1.6) 2.绕组 绕组是变压器的电路部分, 它是用纸包的绝缘扁线或圆线绕成 变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理(如上图):当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1,é2,感应电势公式为:E=4.44f N?m 式中:E--感应电势有效值 f--频率 N--匝数 ?m--主磁通最大值 由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻

变压器基本工作原理

第1章 变压器的基本知识与结构 1、1变压器的基本原理与分类 一、变压器的基本工作原理 变压器就是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组与副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=11 dt d N e Φ-=22 则 k N N e e u u ==≈212121 变比k:表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器与三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器与自耦变压器; 按铁心结构分类:心式变压器与壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质与冷却方式分类:油浸式变压器与干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器与特大型变压器。

三相油浸式电力变压器的外形,见图1,铁心与绕组就是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1、2电力变压器的结构 一、铁心 1、铁心的材料 采用高磁导率的铁磁材料—0、35~0、5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2、铁心形式 铁心就是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1、绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。

旋转变压器工作原理

旋转变压器工作原理 摘要:本文介绍了虽然目前已逐渐被广泛应用,但仍未被人们所熟悉的,角度位置传感元件—旋转变压器。文章对旋转变压器的发展、结构、原理、参数与性能指标及其信号变换做了简单的介绍;最后对几种类型旋转变压器的各方面作了比较,以供选择、使用时参考。 曲家骐:上海赢双电机有限公司 旋转变压器介绍 ⒈概述 ⒈⒈旋转变压器的发展 旋转变压器用于运动伺服控制系统中,作为角度位置的传感和测量用。早期的旋转变压器用于计算解答装置中,作为模拟计算机中的主要组成部分之一。其输出,是随转子转角作某种函数变化的电气信号,通常是正弦、余弦、线性等。这些函数是最常见的,也是容易实现的。在对绕组做专门设计时,也可产生某些特殊函数的电气输出。但这样的函数只用于特殊的场合,不是通用的。60年代起,旋转变压器逐渐用于伺服系统,作为角度信号的产生和检测元件。三线的三相的自整角机,早于四线的两相旋转变压器应用于系统中。所以作为角度信号传输的旋转变压器,有时被称作四线自整角机。随着电子技术和数字计算技术的发展,数字式计算机早已代替了模拟式计算机。所以实际上,旋转变压器目前主要是用于角度位置伺服控制系统中。由于两相的旋转变压器比自整角机更容易提高精度,所以旋转变压器应用的更广泛。特别是,在高精度的双通道、双速系统中,广泛应用的多极电气元件,原来采用的是多极自整角机,现在基本上都是采用多极旋转变压器。 旋转变压器是目前国内的专业名称,简称“旋变” 。俄文里称作“Вращающийся Трансформатор” ,词义就是“旋转变压器”。英文名字叫“resolver”,根据词义,有人把它称作为“解算器”或“分解器”。 作为角度位置传感元件,常用的有这样几种:光学编码器、磁性编码器和旋转变压器。由于制作和精度的缘故,磁性编码器没有其他两种普及。光学编码器的输出信号是脉冲,由于是天然的数字量,数据处理比较方便,因而得到了很好的应用。早期的旋转变压器,由于信号处理电路比较复杂,价格比较贵的原因,应用受到了限制。因为旋转变压器具有无可比拟的可靠性,以及具有足够高的精度,在许多场合有着不可代替的地位,特别是在军事以及航天、航空、航海等方面。随着电子工业的发展,电子元器件集成化程度的提高,元器件的价格大大下降;另外,信号处理技术的进步,旋转变压器的信号处理电路变得简单、可靠,价格也大大下降。而且,又出现了软件解码的信号处理,使得信号处理问题变得更加灵活、方便。这样,旋转变压器的应用得到了更大的发展,其优点得到了更大的体现。和光学编码器相比,旋转变压器有这样几点明显的优点:①无可比拟的可靠性,非常好的抗恶劣环境条件的能力;②可以运行在更高的转速下。(在输出12 bit的信号下,允许电动机的转速可达60,000rpm。而光学编码器,由于光电器件的频响一般在200kHz以下,在12 bit时,速度只能达到3,000rpm);③方便的绝对值信号数据输出。 ⒈⒉旋转变压器的应用 旋转变压器的应用,近期发展很快。除了传统的、要求可靠性高的军用、航空航天领域之外,在工业、交通以及民用领域也得到了广泛的应用。特别应该提出的

变压器原理

变压器 第一节变压器的工作原理、分类及结构 一、结构 1.铁心 如图,分铁心柱、磁轭两部分。 材料:0.35mm的冷轧有取向硅钢片,如:DQ320,DQ289,Z10,Z11等。 工艺:裁减、截短、去角、叠片、固定。 2.绕组 分同心式和交叠式两大类。 交叠式如右图。 同心式包括圆筒式、连续式、螺旋式等,见上图。 材料:铜(铝)漆包线,扁线。 工艺:绕线包、套线包。 3.其它部分 油箱(油浸式)、套管、分接开关等。

4.额定值 额定容量S N 额定电压U 1N U 2N 额定电流I 1N I 2N 对于单相变压器,有N N N N N I U I U S 2211== 对于三相变压器,有N N N N N I U I U S 221133== 注意一点:变压器的二次绕组的额定电压是指一次绕组接额定电压的电源,二次绕组开路时的线电压。 [讨论题]一台三相电力变压器,额定容量1600kV A ,额定电压10kV/6.3kV ,Y ,d 接法,求一次绕组和二次绕组的额定电流和相电流。 自己看[例3-1]。

总结:熟悉变压器额定值的规定。 二、变压器的工作原理 按照上图规定变压器各物理量的参考方向,有 dt d N e dt d N e φφ2211,-=-= 定义变比 2 1 21N N E E k = = 工作原理: (1) 变压器正常工作时,一次绕组吸收电能,二次绕组释放电能; (2) 变压器正常工作时,两侧绕组电压之比近似等于它们的匝数之比; (3) 变压器带较大的负载运行时,两侧绕组的电流之比近似等于它们匝数的反比; (4) 变压器带较大的负载运行时,两侧绕组所产生的磁通,在铁心中的方向相反。 总结:牢记变压器的四条原理。 第二节 单相变压器的空载运行 一、空载运行时的物理情况 如图,变压器一次绕组接额定电压,二次绕组开路,称为变压器空载运行。此时,变压器一次绕组流过一个很小的电流,称为空载电流i 0,大约占额定电流的2%~5%,因此空载时变压器的铜损耗是很小的。为什么? 又, 11144.4N f E U m Φ=≈

旋转变压器原理及应用

旋转变压器原理及应用 上海赢双电机有限公司曲家骐 ⒈概述 ⒈⒈旋转变压器的发展 旋转变压器用于运动伺服控制系统中,作为角度位置的传感和测量用。早期的旋转变压器用于计算解答装置中,作为模拟计算机中的主要组成部分之一。其输出,是随转子转角作某种函数变化的电气信号,通常是正弦、余弦、线性等。这些函数是最常见的,也是容易实现的。在对绕组做专门设计时,也可产生某些特殊函数的电气输出。但这样的函数只用于特殊的场合,不是通用的。60年代起,旋转变压器逐渐用于伺服系统,作为角度信号的产生和检测元件。三线的三相的自整角机,早于四线的两相旋转变压器应用于系统中。所以作为角度信号传输的旋转变压器,有时被称作四线自整角机。随着电子技术和数字计算技术的发展,数字式计算机早已代替了模拟式计算机。所以实际上,旋转变压器目前主要是用于角度位置伺服控制系统中。由于两相的旋转变压器比自整角机更容易提高精度,所以旋转变压器应用的更广泛。特别是,在高精度的双通道、双速系统中,广泛应用的多极电气元件,原来采用的是多极自整角机,现在基本上都是采用多极旋转变压器。 旋转变压器是目前国内的专业名称,简称“旋变”。俄文里称作“ВращающийсяТрансформатор” ,词义就是“旋转变压器”。英文名字叫“resolver”,根据词义,有人把它称作为“解算器”或“分解器”。 作为角度位置传感元件,常用的有这样几种:光学编码器、磁性编码器和旋转变压器。由于制作和精度的缘故,磁性编码器没有其他两种普及。光学编码器的输出信号是脉冲,由于是天然的数字量,数据处理比较方便,因而得到了很好的应用。早期的旋转变压器,由于信号处理电路比较复杂,价格比较贵的原因,应用受到了限制。因为旋转变压器具有无可比拟的可靠性,以及具有足够高的精度,在许多场合有着不可代替的地位,特别是在军事以及航天、航空、航海等方面。 随着电子工业的发展,电子元器件集成化程度的提高,元器件的价格大大下降;另外,信号处理技术的进步,旋转变压器的信号处理电路变得简单、可靠,价格也大大下降。而且,又出现了软件解码的信号处理,使得信号处理问题变得更加灵活、方便。这样,旋转变压器的应用得到了更大的发展,其优点得到了更大的体现。和光学编码器相比,旋转变压器有这样几点明显的优点:①无可比拟的可靠性,非常好的抗恶劣环境条件的能力;②可以运行在更高的转速下。(在输出12 bit的信号下,允许电动机的转速可达60,000rpm。而光学编码器,由于光电器件的频响一般在200kHz以下,在12 bit时,速度只能达到3,000rpm);③方便的绝对值信号数据输出。 ⒈⒉旋转变压器的应用 旋转变压器的应用,近期发展很快。除了传统的、要求可靠性高的军用、航空航天领域之外,在工业、交通以及民用领域也得到了广泛的应用。特别应该提出的是,这些年来,随着工业自动化水平的提高,随着节能减排的要求越来越高,效率高、节能显著的永磁交流电动机的应用,越来越广泛。而永磁交流电动机的位置传感器,原来是以光学编码器居多,但这些年来,却迅速地被旋转变压器代替。可以举几个明显的例子,在家电中,不论是冰箱、空调、还是洗衣机,目前都是向变频变速发展,采用的是正弦波控制的永磁交流电动机。目前各国都在非常重视的电动汽车中,电动汽车中所用的位置、速度传感器都是旋转变压器。例如,驱动用电动机和发电机的位置传感、电动助力方向盘电机的位置速度传感、燃气阀角度测量、真空室传送器角度位置测量等等,都是采用旋转变压器。在应用于塑压系统、纺织系统、冶金系统以及其

变压器的基本工作原理(正式版)

文件编号:TP-AR-L5642 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 变压器的基本工作原理 (正式版)

变压器的基本工作原理(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、变压器的种类: 1.按冷却方式分类:干式(自冷)变压器、油浸 (自冷)变压器、氟化物(蒸发冷却)变压器。 2.按防潮方式分类:开放式变压器、灌封式变压 器、密封式变压器。 3.按铁芯或线圈结构分类:芯式变压器(插片铁 芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁 芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔 变压器。 4.按电源相数分类:单相变压器、三相变压器、 多相变压器。

5.按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器 二、变压器工作原理: 变压器的基本工作原理是:变压器是由一次绕组、二次绕组和铁心组成,当一次绕组加上交流电压时,铁心中产生交变磁通,交变磁通在一次、二次绕组中感应电动势与在单匝上感应电动势的大小是相同的,但一次、二次侧绕组的匝数不同,一次、二次侧感应电动势的大小就不同,从而实现了变压的目的,一次、二次侧感应电动势之比等于一次、二次侧匝数之比。 当二次侧接上负载时,二次侧电流也产生磁动势,而主磁通由于外加电压不变而趋于不变,随之在一次侧增加电流,使磁动势达到平衡,这样,一次侧和二次侧通过电磁感应而实现了能量的传递。

旋转变压器

旋转变压器 ⒈概述 ⒈⒈旋转变压器的发展 旋转变压器用于运动伺服控制系统中,作为角度位置的传感和测量用。早期的旋转变压器用于计算解答装置中,作为模拟计算机中的主要组成部分之一。其输出,是随转子转角作某种函数变化的电气信号,通常是正弦、余弦、线性等。这些函数是最常见的,也是容易实现的。在对绕组做专门设计时,也可产生某些特殊函数的电气输出。但这样的函数只用于特殊的场合,不是通用的。60年代起,旋转变压器逐渐用于伺服系统,作为角度信号的产生和检测元件。三线的三相的自整角机,早于四线的两相旋转变压器应用于系统中。所以作为角度信号传输的旋转变压器,有时被称作四线自整角机。随着电子技术和数字计算技术的发展,数字式计算机早已代替了模拟式计算机。所以实际上,旋转变压器目前主要是用于角度位置伺服控制系统中。由于两相的旋转变压器比自整角机更容易提高精度,所以旋转变压器应用的更广泛。特别是,在高精度的双通道、双速系统中,广泛应用的多极电气元件,原来采用的是多极自整角机,现在基本上都是采用多极旋转变压器。 旋转变压器是目前国内的专业名称,简称“旋变”。俄文里称作 “ВращающийсяТрансформатор”,词义就是“旋转变压器”。英文名字叫“resolver”,根据词义,有人把它称作为“解算器”或“分解器”。 作为角度位置传感元件,常用的有这样几种:光学编码器、磁性编码器和旋转变压器。由于制作和精度的缘故,磁性编码器没有其他两种普及。光学编码器的输出信号是脉冲,由于是天然的数字量,数据处理比较方便,因而得到了很好的应用。早期的旋转变压器,由于信号处理电路比较复杂,价格比较贵的原因,应用受到了限

旋转变压器工作原理

旋转变压器工作原理 简称旋变是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 旋转变压器,是一种输出电压与转子转角保持一定函数关系的感应式微电机。它是一种将角位移转换为电信号的位移传感器,也是能进行坐标换算和函数运算的解算元件。 旋转变压器结构与自整角电机相似,工作原理也与一般变压器基本相同。旋转变压器在同步随动系统及数字随动系统中可用于传递转角或电信号;在解算装置中可作为函数的解算之用,故又称为解算器。旋转变压器广泛应用在民用和军事工程的伺服系统中作为测角元件、坐标变换元件和解算装置。特点: 1·对电磁干扰敏感以及解码复杂等缺点2能在一些比较恶劣的环境条件下工作2在环境恶劣的钢铁行业、水利水电行业,旋转变压器因为其防护等级高同样获得了广泛的应用。 3光电编码器,它精度高,抗干扰能力强,接口简单使用方便编码器 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式

两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确码区。1当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。2从代码数大小的变化可以判别真反方向和位移所处位置。3测量范围是0----360.4视频编码器广泛应用于行走机械、数控机床、电梯、伺服电机、流量计、纺织机械、冶金机械、注塑机械、印刷包装机械、自动化仪器仪表等各种工业自动化测控领域。 绝对型旋转光电编码器,因其每一个位置绝对唯一、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。 从增量式编码器到绝对式编码器 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆 来记住位置。这样,当停电后,编码器不能有任何的移动,当 来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉 冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量 是无从知道的,只有错误的生产结果出现后才能知道。

旋转变压器(角度传感器)的基本原理 Encoder Resolver

Document Information 1. Introduction The resolver operates on the principle of a rotary transformer. In a rotary transformer the rotor consists of a coil (winding) which, together with the stator winding, constitutes a transformer. The resolver is basically designed exactly in the same way, with the difference that the stator is made up of two windings displaced by 90° to one another, instead of one winding. The resolver is used to determine the absolute position of the motor shaft over one revolution, especially with servo-drives . Furthermore, the speed and the encoder simulation for the position control can be derived from the resolver signal. The rotor of the resolver is mounted on the motor shaft. Both the stator and the rotor are provided with an additional winding each to allow for brushless transmission of the stator primary voltage to the rotor. With the aid of these additional windings the primary voltage of the stator winding with a carrier frequency of about 8 kHz is transmitted to the rotor (rotating transformer). The two windings carried on the rotor are coupled electrically so that the voltage transmitted from the stator to the rotor is also present on the second winding of the rotor. E-learning Resources in Microelectronics Resolver Universit?t Paderborn 1. Introduction Authors: Staff of Universit?t Paderborn Fig 1. Schematic design of a resolver

相关文档
最新文档